Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (12): 84-98.DOI: 10.11686/cyxb2024056
Previous Articles Next Articles
Chang-zhuang LIU(), Yu-zhao TAO, Ming LI(), Xiao-ming ZHANG()
Received:
2024-02-26
Revised:
2024-04-16
Online:
2024-12-20
Published:
2024-10-09
Contact:
Ming LI,Xiao-ming ZHANG
Chang-zhuang LIU, Yu-zhao TAO, Ming LI, Xiao-ming ZHANG. Effect of manganese sulfate on photosynthesis and nitrogen metabolism of cultivated Indian barnyard grass seedlings under saline-alkali stress[J]. Acta Prataculturae Sinica, 2024, 33(12): 84-98.
土壤类型 Soil type | pH | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Alkali-hydrolyzable nitrogen (mg·kg-1) | 有效磷 Available phosphorous (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机质 Organic matter (%) |
---|---|---|---|---|---|---|
黑土Dark soil (H) | 6.66 | 1.46 | 110.37 | 20.54 | 116.77 | 2.81 |
苏打盐碱土Soda saline-alkali soil (S) | 9.44 | 1.65 | 79.57 | 13.72 | 95.83 | 2.41 |
Table 1 Soil basic fertility
土壤类型 Soil type | pH | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Alkali-hydrolyzable nitrogen (mg·kg-1) | 有效磷 Available phosphorous (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 有机质 Organic matter (%) |
---|---|---|---|---|---|---|
黑土Dark soil (H) | 6.66 | 1.46 | 110.37 | 20.54 | 116.77 | 2.81 |
苏打盐碱土Soda saline-alkali soil (S) | 9.44 | 1.65 | 79.57 | 13.72 | 95.83 | 2.41 |
土壤类型Soil type | Na (mg·g-1) | Ca (mg·g-1) | Mg (mg·g-1) | Mn (mg·kg-1) | Cu (mg·kg-1) | Zn (mg·kg-1) |
---|---|---|---|---|---|---|
黑土Dark soil | 4.25 | 2.481 | 9.953 | 926.673 | 29.906 | 121.553 |
苏打盐碱土Soda saline-alkali soil | 11.24 | 9.641 | 10.255 | 718.460 | 24.094 | 90.323 |
Table 2 Trace element content in soils
土壤类型Soil type | Na (mg·g-1) | Ca (mg·g-1) | Mg (mg·g-1) | Mn (mg·kg-1) | Cu (mg·kg-1) | Zn (mg·kg-1) |
---|---|---|---|---|---|---|
黑土Dark soil | 4.25 | 2.481 | 9.953 | 926.673 | 29.906 | 121.553 |
苏打盐碱土Soda saline-alkali soil | 11.24 | 9.641 | 10.255 | 718.460 | 24.094 | 90.323 |
处理Treatment | 株高Plant height (cm) | 叶面积Leaf area (cm2) | 干物质重Dry weight (g·plant-1) | 根冠比Root/shoot |
---|---|---|---|---|
H-SF | 58.73±0.66Aa | 111.64±8.10Aa | 0.356±0.01Ba | 0.147±0.00Db |
H-CK | 53.20±1.77Bb | 84.16±0.98Bb | 0.309±0.00Dc | 0.163±0.00Db |
H-JZ | 51.40±1.64Bb | 90.42±5.43Bb | 0.333±0.01Cb | 0.276±0.01CDa |
S- SF | 56.40±0.65Aa | 87.66±1.64Ba | 0.495±0.01Aa | 0.338±0.02Cc |
S-CK | 27.97±0.42Cb | 38.08±3.10Cb | 0.177±0.01Eb | 0.657±0.06Bb |
S-JZ | 25.90±0.22Cc | 32.57±2.37Cb | 0.162±0.01Eb | 1.414±0.09Aa |
Table 3 Manganese fertilizer and seed soaking treatment on the aboveground growth of cultivated barnyardgrass
处理Treatment | 株高Plant height (cm) | 叶面积Leaf area (cm2) | 干物质重Dry weight (g·plant-1) | 根冠比Root/shoot |
---|---|---|---|---|
H-SF | 58.73±0.66Aa | 111.64±8.10Aa | 0.356±0.01Ba | 0.147±0.00Db |
H-CK | 53.20±1.77Bb | 84.16±0.98Bb | 0.309±0.00Dc | 0.163±0.00Db |
H-JZ | 51.40±1.64Bb | 90.42±5.43Bb | 0.333±0.01Cb | 0.276±0.01CDa |
S- SF | 56.40±0.65Aa | 87.66±1.64Ba | 0.495±0.01Aa | 0.338±0.02Cc |
S-CK | 27.97±0.42Cb | 38.08±3.10Cb | 0.177±0.01Eb | 0.657±0.06Bb |
S-JZ | 25.90±0.22Cc | 32.57±2.37Cb | 0.162±0.01Eb | 1.414±0.09Aa |
处理 Treatment | 干物质重 Dry weight (g·plant-1) | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 根平均直径 Root average diameter (mm) |
---|---|---|---|---|---|
H-SF | 0.05±0.00Eb | 293.12±6.36Cb | 58.93±4.47Bb | 1.17±0.05Ba | 0.65±0.01Aa |
H-CK | 0.05±0.00Eb | 246.74±26.19Dc | 38.88±2.43Cc | 0.64±0.08Cb | 0.52±0.02BCb |
H-JZ | 0.09±0.01Da | 414.33±11.52Ba | 75.56±5.60ABa | 1.39±0.12ABa | 0.60±0.02ABa |
S-SF | 0.17±0.01Bb | 435.90±18.31Bb | 69.13±7.14ABb | 1.35±0.14ABa | 0.46±0.02Cb |
S-CK | 0.12±0.01Cc | 321.24±9.18Cc | 48.32±3.49Cc | 0.73±0.01Cb | 0.60±0.06ABa |
S-JZ | 0.23±0.01Aa | 517.76±17.47Aa | 84.22±10.70Aa | 1.59±0.14Aa | 0.63±0.04Aa |
Table 4 Manganese fertilizer and seed soaking treatment on the root growth of cultivated barnyardgrass
处理 Treatment | 干物质重 Dry weight (g·plant-1) | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 根平均直径 Root average diameter (mm) |
---|---|---|---|---|---|
H-SF | 0.05±0.00Eb | 293.12±6.36Cb | 58.93±4.47Bb | 1.17±0.05Ba | 0.65±0.01Aa |
H-CK | 0.05±0.00Eb | 246.74±26.19Dc | 38.88±2.43Cc | 0.64±0.08Cb | 0.52±0.02BCb |
H-JZ | 0.09±0.01Da | 414.33±11.52Ba | 75.56±5.60ABa | 1.39±0.12ABa | 0.60±0.02ABa |
S-SF | 0.17±0.01Bb | 435.90±18.31Bb | 69.13±7.14ABb | 1.35±0.14ABa | 0.46±0.02Cb |
S-CK | 0.12±0.01Cc | 321.24±9.18Cc | 48.32±3.49Cc | 0.73±0.01Cb | 0.60±0.06ABa |
S-JZ | 0.23±0.01Aa | 517.76±17.47Aa | 84.22±10.70Aa | 1.59±0.14Aa | 0.63±0.04Aa |
Fig.6 Correlation analysis of photosynthetic and fluorescence parameters and growth indices of cultivated barnyardgrass under black soil and soda saline-alkali soil
Fig.11 Correlation analysis of nitrogen metabolism related indexes and growth indexes of cultivated barnyardgrass under black soil and soda saline-alkali soil
1 | Hu J, Zhou D W, Wang X Y, et al. Effects of different sand-cover thicknesses on crops in bare saline-alkali land in the Songnen Plain. Pratacultural Science, 2021, 38(3): 410-418. |
胡娟, 周道玮, 王晓禹, 等. 不同覆沙厚度下松嫩平原盐碱裸地上的种植效果. 草业科学, 2021, 38(3): 410-418. | |
2 | Zhang H, Yu F, Xie P, et al. A Gγ protein regulates alkaline sensitivity in crops. Science, 2023, 379(6638): e8416. |
3 | Brennan R F, Bolland M D A. Application of fertilizer manganese doubled yields of lentil grown on alkaline soils. Journal of Plant Nutrition, 2003, 26(6): 1263-1276. |
4 | Schmidt S B, Jensen P E, Husted S. Manganese deficiency in plants: the impact on photosystem Ⅱ. Trends in Plant Science, 2016, 21(7): 622-632. |
5 | Liu Z, Zhu Q Q, Tang L H, et al. Geographical distribution of trace elements deficient soils in China. Acta Pedologica Sinica, 1982, 19(3): 209-223. |
刘铮, 朱其清, 唐丽华, 等. 我国缺乏微量元素的土壤及其区域分布. 土壤学报, 1982, 19 (3): 209-223. | |
6 | Sun W J, Zhang H, Yang S, et al. Genetic modification of Gγ subunit AT1 enhances salt-alkali tolerance in main graminaceous crops. National Science Review, 2023, 10 (6): nwad075. |
7 | Xu P Y, Wu Y X, He T M. Research progress on adaptation mechanism of plants to saline-alkali stress. Chinese Wild Plant Resources, 2020, 39(10): 41-49. |
许盼云, 吴玉霞, 何天明. 植物对盐碱胁迫的适应机理研究进展. 中国野生植物资源, 2020, 39(10): 41-49. | |
8 | Yao X M, Ou C, Zhang Y L, et al.Effects of abscisic acid on ion absorption and photosynthesis of Toona sinensis seedlings under salt stress. Journal of Northeast Forestry University, 2020, 48(8): 27-32. |
姚侠妹, 偶春, 张源丽, 等. 脱落酸对盐胁迫下香椿幼苗离子吸收和光合作用的影响. 东北林业大学学报, 2020, 48(8): 27-32. | |
9 | Hussain S, Hussain S, Ali B, et al. Recent progress in understanding salinity tolerance in plants: Story of Na+/K+ balance and beyond. Plant Physiology and Biochemistry, 2021, 160: 239-256. |
10 | Ma X, Jia Z F, Liu Y.Study on photosynthesis and chlorophyll metabolism of Avena sativa L. under salt stress. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2021, 51(3): 7-14. |
马祥, 贾志峰, 刘勇. 盐胁迫下燕麦光合及叶绿素代谢变化研究. 青海畜牧兽医杂志, 2021, 51(3): 7-14. | |
11 | Najar R, Aydi S, Sassi-Aydi S, et al. Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems, 2019, 153(1): 88-97. |
12 | Dluzniewska P, Gessler A, Dietrich H, et al. Nitrogen uptake and metabolism in Populus×canescens as affected by salinity. New Phytologist, 2007, 173(2): 279-293. |
13 | Abdelgadir E A O M. Characteristics of nitrate uptake by plants under salinity. Journal of Plant Nutrition, 2005, 28(1): 33-46. |
14 | Xu Z Z. Research advance in nitrogen metabolism of plant and its environmental regulation. Chinese Journal of Applied Ecology, 2004, 15(3): 511-516. |
许振柱. 植物氮代谢及其环境调节研究进展. 应用生态学报, 2004, 15(3): 511-516. | |
15 | Millaleo R, Reyes-Díaz M, Ivanov A G, et al. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 2010, 10(4): 470-481. |
16 | Wang Z H, Tang J X, Dai H F, et al. Effect of Zn2+ and Mn2+ on the salt tolerance of rice seedlings growth. Hubei Agricultural Sciences, 2007, 46(4): 547-549. |
王振河, 汤菊香, 代海芳, 等. 锰和锌对盐渍土中水稻幼苗生长的影响. 湖北农业科学, 2007, 46(4): 547-549. | |
17 | Ma G S, Liu W, Lian H, et al. Effect of spraying manganese sulfate on potato physiological characteristics and yield. Journal of Changjiang Vegetables, 2012(8): 52-56. |
马光恕, 刘伟, 廉华, 等. 叶面喷施硫酸锰对马铃薯生理指标和产量的影响. 长江蔬菜, 2012(8): 52-56. | |
18 | Meng X P, Li C X, Guo H Y, et al. Effects of manganese soaking on wheat seedling photosynthetic characteristics and root system, root vigor. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(4): 745-750. |
孟祥萍, 李春霞, 国海燕, 等. 锰素浸种对小麦幼苗光合特性及其根系形态与活力的影响. 西北植物学报, 2016, 36(4): 745-750. | |
19 | Zhang L, Wang L, Li F, et al. Effect of divalent manganese (Mn2+) concentration on the growth and nitrate nitrogen content of lettuce during aeroponic intercropping with cherry radish. Horticulture Environment and Biotechnology, 2021, 62(2): 243-251. |
20 | Cheng Z, Mcconkey B J, Glick B R. Proteomic studies of plant-bacterial interactions. Soil Biology and Biochemistry, 2010, 42(10): 1673-1684. |
21 | Ma R, Nuerziya·hayiken, Zhou X M, et al. Manganese: An essential trace element for plants in balanced cultivation systems. Xinjiang Agricultural Sciences, 2007, 44(S2): 200. |
马瑞, 努尔孜亚·哈依肯, 周雪梅, 等. 平衡栽培体系中植物必须的微量元素锰. 新疆农业科学, 2007, 44(S2): 200. | |
22 | Graham P A O. The biochemistry of manganese in plants. Plant Physiology, 1988(67): 310. |
23 | Sood S A K R. Barnyard millet-a potential food and feed crop of future. Plant Breeding, 2015, 134(2): 135-147. |
24 | Arthi N, Rajagopal B, Geethanjali S, et al. Screening of barnyard millet (Echinochloa frumentacea) germplasm for salinity tolerance. Electronic Journal of Plant Breeding, 2019, 10(2): 659-666. |
25 | Lu A Q, Zhang F J, Xu X, et al. Effects of salt stress on growth and physiological characteristics of Echinochloa frumentacea seedlings. Acta Prataculturae Sinica, 2021, 30(5): 84-93. |
陆安桥, 张峰举, 许兴, 等. 盐胁迫对栽培稗苗期生长及生理特性的影响. 草业学报, 2021, 30(5): 84-93. | |
26 | Lu A Q, Zhang F J, Wang X Q, et al. Effects of NaCl and Na2SO4 stress on content and distribution of K+ and Na+ of Echinochloa frumentacea seedlings. Acta Agriculturae Zhejiangensis, 2021, 33(3): 396-403. |
陆安桥, 张峰举, 王学琴, 等. 盐胁迫对苗期湖南稷子K+, Na+含量与分布的影响. 浙江农业学报, 2021, 33(3): 396-403. | |
27 | Gao J F. Experimental guidance on plant physiology. Beijing: Higher Education Press, 2006. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
28 | Guo S, Mu L, Sun S, et al. Concurrence of microplastics and heat waves reduces rice yields and disturbs the agroecosystem nitrogen cycle. Journal of Hazardous Materials, 2023, 452: 131340. |
29 | Tan M, Hassan M J, Peng Y, et al. Polyamines metabolism interacts with γ-aminobutyric acid, proline and nitrogen metabolisms to affect drought tolerance of creeping bentgrass. International Journal of Molecular Sciences, 2022, 23(5): 2779. |
30 | Tang Z C. Laboratory guide to modern plant physiology. Beijing: Science Press, 1999. |
汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999. | |
31 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
32 | Wang Y K, Yang Y R, Wang D L. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress. Acta Prataculturae Sinica, 2020, 29(12): 95-104. |
王英逵, 杨玉荣, 王德利. 盐碱胁迫下AMF对羊草的离子吸收和分配作用. 草业学报, 2020, 29(12): 95-104. | |
33 | Sun H R, Feng X H, Zhang X M, et al. Root growth response of Hibiscus moscheutos seedling to salt stress. Northern Horticulture, 2015(16): 76-81. |
孙焕荣, 封晓辉, 张秀梅, 等. 芙蓉葵苗期根系生长对盐胁迫的响应. 北方园艺, 2015(16): 76-81. | |
34 | Xiu Y, Liang X Y, Shi R C, et al. Effects of complex salt-alkail stress on the plant and root growth of Chenopodium quinoa.Jiangsu Agricultural Sciences, 2020, 48(4): 89-94. |
修妤, 梁晓艳, 石瑞常, 等. 混合盐碱胁迫对藜麦苗期植株及根系生长特征的影响. 江苏农业科学, 2020, 48(4): 89-94. | |
35 | Lan Y. Physiological response of three Echinochloa forages to saline-alkaline stress and comprehensive evaluation for their saline-alkaline tolerance. Yinchuan: Ningxia University, 2022. |
兰艳. 三种稗属牧草种子萌发和幼苗对盐碱胁迫的生理响应及耐性评估. 银川: 宁夏大学, 2022. | |
36 | Bernstein N, Meiri A, Zilberstaine M. Root growth of avocado is more sensitive to salinity than shoot growth. Journal of the American Society for Horticultural Science, 2004, 129(2): 188-192. |
37 | Dong X B, Guo X F, Yang W G, et al. Effects of trace element fertilizers on the growth of Leymus chinensis under drought condition. Journal of Southwest Minzu University (Natural Science Edition), 2018, 44(2): 111-116. |
董晓兵, 郭秀芳, 杨伟光, 等. 干旱条件下微肥对羊草生长的影响. 西南民族大学学报 (自然科学版), 2018, 44(2): 111-116. | |
38 | Yang Q. Effects of zinc fertilizer on growth and nutrient absorption of maize in saline-alkali soil. Yinchuan: Ningxia University, 2021. |
杨茜. 锌肥对盐碱地玉米生长及养分吸收的影响. 银川: 宁夏大学, 2021. | |
39 | Hu Y J, Wu X, Wang Z D, et al. Research progress on effects of saline-alkali stress on physiological and ecological characteristics of potato. Chinese Journal of Tropical Agriculture, 2022, 42(12): 80-85. |
胡钰婕, 吴玺, 王证德, 等. 盐碱胁迫对马铃薯生理生态特性的影响研究进展. 热带农业科学, 2022, 42(12): 80-85. | |
40 | Cao C H, Sun S C, Wang X K, et al. Effects of manganese concentration on the chlorophyll fluorescence characteristics and growth of Karenia mikimotoi. Acta Ecologica Sinica, 2010, 30(19): 5280-5288. |
曹春晖, 孙世春, 王学魁, 等. 锰浓度对米氏凯伦藻叶绿素荧光特性及生长的影响. 生态学报, 2010, 30(19): 5280-5288. | |
41 | Wang F, Liu Y, Wang T B, et al. Mitigation effect and mechanism of exogenous melatonin on maize seedling under salt stress. Chinese Journal of Grassland, 2020, 42(5): 14-21. |
王芳, 刘燕, 王铁兵, 等. 外源褪黑素对玉米幼苗盐胁迫的缓解效应研究. 中国草地学报, 2020, 42(5): 14-21. | |
42 | Muhammad I, Yang L, Ahmad S, et al. Melatonin application alleviates stress-induced photosynthetic inhibition and oxidative damage by regulating antioxidant defense system of maize: A meta-analysis. Antioxidants, 2022, 11(3): 512. |
43 | Xu W Y, Wang F, Wang J. Effect of manganese sulfate(MnSO4) solution soaking seeds on potato(Solanum tuberosum) seedlings growth and development. Journal of Anhui Agricultural Sciences, 2013, 41(2): 558-559. |
许文一, 王芳, 王舰. 硫酸锰浸种对马铃薯苗期的影响. 安徽农业科学, 2013, 41(2): 558-559. | |
44 | Liu J X, Liu R R, Liu X L, et al. Effects of exogenous hydrogen sulfide on nitrogen metabolism in leaves and yield components of naked oat under saline-alkail stress. Chinese Journal of Ecology, 2023, 42(2): 324-332. |
刘建新, 刘瑞瑞, 刘秀丽, 等. 盐碱胁迫下外源硫化氢对裸燕麦叶片氮代谢和产量构成因素的影响. 生态学杂志, 2023, 42(2): 324-332. | |
45 | Wang H, Ahan J, Wu Z, et al. Alteration of nitrogen metabolism in rice variety ‘Nipponbare’ induced by alkali stress. Plant and Soil, 2012, 355: 131-147. |
46 | Zhang Y, Shi Y, Hu X H, et al. Effects of exogenous spermidine on the nitrogen metabolism and main mineral elements contents of tomato seedlings under saline-alkail stress. Chinese Journal of Applied Ecology, 2013, 24(5): 1401-1408. |
张毅, 石玉, 胡晓辉, 等. 外源Spd对盐碱胁迫下番茄幼苗氮代谢及主要矿质元素含量的影响. 应用生态学报, 2013, 24(5): 1401-1408. | |
47 | Ahanger M A, Agarwal R M. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiology and Biochemistry, 2017, 115: 449-460. |
[1] | Ying TAN, Hao YIN. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth, photosynthetic characteristics, and antioxidant system of Medicago sativa under salt stresss [J]. Acta Prataculturae Sinica, 2024, 33(6): 64-75. |
[2] | Chao-nan LI, Lei WANG, Ji-qiang ZHOU, Chang-xing ZHAO, Xiao-rong XIE, Jin-rong LIU. Effect of microplastics on the growth and physiological characteristics of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2023, 32(5): 138-146. |
[3] | Jia-cheng ZHENG, Jie YU, Fan LI, Xiao-yi HUANG, Jie-qin LI, Hai-zhou CHEN, Xin WANG, Qiu-wen ZHAN, Zhao-shi XU. Functional characterization of the role of SbER10_X1 in regulating photosynthesis and biomass of sorghum forage [J]. Acta Prataculturae Sinica, 2023, 32(4): 91-100. |
[4] | Xiao-jin ZHOU, Hai-xia HUANG, Jun-xia ZHANG, Bu-dong MA, Gang LU, Jian-wei QI, Ting ZHANG, Zhu ZHU. Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings [J]. Acta Prataculturae Sinica, 2023, 32(2): 75-83. |
[5] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[6] | Yan-liang SUN, Kong-qin WEI, Xuan-shuai LIU, Jun-wei ZHAO, Sheng-yi LI, Chun-hui MA, Qian-bing ZHANG. Diurnal changes in photosynthesis and photosynthetic product partitioning in alfalfa in response to phosphorus application [J]. Acta Prataculturae Sinica, 2022, 31(12): 85-94. |
[7] | Bo-kun ZOU, Xin-ming WANG, Zhang-shan CHU, Xin-hui HUANG, Yu-feng CHEN, Yong-qiang QIAN. Effects of nitrogen forms on growth and nitrogen assimilation and utilization of Buchloe dactyloides [J]. Acta Prataculturae Sinica, 2022, 31(11): 118-127. |
[8] | Yun-hua HAN, Su-juan MI, Xiao-qi SHI, Tian-hang ZHONG. Promotional effects of nanoparticles on plants [J]. Acta Prataculturae Sinica, 2022, 31(11): 204-213. |
[9] | Lin CHEN, Gao-lu CHEN, Nai-ping SONG, Xue-bin LI, Hong-yun WAN, Wen-qiang HE. Response of photosynthetic characteristics and water use efficiency of Artemisia scoparia to rainfall changes in Eastern Ningxia desert steppe [J]. Acta Prataculturae Sinica, 2022, 31(10): 87-98. |
[10] | Yong-chao ZHANG, Guo-ling LIANG, Yan QIN, Wen-hui LIU, Zhi-feng JIA, Yong LIU, Xiang MA. Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus [J]. Acta Prataculturae Sinica, 2022, 31(1): 229-237. |
[11] | Li-qing ZHAO, Xiang-yong PENG, Jun-xiang LIU, Jin-mei MAO, Zhen-yuan SUN. Effects of reduced glutathione on the growth and photosynthesis of perennial ryegrass under lead stress [J]. Acta Prataculturae Sinica, 2021, 30(9): 97-104. |
[12] | Hui WANG, Hao-qi TIAN, Pei-sheng MAO, Wen-hui LIU, Zhi-feng JIA, Lu-ping WEI, Qing-ping ZHOU. Progress in research on the photosynthetic characteristics of green non-leaf organs in plants [J]. Acta Prataculturae Sinica, 2021, 30(10): 191-200. |
[13] | WANG Yong-chao, ZHANG Ying-lei, YAN Dong-liang, HE Ling-zhi, LI Zhuo, YAN Bo-wen, SHAO Rui-xin, GUO Jia-meng, YANG Qing-hua. Physiological role of γ-aminobutyric acid in protecting the photosynthetic system of maize seedlings under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(6): 191-203. |
[14] | HUANG Xi-ye, HE Lin-jiang, LIU Jin-ping, YOU Ming-hong, LIU Hang-jiang. Gender differences in water relations, photosynthetic characteristics and cold resistance metabolites in Humulus scandens in response to winter cooling [J]. Acta Prataculturae Sinica, 2020, 29(2): 103-113. |
[15] | LI Wen-bin, NING Chu-han, LI Wei, LI Feng, GUO Shao-xia. Responses of AMF and PGPR to Festuca elata under phenanthrene and pyrene stress [J]. Acta Prataculturae Sinica, 2019, 28(8): 84-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||