Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (10): 74-82.DOI: 10.11686/cyxb2023466
Previous Articles Next Articles
Lin QI1,2(), Yun BAO2, Ying-bo YANG3, Xiao-ling WANG2, Wei ZHAO2
Received:
2023-12-01
Revised:
2023-12-25
Online:
2024-10-20
Published:
2024-07-15
Lin QI, Yun BAO, Ying-bo YANG, Xiao-ling WANG, Wei ZHAO. A study of the mechanism of nitrate nitrogen-induced cytokinin enhancement of strontium enrichment in Avena sativa[J]. Acta Prataculturae Sinica, 2024, 33(10): 74-82.
pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 阳离子交换量 Cation exchange capacity (cmol·kg-1) | 锶 Strontium (mg·kg-1) |
---|---|---|---|---|---|---|
8.05 | 12.85 | 0.96 | 12.52 | 155.13 | 19.23 | 5.78 |
Table 1 Basic physicochemical properties of the test soil
pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 阳离子交换量 Cation exchange capacity (cmol·kg-1) | 锶 Strontium (mg·kg-1) |
---|---|---|---|---|---|---|
8.05 | 12.85 | 0.96 | 12.52 | 155.13 | 19.23 | 5.78 |
硝态氮处理 Nitrate nitrogen treatment (mmol·L-1) | 锶处理 Strontium treatment (mg·kg-1) | 干重Dry weight (mg) | 根冠比 Root to shoot ratio | ||
---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | |||
0 | 0 | 60±1Aa | 71±12Aa | 74±11Ba | 0.41Ac |
400 | 57±2Bb | 52±8Bb | 61±4Bb | 0.50Ab | |
800 | 54±1Bc | 44±11Bb | 52±6Bc | 0.56Aa | |
10 | 0 | 62±1Aa | 76±14Aa | 84±9Aa | 0.39Bc |
400 | 59±3Aab | 71±8Ab | 75±4Ab | 0.40Bb | |
800 | 58±1Ab | 68±11Ab | 68±7Ab | 0.43Ba |
Table 2 The effects of different nitrate nitrogen and strontium treatments on oat biomass
硝态氮处理 Nitrate nitrogen treatment (mmol·L-1) | 锶处理 Strontium treatment (mg·kg-1) | 干重Dry weight (mg) | 根冠比 Root to shoot ratio | ||
---|---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | |||
0 | 0 | 60±1Aa | 71±12Aa | 74±11Ba | 0.41Ac |
400 | 57±2Bb | 52±8Bb | 61±4Bb | 0.50Ab | |
800 | 54±1Bc | 44±11Bb | 52±6Bc | 0.56Aa | |
10 | 0 | 62±1Aa | 76±14Aa | 84±9Aa | 0.39Bc |
400 | 59±3Aab | 71±8Ab | 75±4Ab | 0.40Bb | |
800 | 58±1Ab | 68±11Ab | 68±7Ab | 0.43Ba |
硝态氮处理 Nitrate nitrogen treatment (mmol·L-1) | 锶处理 Strontium treatment (mg·kg-1) | 富集浓度 Accumulation concentration (mg·kg-1) | ||
---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | ||
0 | 0 | 5±1Ac | 2±1Ac | 2±1Ac |
400 | 186±3Bb | 77±8Bb | 89±4Bb | |
800 | 274±31Ba | 112±11Ba | 151±12Ba | |
10 | 0 | 6±1Ac | 3±1Ac | 3±1Ac |
400 | 226±12Ab | 97±8Ab | 139±4Ab | |
800 | 324±31Aa | 152±11Aa | 221±12Aa |
Table 3 Strontium accumulation characteristics in organs of oats under different nitrate and strontium treatments
硝态氮处理 Nitrate nitrogen treatment (mmol·L-1) | 锶处理 Strontium treatment (mg·kg-1) | 富集浓度 Accumulation concentration (mg·kg-1) | ||
---|---|---|---|---|
根 Root | 茎 Stem | 叶 Leaf | ||
0 | 0 | 5±1Ac | 2±1Ac | 2±1Ac |
400 | 186±3Bb | 77±8Bb | 89±4Bb | |
800 | 274±31Ba | 112±11Ba | 151±12Ba | |
10 | 0 | 6±1Ac | 3±1Ac | 3±1Ac |
400 | 226±12Ab | 97±8Ab | 139±4Ab | |
800 | 324±31Aa | 152±11Aa | 221±12Aa |
硝态氮处理 Nitrate nitrogen treatment (mmol·L-1) | 锶处理 Strontium treatment (mg·kg-1) | 土壤pH值 Soil pH value |
---|---|---|
0 | 0 | 8.3±0.2Aa |
400 | 8.1±0.3Aa | |
800 | 7.9±0.2Aa | |
10 | 0 | 6.3±0.5Ba |
400 | 6.4±0.3Ba | |
800 | 6.2±0.3Ba |
Table 4 The soil pH values under different nitrate nitrogen and strontium treatments
硝态氮处理 Nitrate nitrogen treatment (mmol·L-1) | 锶处理 Strontium treatment (mg·kg-1) | 土壤pH值 Soil pH value |
---|---|---|
0 | 0 | 8.3±0.2Aa |
400 | 8.1±0.3Aa | |
800 | 7.9±0.2Aa | |
10 | 0 | 6.3±0.5Ba |
400 | 6.4±0.3Ba | |
800 | 6.2±0.3Ba |
硝态氮处理 Nitrate nitrogen treatment (mmol·L-1) | 锶处理 Strontium treatment (mg·kg-1) | 细胞分裂素浓度 Cytokinin concentration (ng·g-1) |
---|---|---|
0 | 0 | 95±13Ba |
400 | 79±9Bb | |
800 | 66±11Bc | |
10 | 0 | 115±7Ac |
400 | 128±8Ab | |
800 | 139±11Aa |
Table 5 The cytokinin concentration in oat leaves under different nitrate nitrogen and strontium treatments
硝态氮处理 Nitrate nitrogen treatment (mmol·L-1) | 锶处理 Strontium treatment (mg·kg-1) | 细胞分裂素浓度 Cytokinin concentration (ng·g-1) |
---|---|---|
0 | 0 | 95±13Ba |
400 | 79±9Bb | |
800 | 66±11Bc | |
10 | 0 | 115±7Ac |
400 | 128±8Ab | |
800 | 139±11Aa |
类型 Type | 指标 Index | 硝态氮 Nitrate nitrogen | 金属锶 Strontium | 硝态氮×金属锶 Nitrate nitrogen×strontium | |||
---|---|---|---|---|---|---|---|
P值 P value | F值 F value | P值 P value | F值 F value | P值 P value | F值 F value | ||
生物量 Biomass | 根 Root | 0.12 | 2.54 | <0.001 | 56.99 | <0.001 | 108.47 |
茎 Stem | 0.04 | 119.20 | <0.001 | 443.21 | 0.040 | 15.81 | |
叶 Leaf | <0.001 | 126.06 | 0.03 | 21.66 | <0.001 | 25.04 | |
根冠比 Root to shoot ratio | <0.001 | 90.33 | <0.001 | 53.33 | 0.530 | <0.001 | |
锶浓度 Strontium concentration | 根Root | <0.001 | 59.81 | <0.001 | 33.16 | 0.02 | 18.47 |
茎 Stem | <0.001 | 25.33 | <0.001 | 213.43 | <0.001 | 128.12 | |
叶 Leaf | <0.001 | 41.29 | <0.001 | 113.66 | <0.001 | 146.20 | |
转运系数 Translocation factor (TLF) | <0.001 | 26.33 | <0.001 | 543.33 | <0.001 | 1128.53 | |
生物富集系数 Bio-concentration factor (BCF) | <0.001 | 41.29 | <0.001 | 113.66 | <0.001 | 186.20 | |
土壤pH Soil pH | <0.001 | 513.72 | 0.22 | 0.16 | 0.030 | 18.47 | |
细胞分裂素Cytokinin | <0.001 | 33.14 | 0.34 | 0.01 | <0.001 | 1108.13 |
Table 6 The effects of nitrate nitrogen treatment, metal strontium treatment and their interactions on each indicators by two-way ANOVA
类型 Type | 指标 Index | 硝态氮 Nitrate nitrogen | 金属锶 Strontium | 硝态氮×金属锶 Nitrate nitrogen×strontium | |||
---|---|---|---|---|---|---|---|
P值 P value | F值 F value | P值 P value | F值 F value | P值 P value | F值 F value | ||
生物量 Biomass | 根 Root | 0.12 | 2.54 | <0.001 | 56.99 | <0.001 | 108.47 |
茎 Stem | 0.04 | 119.20 | <0.001 | 443.21 | 0.040 | 15.81 | |
叶 Leaf | <0.001 | 126.06 | 0.03 | 21.66 | <0.001 | 25.04 | |
根冠比 Root to shoot ratio | <0.001 | 90.33 | <0.001 | 53.33 | 0.530 | <0.001 | |
锶浓度 Strontium concentration | 根Root | <0.001 | 59.81 | <0.001 | 33.16 | 0.02 | 18.47 |
茎 Stem | <0.001 | 25.33 | <0.001 | 213.43 | <0.001 | 128.12 | |
叶 Leaf | <0.001 | 41.29 | <0.001 | 113.66 | <0.001 | 146.20 | |
转运系数 Translocation factor (TLF) | <0.001 | 26.33 | <0.001 | 543.33 | <0.001 | 1128.53 | |
生物富集系数 Bio-concentration factor (BCF) | <0.001 | 41.29 | <0.001 | 113.66 | <0.001 | 186.20 | |
土壤pH Soil pH | <0.001 | 513.72 | 0.22 | 0.16 | 0.030 | 18.47 | |
细胞分裂素Cytokinin | <0.001 | 33.14 | 0.34 | 0.01 | <0.001 | 1108.13 |
1 | Mangano J, Gaus K S, Mousseau T A, et al. Strontium-90 in baby teeth as a basis for estimating US cancer deaths from nuclear weapons fallout. International Journal of Social Determinants of Health and Health Services, 2023, 28(3): 374-384. |
2 | Alsharef S, Alanazi M, Alharthi F, et al. Review about radiopharmaceuticals: preparation, radioactivity, and applications. International Journal of Pharmaceutics, 2020, 12(3): 8-15. |
3 | Coudert F X. Strontium’s scarlet sparkles. Nature Chemistry, 2015, 7(11): 940. |
4 | Tsukada H, Takeda A, Takahashi T, et al. Uptake and distribution of 90Sr and stable Sr in rice plants. Journal of Environmental Radioactivity, 2005, 81(2/3): 221-231. |
5 | Bhat S A, Bashir O, Haq S A U, et al. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 2022, 303(1): 134788. |
6 | Kafle A, Timilsina A, Gautam A, et al. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 2022, 8(1): 100203. |
7 | Shi L, Li J, Palansooriya K N, et al. Modeling phytoremediation of heavy metal contaminated soils through machine learning. Journal of Hazardous Materials, 2023, 441(1): 129904. |
8 | Zhu Y, Wang Y, He X, et al. Plant growth-promoting rhizobacteria: A good companion for heavy metal phytoremediation. Chemosphere, 2023, 338(1): 139475. |
9 | Saini S, Kaur N, Pati P K. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. Ecotoxicology and Environmental Safety, 2021, 223(1): 112578. |
10 | Sharma A, Kapoor D, Gautam S, et al. Heavy metal induced regulation of plant biology: Recent insights. Physiologia Plantarum, 2022, 174(3): e13688. |
11 | Sameena P P, Puthur J T. Exogenous application of cytokinins confers copper stress tolerance in Ricinus communis L. seedlings. Journal of Plant Growth Regulation, 2021, 41(1): 3395-3409. |
12 | Wang X L, Duan P L, Sun R H, et al. Effects of soil nitrification on compensatory growth upon post-drought rewatering of corns based on cytokinin. International Journal of Agriculture and Biology, 2020, 23(5): 882-888. |
13 | Gu J, Li Z, Mao Y, et al. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science, 2018, 274(1): 320-331. |
14 | Khan T A, Nadeem F, Gao Y, et al. A larger root system in oat (Avena nuda L.) is coupled with enhanced biomass accumulation and hormonal alterations under low nitrogen. Applied Ecology & Environmental Research, 2019, 17(2): 4631-4653. |
15 | Lu R K. Analysis methods for soil and agrochemistry. Beijing: Chinese Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
16 | Tang Y J, Luo X G, Zeng F, et al. The responses of plants to high concentrations of strontium, cesium stress and the screening of remediation plants. Journal of Agro-Environment Science, 2013, 32(5): 960-965. |
唐永金, 罗学刚, 曾峰, 等. 不同植物对高浓度Sr、Cs胁迫的响应与修复植物筛选. 农业环境科学学报, 2013, 32(5): 960-965. | |
17 | Liu Z L, Jie L, Yang Y Q, et al. Research and application of microwave assisted digestion procedure for the determination of 23 elements in sediments by ICP-AES/ICP-MS. Environmental Chemistry, 2013, 32(12): 2370-2377. |
18 | Soudek P, Valenová Š, Vavříková Z, et al. 137Cs and 90Sr uptake by sunflower cultivated under hydroponic conditions. Journal of Environmental Radioactivity, 2006, 88(3): 236-250. |
19 | Wang X L, Duan P L, Yang S J, et al. Corn compensatory growth upon post-drought re-watering based on the effects of rhizosphere soil nitrification on cytokinin. Agricultural Water Management, 2020, 241(1): 106436. |
20 | Yang T, Zhong Q L, Li B Y, et al. Effects of short-term combined application of ammonium nitrogen and nitrate nitrogen on the growth and leaf traits of Machilus pauhoi seedlings. Chinese Journal of Applied Ecology, 2022, 33(1): 25-32. |
杨婷, 钟全林, 李宝银, 等. 短期铵态氮与硝态氮配施对刨花楠幼苗生长及叶片性状的影响. 应用生态学报, 2022, 33(1): 25-32. | |
21 | Lu Y, Dong F, Tian T, et al. Effects of nitrogen nutrition on wheat seedling root growth and drought resistance. Journal of Shandong Agricultural University (Natural Science Edition), 2022, 53(1): 39-45. |
卢毅, 董放, 田田, 等. 不同氮素营养对小麦苗期根系发育及抗旱性的影响. 山东农业大学学报(自然科学版), 2022, 53(1): 39-45. | |
22 | Zhang Q Z, Hao G, Li H Y. Effects of availability and form of exogenous nitrogen on plant growth and physiology: Progress and prospects. Chinese Journal of Ecology, https://kns.cnki.net/kcms/detail/21.1148.Q.20230309.1116.016.html. |
张秦泽, 郝广, 李洪远. 外源输入氮的有效性及形态对植物生长与生理影响的研究进展. 生态学杂志, https://kns.cnki.net/kcms/detail/21.1148.Q.20230309.1116.016.html. | |
23 | Gao Y, Song X, Liu K, et al. Mixture of controlled-release and conventional urea fertilizer application changed soil aggregate stability, humic acid molecular composition, and maize nitrogen uptake. Science of the Total Environment, 2021, 789(1): 147778. |
24 | Hatamian M, Nejad A R, Kafi M, et al. Nitrate improves hackberry seedling growth under cadmium application. Heliyon, 2020, 6(1): e03247. |
25 | Zu Q X, Nie Z Y, Lin S, et al. Effects of ammonium nitrogen and nitrate nitrogen ratio on growth and ion balance of flue-cured tobacco. Crops, 2023, 39(3): 154-158. |
祖庆学, 聂忠扬, 林松, 等. 铵态氮和硝态氮配比对烤烟生长及离子平衡的影响. 作物杂志, 2023, 39(3): 154-158. | |
26 | Liu N, Zhang L, Meng X X, et al. Effect of nitrate/ammonium ratios on growth, root morphology and nutrient elements uptake of watermelon (Citrullus lanatus) seedlings. Journal of Plant Nutrition, 2014, 37(11): 1859-1872. |
27 | Wei X Q, Jia W F, Ma J H, et al. Review on the effects of plant growth regulators on plant growth and development. Northern Horticulture, 2022(4): 118-125. |
魏晓琼, 贾文飞, 马靖恒, 等. 植物生长调节剂对植株生长发育的影响概述. 北方园艺, 2022(4): 118-125. | |
28 | Ramireddy E, Nelissen H, Leuendorf J E, et al. Root engineering in maize by increasing cytokinin degradation causes enhanced root growth and leaf mineral enrichment. Plant Molecular Biology, 2021, 106(1): 555-567. |
29 | Qin R R, Wang X L. Effects of crown height on the compensatory growth of Italian ryegrass based on combined effects of stored organic matter and cytokinin. Grassland Science, 2019, 66(1): 29-39. |
30 | Fang Z G, Yang Q, Xie J T, et al. The role and mechanism of cytokinin in phytoremediation of heavy metal contaminated soil. Acta Ecologica Sinica, 2022, 42(8): 3056-3065. |
方治国, 杨青, 谢俊婷, 等. 重金属污染土壤植物修复中细胞分裂素的作用与机制. 生态学报, 2022, 42(8): 3056-3065. | |
31 | Li P, Guo X F, Xu L L, et al. Influence of exogenous cytokinins on uptake and translocation of cadmium in corn seedlings. Journal of Soil and Water Conservation, 2011, 25(1): 119-122. |
李萍, 郭喜丰, 徐莉莉, 等. 细胞分裂素类物质对玉米幼苗镉吸收和转运的影响. 水土保持学报, 2011, 25(1): 119-122. | |
32 | Zhang Q, Xing J, Yao J M, et al. The role of a cytokinin signaling pathway type-B ARR transcription factor, LpARR10, in cadmium tolerance of perennial ryegrass. Acta Prataculturae Sinica, 2022, 31(5): 135-143. |
张晴, 邢静, 姚佳明, 等. 多年生黑麦草细胞分裂素信号通路B类ARR转录因子LpARR10的耐镉功能分析. 草业学报, 2022, 31(5): 135-143. |
[1] | Ming-ming GU, Xing-hui JIANG, Zhi-yi MA, Shui-ling QIU, Hao-yu LIU, Ming-rui ZHANG, Jia-ning LU, Yu-jun QIU, Ben-zhi WANG, Qian-fu GAN. Degradation characteristics of sweet potato and taro in the rumen of Mindong goats and changes in microbial community attached to the surface [J]. Acta Prataculturae Sinica, 2024, 33(9): 169-184. |
[2] | Hao GUAN, Duo XU, Hai-ping LI, Zhi-feng JIA, Xiang MA, Wen-hui LIU, You-jun CHEN, Xin-yang LI, Yan-ling HUANG, Qing-ping ZHOU, Shi-yong CHEN. A study of nutritional quality and rumen degradation characteristics of 17 oat varieties in high cold regions [J]. Acta Prataculturae Sinica, 2024, 33(9): 185-198. |
[3] | Li-ping HONG, Xiao-dong LI, Er-ru YU, Cheng-jiang PEI, Yi-shun SHANG, Jin-hong LUO, Guang SUN, Yun-hao ZHOU, Shi-ge LI, Hang YANG, Feng-dan LIU. Effects of different perilla (Perilla frutescens) materials on serum antioxidant enzyme activity, rumen fermentation parameters and microflora of Guizhou black goats [J]. Acta Prataculturae Sinica, 2024, 33(9): 214-226. |
[4] | Chun-jiao MI, Liu HONG, Wen MA, Pei-sheng MAO. Effects of glutathione priming on the mitochondrial antioxidant characteristics of aged oat seed embryos [J]. Acta Prataculturae Sinica, 2024, 33(9): 51-59. |
[5] | Yuan MA, Huan LIU, Gui-qin ZHAO, Jing-long WANG, Ran ZHANG, Rui-rui YAO. Identification of the oat sHSP gene family and its transcript profiles in response to high temperature and aging [J]. Acta Prataculturae Sinica, 2024, 33(8): 145-158. |
[6] | Wen-pan DU, Gui-qin ZHAO, Ji-kuan CHAI, Li YANG, Jian-gui ZHANG, Yi-chao SHI, Guan-lu ZHANG. Effects of root separation on aboveground biomass, soil nutrient contents, and root characters of intercropped oat and pea [J]. Acta Prataculturae Sinica, 2024, 33(8): 25-36. |
[7] | Rui-juan SANG, Chao-jie CUI, Yun HE, Xiao-xia ZHANG, Jin YAO, Chun-yang DONG, Hao SUN, Ying-hua SHI, Xiao-yan ZHU, De-feng LI. Lodging resistance and production performance of 18 autumn-sown forage oat varieties in northern Henan Province [J]. Acta Prataculturae Sinica, 2024, 33(8): 74-85. |
[8] | Shang-lin YANG, Xuan WU, Qiao-hui LUO, Tai-hua HUANG, Zheng-fan ZHANG, Hai-tao SHI, Chun-hua GUO. A study of the protein requirements of 20-35 kg Chuanzhong black goats [J]. Acta Prataculturae Sinica, 2024, 33(7): 119-129. |
[9] | Zhao ZHANG, Ying-ying FU, Hao-wen SUN, Feng-xue SUN, Hui-fang YAN. Identification of seed vigor and evaluation of seed storability in different varieties of oat [J]. Acta Prataculturae Sinica, 2024, 33(6): 165-174. |
[10] | Jie ZHAO, Heng-guang CHEN, Xiao-meng PEI, Hao YU, Yin-ying XU, Da-gan MAO. Effects of resveratrol supplementation in the perinatal diet on production performance, blood indexes, and transcript abundance of genes encoding inflammatory factors in goats [J]. Acta Prataculturae Sinica, 2024, 33(4): 210-220. |
[11] | Hong-fei LI, Bang-wei ZHOU, Miao ZHANG, Shu-nan SHI, Zhi-jian LI. Adaptability evaluation of different oat varieties introduced in the Hulunbuir region [J]. Acta Prataculturae Sinica, 2024, 33(4): 60-72. |
[12] | Ping MU, Ji-kuan CHAI, Wei-juan SU, Hai-long ZHANG, Gui-qin ZHAO. Phenotype and genetic variation analysis of forward and reverse hybrid progeny from different oat crosses [J]. Acta Prataculturae Sinica, 2024, 33(4): 73-86. |
[13] | Qin FENG, Xiao-li HE, Bin WANG, Teng-fei WANG, Wang NI, Xia MA, Xue-hua MING, Jian-qiang DENG, Jian LAN. A study of mixed sowing effects for oat and common vetch in the Ningxia Yellow River Irrigation Area [J]. Acta Prataculturae Sinica, 2024, 33(3): 107-119. |
[14] | Gen-sheng BAO, Yuan LI, Xiao-yun FENG, Peng ZHANG, Si-yu MENG. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region [J]. Acta Prataculturae Sinica, 2024, 33(3): 73-84. |
[15] | Xue WANG, Xiao-jing LIU, Jing WANG, Yong WU, Chang-chun TONG. Root and carbon-nitrogen metabolism characteristics of alfalfa-oat mixed stands under continuous intercropping [J]. Acta Prataculturae Sinica, 2024, 33(3): 85-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||