Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (2): 221-232.DOI: 10.11686/cyxb2024146
Yun-huan JIA1(), Wen-ying HU1, Jian DENG1,2(), Xue ZHAO3, Zi-yue CHEN1, Ya-nan WANG1, Jiang-wen LI1,2, Xiao-xi ZHANG1,2
Received:
2024-04-29
Revised:
2024-07-01
Online:
2025-02-20
Published:
2024-11-27
Contact:
Jian DENG
Yun-huan JIA, Wen-ying HU, Jian DENG, Xue ZHAO, Zi-yue CHEN, Ya-nan WANG, Jiang-wen LI, Xiao-xi ZHANG. Effects of nitrogen addition on soil microbial nutrient limitation characteristics in grassland in the Loess Hilly Region[J]. Acta Prataculturae Sinica, 2025, 34(2): 221-232.
指标 Index | N0 | N1 | N2 | N3 | N4 |
---|---|---|---|---|---|
pH | 8.57±0.02a | 8.51±0.03ab | 8.43±0.05bc | 8.44±0.02bc | 8.35±0.02c |
有机碳Soil organic carbon (SOC, g·kg-1) | 3.82±0.29ab | 3.24±0.26bc | 2.49±0.06c | 3.05±0.18bc | 4.08±0.12a |
全氮Total nitrogen (TN, g·kg-1) | 0.52±0.01b | 0.46±0.01bc | 0.40±0.01c | 0.51±0.01b | 0.66±0.03a |
全磷Total phosphorus (TP, g·kg-1) | 0.58±0.01a | 0.58±0.01a | 0.57±0.01a | 0.55±0.02a | 0.61±0.03a |
微生物生物量碳Microbial biomass carbon (MBC, mg·kg-1) | 102.43±8.44ab | 76.90±3.14b | 49.82±4.11c | 99.87±5.96ab | 120.98±8.90a |
微生物生物量氮Microbial biomass nitrogen (MBN, mg·kg-1) | 20.07±1.67bc | 15.21±0.59cd | 14.08±0.68d | 24.99±1.69ab | 27.75±1.60a |
微生物生物量磷Microbial biomass phosphorus (MBP, mg·kg-1) | 3.93±0.38b | 3.21±0.12b | 3.30±0.16b | 5.17±0.10a | 5.57±0.12a |
β-1,4-葡萄糖苷酶β-1,4-glucosidase (BG, nmol·g-1·h-1) | 23.83±2.33ab | 19.73±1.06b | 13.42±0.87c | 20.12±0.84b | 28.51±0.47a |
β-1,4-N-乙酰氨基葡萄糖苷酶β-1,4-acetyl-glucosaminidase (NAG, nmol·g-1·h-1) | 4.16±0.67b | 4.17±0.58b | 3.90±0.70b | 7.22±0.93ab | 10.30±1.07a |
亮氨酸氨基肽酶L-leucine aminopeptidase (LAP, nmol·g-1·h-1) | 18.24±0.93b | 17.58±0.13b | 12.89±0.85c | 16.97±1.18b | 27.48±0.45a |
碱性磷酸酶Alkaline phosphatase (ALP, nmol·g-1·h-1) | 41.92±4.13ab | 39.30±2.29ab | 32.98±2.65b | 39.73±4.19ab | 46.72±1.38a |
可溶性有机碳Soluble organic carbon (DOC, mg·kg-1) | 220.41±5.82a | 227.23±9.03a | 227.76±5.89a | 242.25±10.78a | 240.86±2.88a |
铵态氮Ammonium nitrogen (NH4+-N, mg·kg-1) | 4.27±0.45a | 3.94±0.29a | 5.97±1.23a | 5.12±1.06a | 5.03±1.45a |
硝态氮Nitrate nitrogen (NO3--N, mg·kg-1) | 4.57±0.14a | 3.48±0.26bc | 2.82±0.19c | 3.71±0.24ab | 4.30±0.22ab |
速效磷Available phosphorus (AP, mg·kg-1) | 4.89±0.47b | 5.75±0.11ab | 6.53±1.01ab | 7.52±0.78a | 7.75±0.40a |
土壤碳氮比Soil C∶N | 8.56±1.60a | 8.29±1.91a | 7.21±0.45a | 7.00±0.81a | 7.23±1.08a |
土壤碳磷比 Soil C∶P | 17.13±3.21a | 14.52±2.80ab | 11.30±0.68b | 14.33±2.66ab | 17.49±2.61a |
土壤氮磷比Soil N∶P | 2.00±0.09b | 1.76±0.09c | 1.57±0.17c | 2.04±0.17b | 2.42±0.12a |
速效碳氮比Soil AC∶N | 25.35±4.59a | 30.61±1.42a | 27.75±9.02a | 27.85±3.34a | 27.92±8.48a |
速效碳磷比Soil AC∶P | 46.67±11.62a | 39.61±4.74a | 37.41±12.27a | 33.36±8.68a | 31.39±4.00a |
速效氮磷比Soil AN∶P | 1.83±0.13a | 1.29±0.13a | 1.53±0.88a | 1.21±0.38a | 1.24±0.60a |
Table 1 Soil physicochemical properties under different nitrogen addition concentration
指标 Index | N0 | N1 | N2 | N3 | N4 |
---|---|---|---|---|---|
pH | 8.57±0.02a | 8.51±0.03ab | 8.43±0.05bc | 8.44±0.02bc | 8.35±0.02c |
有机碳Soil organic carbon (SOC, g·kg-1) | 3.82±0.29ab | 3.24±0.26bc | 2.49±0.06c | 3.05±0.18bc | 4.08±0.12a |
全氮Total nitrogen (TN, g·kg-1) | 0.52±0.01b | 0.46±0.01bc | 0.40±0.01c | 0.51±0.01b | 0.66±0.03a |
全磷Total phosphorus (TP, g·kg-1) | 0.58±0.01a | 0.58±0.01a | 0.57±0.01a | 0.55±0.02a | 0.61±0.03a |
微生物生物量碳Microbial biomass carbon (MBC, mg·kg-1) | 102.43±8.44ab | 76.90±3.14b | 49.82±4.11c | 99.87±5.96ab | 120.98±8.90a |
微生物生物量氮Microbial biomass nitrogen (MBN, mg·kg-1) | 20.07±1.67bc | 15.21±0.59cd | 14.08±0.68d | 24.99±1.69ab | 27.75±1.60a |
微生物生物量磷Microbial biomass phosphorus (MBP, mg·kg-1) | 3.93±0.38b | 3.21±0.12b | 3.30±0.16b | 5.17±0.10a | 5.57±0.12a |
β-1,4-葡萄糖苷酶β-1,4-glucosidase (BG, nmol·g-1·h-1) | 23.83±2.33ab | 19.73±1.06b | 13.42±0.87c | 20.12±0.84b | 28.51±0.47a |
β-1,4-N-乙酰氨基葡萄糖苷酶β-1,4-acetyl-glucosaminidase (NAG, nmol·g-1·h-1) | 4.16±0.67b | 4.17±0.58b | 3.90±0.70b | 7.22±0.93ab | 10.30±1.07a |
亮氨酸氨基肽酶L-leucine aminopeptidase (LAP, nmol·g-1·h-1) | 18.24±0.93b | 17.58±0.13b | 12.89±0.85c | 16.97±1.18b | 27.48±0.45a |
碱性磷酸酶Alkaline phosphatase (ALP, nmol·g-1·h-1) | 41.92±4.13ab | 39.30±2.29ab | 32.98±2.65b | 39.73±4.19ab | 46.72±1.38a |
可溶性有机碳Soluble organic carbon (DOC, mg·kg-1) | 220.41±5.82a | 227.23±9.03a | 227.76±5.89a | 242.25±10.78a | 240.86±2.88a |
铵态氮Ammonium nitrogen (NH4+-N, mg·kg-1) | 4.27±0.45a | 3.94±0.29a | 5.97±1.23a | 5.12±1.06a | 5.03±1.45a |
硝态氮Nitrate nitrogen (NO3--N, mg·kg-1) | 4.57±0.14a | 3.48±0.26bc | 2.82±0.19c | 3.71±0.24ab | 4.30±0.22ab |
速效磷Available phosphorus (AP, mg·kg-1) | 4.89±0.47b | 5.75±0.11ab | 6.53±1.01ab | 7.52±0.78a | 7.75±0.40a |
土壤碳氮比Soil C∶N | 8.56±1.60a | 8.29±1.91a | 7.21±0.45a | 7.00±0.81a | 7.23±1.08a |
土壤碳磷比 Soil C∶P | 17.13±3.21a | 14.52±2.80ab | 11.30±0.68b | 14.33±2.66ab | 17.49±2.61a |
土壤氮磷比Soil N∶P | 2.00±0.09b | 1.76±0.09c | 1.57±0.17c | 2.04±0.17b | 2.42±0.12a |
速效碳氮比Soil AC∶N | 25.35±4.59a | 30.61±1.42a | 27.75±9.02a | 27.85±3.34a | 27.92±8.48a |
速效碳磷比Soil AC∶P | 46.67±11.62a | 39.61±4.74a | 37.41±12.27a | 33.36±8.68a | 31.39±4.00a |
速效氮磷比Soil AN∶P | 1.83±0.13a | 1.29±0.13a | 1.53±0.88a | 1.21±0.38a | 1.24±0.60a |
1 | Bao P A, Qiu K Y, Huang Y Y, et al. Leaf functional trait characteristics and plasticity of desert steppe plants under nitrogen and phosphorus addition. Acta Prataculturae Sinica, 2024, 33(3): 97-106. |
鲍平安, 邱开阳, 黄业芸, 等. 荒漠草原植物在氮磷添加下叶功能性状特征及其可塑性. 草业学报, 2024, 33(3): 97-106. | |
2 | Zhang Y, Zhang C H, Wang Q T, et al. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition. Chinese Journal of Plant Ecology, 2022, 46(4): 473-483. |
张英, 张常洪, 汪其同, 等. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异. 植物生态学报, 2022, 46(4): 473-483. | |
3 | Fu W, Wu H, Zhao A H, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects. Chinese Journal of Plant Ecology, 2020, 44(5): 475-493. |
付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应:研究进展与展望. 植物生态学报, 2020, 44(5): 475-493. | |
4 | Zhang X, Zhao W B, Liu Y X, et al. The relationships between grasslands and soil moisture on the Loess Plateau of China: A review. Catena, 2016, 145: 56-67. |
5 | Zhu R F, Tang F L, Liu J L, et al. Response of soil microbial biomass carbon and nitrogen on a short-term fertilizing N in Leymus chinensis meadow. Acta Agrestia Sinica, 2016, 24(3): 553-558. |
朱瑞芬, 唐凤兰, 刘杰淋, 等. 羊草草甸草原土壤微生物生物量碳氮对短期施氮的响应. 草地学报, 2016, 24(3): 553-558. | |
6 | Zhang T A, Chen Y H, Ruan H H, et al. Global negative effects of nitrogen deposition on soil microbes. Multidisciplinary Journal of Microbial Ecology, 2018, 12(7): 1817-1825. |
7 | Xu Q M, Gu X M, Wang Y Y, et al. Simulated nitrogen deposition significantly increases nitrous oxide emission rate from alpine grassland on the Tibetan Plateau. Acta Agrestia Sinica, 2023, 31(12): 3785-3792. |
许庆民, 顾晓梦, 王云英, 等. 模拟氮沉降显著提高青藏高原高寒草地氧化亚氮排放速率. 草地学报, 2023, 31(12): 3785-3792. | |
8 | Wang X Y, Li Y Q, Wang L L, et al. Soil extracellular enzyme stoichiometry reflects microbial metabolic limitations in different desert types of northwestern China. Science of the Total Environment, 2023, 874: 162504. |
9 | Shen F Y, Liu N, Chen F S, et al. Soil extracellular enzyme stoichiometry reveals the increased P limitation of microbial metabolism after the mixed cultivation of Korean pine and Manchurian walnut in Northeast China. European Journal of Soil Biology, 2023, 118: 103539. |
10 | Guo Y H, Zhao H T, Gao Y, et al. Effect of inorganic nitrogen addition on soil microbial nutrient requirement strategy in the Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province. Chinese Journal of Applied and Environmental Biology, 2022, 28(1): 137-144. |
郭银花, 赵洪涛, 高雨, 等. 山西太岳山油松林无机氮添加对土壤微生物养分限制类型的影响. 应用与环境生物学报, 2022, 28(1): 137-144. | |
11 | Moorhead D L, Rinkes Z L, Sinsabaugh R L, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Frontiers in Microbiology, 2013, 4: 223. |
12 | Cui Y X, Wang X, Zhang X C, et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology and Biochemistry, 2020, 147: 107814. |
13 | Cui Y X, Moorhead D L, Guo X B, et al. Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecology and Biogeography, 2021, 30(11): 2297-2311. |
14 | Xu M P, Li W J, Wang J Y, et al. Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China. Science of the Total Environment, 2022, 815: 152918. |
15 | Cao Y Y, Su X M, Zhou Z C, et al. Spatial differences in, and factors influencing, the shear strength of typical herb root-soil complexes in the Loess Plateau of China. Acta Prataculturae Sinica, 2023, 32(5): 94-105. |
曹玉莹, 苏雪萌, 周正朝, 等. 黄土高原典型草本植物根-土复合体抗剪性能的空间差异性及其影响因素研究. 草业学报, 2023, 32(5): 94-105. | |
16 | Yao N, Liu G Q, Yao S B, et al. Evaluating on effect of conversion from farmland to forest and grassland project on ecosystem carbon storage in loess hilly-gully region based on InVEST model. Bulletin of Soil and Water Conservation, 2022, 42(5): 329-336. |
姚楠, 刘广全, 姚顺波,等. 基于InVEST模型的黄土丘陵沟壑区退耕还林还草工程对生态系统碳储量的影响评估. 水土保持通报, 2022, 42(5): 329-336. | |
17 | Yao Y W, Ren H R. Estimation of grassland aboveground biomass in northern China based on topography-climate-remote sensing data. Ecological Indicators, 2024, 165: 112230. |
18 | Deng J, Zhao X, Lu X Y, et al. Different responses of enzymes activities related to nitrogen and phosphorus transformation to nitrogen addition in different sized soil aggregates in semi-arid grassland. Acta Ecologica Sinica, 2023, 43(16): 6539-6549. |
邓健, 赵雪, 卢笑玥, 等. 半干旱草地土壤团聚体氮磷转化相关酶活性对氮添加的响应. 生态学报, 2023, 43(16): 6539-6549. | |
19 | Han Y H, Dong S K, Zhao Z Z, et al. Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai-Tibetan Plateau. Geoderma, 2019, 343: 263-268. |
20 | Wei Y, Tong Y A, Qiao L, et al. Preliminary estimate of the atmospheric nitrogen deposition in different ecological regions of Shaanxi province. Journal of Agro-Environment Science, 2010, 29(4): 795-800. |
魏样, 同延安, 乔丽, 等. 陕西省不同生态区大气氮沉降量的初步估算. 农业环境科学学报, 2010, 29(4): 795-800. | |
21 | Zheng H, Xue J B, Hao J, et al. Effects of short-term different N addition levels on phosphorus components in a saline-alkaline grassland in North China. Acta Agrestia Sinica, 2022, 30(3): 712-720. |
郑慧, 薛江博, 郝杰, 等. 短期不同水平氮添加对华北盐渍化草地土壤磷组分的影响. 草地学报, 2022, 30(3): 712-720. | |
22 | Bao S D. Soil agrochemical analysis (3rd edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
23 | Zhang W, Xu Y D, Gao D X, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biology and Biochemistry, 2019, 134: 1-14. |
24 | Geng J, Cheng S L, Fang H J, et al. The effects of types and doses of nitrogen addition on soil N2O flux in a cold-temperate coniferous forest, northern China. Acta Ecologica Sinica, 2017, 37(2): 395-404. |
耿静, 程淑兰, 方华军, 等. 氮素类型和剂量对寒温带针叶林土壤N2O排放的影响. 生态学报, 2017, 37(2): 395-404. | |
25 | Guo J Y, Wang Y X, Li J L, et al. Effects of nitrogen addition on plant-soil carbon dynamics in terrestrial ecosystems of China. Acta Ecologica Sinica, 2022, 42(12): 4823-4833. |
郭洁芸, 王雅歆, 李建龙, 等. 氮添加对中国陆地生态系统植物-土壤碳动态的影响. 生态学报, 2022, 42(12): 4823-4833. | |
26 | Liu Y W, Bai W, Yin P S, et al. Effects of exogenous nitrogen addition on soil nutrients and plant community biomass in alpine swamp meadow in the headwaters region of the Yangtze River. Acta Agrestia Sinica, 2020, 28(2): 483-491. |
刘永万, 白炜, 尹鹏松, 等. 外源氮素添加对长江源区高寒沼泽草甸土壤养分及植物群落生物量的影响. 草地学报, 2020, 28(2): 483-491. | |
27 | Reay D S, Dentener F, Smith P, et al. Global nitrogen deposition and carbon sinks. Nature Geoscience, 2008, 1: 430-437. |
28 | Liu S W, Yin M, Chu G, et al. Research progress of soil nitrogen priming effect and its microbial mechanisms. Chinese Journal of Rice Science, 2019, 33(4): 303-312. |
刘少文, 殷敏, 褚光, 等. 土壤氮激发效应及其微生物机理研究进展. 中国水稻科学, 2019, 33(4): 303-312. | |
29 | Huang J, Wang G F, An S Z, et al. Effect of nitrogen fertilization on the vegetation structure and biomass of degraded meadow and soil fertility. Pratacultural Science, 2009, 26(3): 75-78. |
黄军, 王高峰, 安沙舟, 等. 施氮对退化草甸植被结构和生物量及土壤肥力的影响. 草业科学, 2009, 26(3): 75-78. | |
30 | Li R, Chang R Y. Effects of external nitrogen additions on soil organic carbon dynamics and the mechanism. Chinese Journal of Plant Ecology, 2015, 39(10): 1012-1020. |
李嵘, 常瑞英. 土壤有机碳对外源氮添加的响应及其机制. 植物生态学报, 2015, 39(10): 1012-1020. | |
31 | Fang Y, Xun F, Bai W M, et al. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLoS One, 2012, 7(10): e47369. |
32 | Yang J Q, Diao H J, Hu S Y, et al. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China. Chinese Journal of Plant Ecology, 2021, 45(7): 780-789. |
杨建强, 刁华杰, 胡姝娅, 等. 不同水平氮添加对盐渍化草地土壤微生物特征的影响. 植物生态学报, 2021, 45(7): 780-789. | |
33 | Zhao M Z. Desorption of phosphate on some soils and clay minera. Acta Pedologica Sinica, 1988, 25(2): 156-163. |
赵美芝. 几种土壤和粘土矿物上磷的解吸. 土壤学报, 1988, 25(2): 156-163. | |
34 | Ma Y J, Xu F L, Wang W L, et al. Increase of soil nutrients and enzymatic activity by adding nitrogen and phosphorus to Larix principis-rupprechtii plantation. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 664-674. |
马亚娟, 徐福利, 王渭玲, 等. 氮磷提高华北落叶松人工林地土壤养分和酶活性的作用. 植物营养与肥料学报, 2015, 21(3): 664-674. | |
35 | Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008,11: 1252-1264. |
36 | Ma W J, Li J, Gao Y, et al. Responses of soil extracellular enzyme activities and microbial community properties to interaction between nitrogen addition and increased precipitation in a semi-arid grassland ecosystem. Science of the Total Environment, 2020, 703: 134691. |
37 | Claudia M B, Ed K H, Karolien D, et al. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem. Soil Biology and Biochemistry, 2016, 92: 211-220. |
38 | Chang E H, Chung R S, Trai Y H, et al. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Science and Plant Nutrition, 2007, 53(2): 132-140. |
39 | Lu X K, Mo J M, Zhang W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: An overview. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500-522. |
鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展. 热带亚热带植物学报, 2019, 27(5): 500-522. | |
40 | Zhang X B, Zhang Z H, Lu X K. Responses of soil microbial carbon use efficiency to elevated nitrogen deposition in forest ecosystem. Advances in Earth Science, 2023, 38(10): 999-1014. |
张雪冰, 张泽和, 鲁显楷. 森林生态系统土壤微生物碳利用效率对氮沉降增加的响应及其机制. 地球科学进展, 2023, 38(10): 999-1014. | |
41 | Liu J B, Kathleen M R, Chen J H, et al. Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau. Nature Climate Change, 2017, 7(3): 190-194. |
42 | Zak D R, Holmes W, Burton A J, et al. Simulated atmospheric NO3 - deposition increases soil organic matter by slowing decomposition. Ecological Applications, 2008, 18(8): 2016-2027. |
43 | Wu J P, Wang S M, Cai M T, et al. Review on carbon use efficiency of plants and microbes and its influencing factors. Acta Ecologica Sinica, 2019, 39(20): 7771-7779. |
吴建平, 王思敏, 蔡慕天, 等. 植物与微生物碳利用效率及影响因子研究进展. 生态学报, 2019, 39(20): 7771-7779. | |
44 | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85(3): 235-252. |
45 | Keiblinger K M, Hall E K, Wanek W, et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology, 2010, 73(3): 430-440. |
46 | Li J, Sang C P, Yang J Y, et al. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology and Biochemistry, 2021, 156(1): 108207. |
47 | Sun X Q, Dai H, Zeng Q X, et al. The influence of soil microbial community structure on microbial carbon use efficiency under nitrogen addition. Acta Ecologica Sinica, 2024, 44(4): 1737-1746. |
孙雪琦, 戴辉, 曾泉鑫, 等. 氮添加土壤微生物群落结构影响微生物碳利用效率. 生态学报, 2024, 44(4): 1737-1746. |
[1] | Na LYU, Ji-xi GAO, Zheng-hai LI, Chun-he YOU, Xiao-man LIU, Biao ZHANG, Yu MO, Sa-ning ZHU, Yang PENG, Xue YANG. Effects of fertilizer application during mid-growing season on vegetation community biomass and species diversity in meadow grasslands [J]. Acta Prataculturae Sinica, 2025, 34(2): 109-122. |
[2] | Zhen-hao ZHANG, Zi-yu JIA, Xin-yu LI, Yun-xiang CHENG. Grazing behavior traits of cattle and sheep on mixed pasture in desert steppe [J]. Acta Prataculturae Sinica, 2025, 34(1): 226-237. |
[3] | ASITAIKEN·Julihaiti, Zong-jiu SUN, Bing-jie YU, DIDAER·Bisulidan, Mei-sha LI, Yi-sheng JING. Effects of enclosure on soil microbial carbon source utilization characteristics of sagebrush desert grassland [J]. Acta Prataculturae Sinica, 2025, 34(1): 29-40. |
[4] | Shi-long HE, He YE, Jing LI, Ya-ling ZHANG, Hai-shan DE, Mei HONG. Effects of nitrogen deposition and precipitation changes in different time spans on community structure and diversity of soil meso- and micro-fauna in Stipa breviflora desert steppe [J]. Acta Prataculturae Sinica, 2024, 33(9): 140-154. |
[5] | Jie SHE, Ai-hong SHEN, Yun SHI, Na ZHAO, Feng-hong ZHANG, Hong-yuan HE, Tao WU, Hong-xia LI, Yi-ting MA, Xiao-wen ZHU. Vegetation classification of UAV remote sensing images in desert steppe based on object-oriented technology [J]. Acta Prataculturae Sinica, 2024, 33(7): 1-14. |
[6] | Ling-ling XU, Ben NIU, Xian-zhou ZHANG, Yong-tao HE, Pei-li SHI, Ning ZONG, Jian-shuang WU, Xiang-tao WANG. Climate responses of carbon fluxes in two adjacent alpine grasslands in northern Tibet [J]. Acta Prataculturae Sinica, 2024, 33(6): 1-16. |
[7] | Liu-fang SU, Huan-guang QIU, Hui-fang LIU, Ling-ling HOU. Effect and mechanisms of alternative livelihood options for improving herder engagement with ecological compensation policy-a study of outcomes under China’s “Grassland ecological compensation policy” [J]. Acta Prataculturae Sinica, 2024, 33(6): 29-46. |
[8] | Lin HUANG, Jia-hui LI, Hai-yan ZHANG, Yu-zhe LI, Sui-zi WANG, Jiang-wen FAN. Accounting and assessment of grassland ecological values [J]. Acta Prataculturae Sinica, 2024, 33(6): 47-63. |
[9] | Ding YANG, Jiao JIN, Jing-hao LI, Zhi-peng WANG, Yuan-bo HAO, Ning DING, Lu CHEN. Evaluation of rodent control quality in grassland in China based on an entropy weight TOPSIS model [J]. Acta Prataculturae Sinica, 2024, 33(4): 221-230. |
[10] | Lin-xi HUANG, Qian CHEN, Xian-yan ZHANG, Shun YAN, Yun YANG, Pei-yao XIN, Qiong WANG. Effect of two kinds of tree litter leaf extracts on soil enzyme activities and eco-enzymatic stoichiometry of Axonopus compressus [J]. Acta Prataculturae Sinica, 2024, 33(4): 35-46. |
[11] | Qin FENG, Xiao-li HE, Bin WANG, Teng-fei WANG, Wang NI, Xia MA, Xue-hua MING, Jian-qiang DENG, Jian LAN. A study of mixed sowing effects for oat and common vetch in the Ningxia Yellow River Irrigation Area [J]. Acta Prataculturae Sinica, 2024, 33(3): 107-119. |
[12] | Yan QU, Kun ZHAO, Zi-chen HAN, Shi-hai LV, Qiang WO, Yu-ping RONG. Effects of short-term nitrogen and phosphorus addition on soil greenhouse gas emissions under different moisture conditions in the Hui River Basin of Hulun Buir [J]. Acta Prataculturae Sinica, 2024, 33(2): 68-79. |
[13] | Hao SHI, Cai-hong YANG, Fei XIA, Jun-qiang WANG, Wei WEI, Jing-long WANG, Yun-yin XUE, Shai-kun ZHENG, Hao-yang WU, Lin-ling RAN, Shuang YAN, Xiao-min JIANG. Initial effects of short-term warming on the productivity of alpine degraded grassland in northern Tibet during the restoration process [J]. Acta Prataculturae Sinica, 2024, 33(11): 30-45. |
[14] | Qing-hua TIAN, Dan LIU, Xiao-qin LIAO, Xiao-yan SONG, Lei HU, Chang-ting WANG. Effects of nitrogen fertilization on soil aggregate biological binding agents and stability in an alpine grassland [J]. Acta Prataculturae Sinica, 2024, 33(11): 46-57. |
[15] | Wen-jun ZHAO, Rui LIU, Zheng-xu WANG, Yu FENG, Kai-zheng XUE, Kui LIU, Zi-he XU, Wei-dong CAO, Li-bo FU, Mei YIN, Hua CHEN. Effects of rotation with a green manure crop on soil quality and microbial nutrient limitation in a tobacco field in Yunnan [J]. Acta Prataculturae Sinica, 2024, 33(10): 147-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||