Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (6): 1-16.DOI: 10.11686/cyxb2023250
Ling-ling XU1(), Ben NIU2(), Xian-zhou ZHANG2,3, Yong-tao HE2,3, Pei-li SHI2,3, Ning ZONG2, Jian-shuang WU4, Xiang-tao WANG5
Received:
2023-07-18
Revised:
2023-08-31
Online:
2024-06-20
Published:
2024-03-20
Contact:
Ben NIU
Ling-ling XU, Ben NIU, Xian-zhou ZHANG, Yong-tao HE, Pei-li SHI, Ning ZONG, Jian-shuang WU, Xiang-tao WANG. Climate responses of carbon fluxes in two adjacent alpine grasslands in northern Tibet[J]. Acta Prataculturae Sinica, 2024, 33(6): 1-16.
站点Site | 高寒草甸Alpine meadow | 高寒湿地Alpine wetland |
---|---|---|
地理位置 Latitude and longitude | 30.50° N, 91.07° E | 30.47° N, 91.06° E |
海拔 Altitude (m) | 4333 | 4285 |
年均温 Mean annual air temperature (℃) | 1.8 | 1.8 |
年降水 Mean annual precipitation (mm) | 476.8 | 476.8 |
年总太阳辐射 Annual total solar radiation (MJ·m-2) | 7527.6 | 7527.6 |
植被状况 Vegetations | 盖度 Coverage:30%~60% 高度 Height:10 cm 优势物种:高山嵩草,丝颖针茅,紫花针茅,窄叶苔草,等。Dominant species: K. pygmaea, S. capillacea, Stipa purpurea, C. montis-everestii, et al. 伴生物种 Associated species:小嵩草Kobresia humilis, 委陵菜属Potentilla, 木根香青Anaphalis xylorhiza等. | 盖度 Coverage:>90% 高度 Height:>20 cm 优势物种 Dominant species:藏北嵩草K. littledalei, 华扁穗草B. sinocompressus. 伴生物种 Associated species:委陵菜属Potentilla, 蕨类Pteridophyta, 马先蒿Pedicularis longiflora. |
地形特征 Terrain | 平缓、均质 Flat and homogeneous | 平缓伴有凸丘和凹壑 Flat, with hummocks and hollows |
土壤类型 Soil type | 砂壤土,砾石含量较多 Sandy loam, more gravel content | 高寒草甸土,有机质层厚 Alpine meadow soil, thick layer of organic matter |
土壤养分状况 Soil nutrient | 土壤有机质Soil organic matter:1.94% 土壤全氮Soil total nitrogen:0.12% 碳氮比Carbon nitrogen ratio:11.13 土壤有效氮Soil available nitrogen: 8.62 mg·kg-1 | 土壤有机质Soil organic matter:23.70% 土壤全氮 Soil total nitrogen:0.96% 碳氮比Carbon nitrogen ratio:24.80 土壤有效氮Soil available nitrogen: 372.80 mg·kg-1 |
研究时间 Study period (year) | 2009-2011 | 2009-2011 |
土壤水分条件Soil water content (SWC, m3·m-3) | 低 Low:SWC<0.08 中 Medium:0.08≤SWC<0.12 高 High:SWC≥0.12 | 低 Low:SWC<0.45 中 Medium:0.45≤SWC<0.65 高 High:SWC≥0.65 |
Table 1 Brief information of two alpine grasslands in the north Tibet
站点Site | 高寒草甸Alpine meadow | 高寒湿地Alpine wetland |
---|---|---|
地理位置 Latitude and longitude | 30.50° N, 91.07° E | 30.47° N, 91.06° E |
海拔 Altitude (m) | 4333 | 4285 |
年均温 Mean annual air temperature (℃) | 1.8 | 1.8 |
年降水 Mean annual precipitation (mm) | 476.8 | 476.8 |
年总太阳辐射 Annual total solar radiation (MJ·m-2) | 7527.6 | 7527.6 |
植被状况 Vegetations | 盖度 Coverage:30%~60% 高度 Height:10 cm 优势物种:高山嵩草,丝颖针茅,紫花针茅,窄叶苔草,等。Dominant species: K. pygmaea, S. capillacea, Stipa purpurea, C. montis-everestii, et al. 伴生物种 Associated species:小嵩草Kobresia humilis, 委陵菜属Potentilla, 木根香青Anaphalis xylorhiza等. | 盖度 Coverage:>90% 高度 Height:>20 cm 优势物种 Dominant species:藏北嵩草K. littledalei, 华扁穗草B. sinocompressus. 伴生物种 Associated species:委陵菜属Potentilla, 蕨类Pteridophyta, 马先蒿Pedicularis longiflora. |
地形特征 Terrain | 平缓、均质 Flat and homogeneous | 平缓伴有凸丘和凹壑 Flat, with hummocks and hollows |
土壤类型 Soil type | 砂壤土,砾石含量较多 Sandy loam, more gravel content | 高寒草甸土,有机质层厚 Alpine meadow soil, thick layer of organic matter |
土壤养分状况 Soil nutrient | 土壤有机质Soil organic matter:1.94% 土壤全氮Soil total nitrogen:0.12% 碳氮比Carbon nitrogen ratio:11.13 土壤有效氮Soil available nitrogen: 8.62 mg·kg-1 | 土壤有机质Soil organic matter:23.70% 土壤全氮 Soil total nitrogen:0.96% 碳氮比Carbon nitrogen ratio:24.80 土壤有效氮Soil available nitrogen: 372.80 mg·kg-1 |
研究时间 Study period (year) | 2009-2011 | 2009-2011 |
土壤水分条件Soil water content (SWC, m3·m-3) | 低 Low:SWC<0.08 中 Medium:0.08≤SWC<0.12 高 High:SWC≥0.12 | 低 Low:SWC<0.45 中 Medium:0.45≤SWC<0.65 高 High:SWC≥0.65 |
项目Item | 高寒草甸Alpine meadow | 高寒湿地Alpine wetland | ||||
---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2009 | 2010 | 2011 | |
光合总初级生产力 GPP | -158.09 | -183.96 | -183.52 | -935.01 | -953.28 | -755.02 |
生态系统呼吸 Re | 210.51 | 212.62 | 156.70 | 786.54 | 826.98 | 564.27 |
净CO2交换量 NEE | 52.42 | 28.66 | -26.81 | -148.47 | -126.06 | -190.75 |
Table 2 Carbon flux of alpine meadow and alpine wetland in northern Tibet from 2009 to 2011 (g C·m-2)
项目Item | 高寒草甸Alpine meadow | 高寒湿地Alpine wetland | ||||
---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2009 | 2010 | 2011 | |
光合总初级生产力 GPP | -158.09 | -183.96 | -183.52 | -935.01 | -953.28 | -755.02 |
生态系统呼吸 Re | 210.51 | 212.62 | 156.70 | 786.54 | 826.98 | 564.27 |
净CO2交换量 NEE | 52.42 | 28.66 | -26.81 | -148.47 | -126.06 | -190.75 |
Fig. 3 The canopy light response curves of gross primary productivity (GPP) under different water conditions in two alpine grasslands of northern Tibet
Fig. 4 Rectangular hyperbolic relationship between gross primary productivity (GPP)and photosynthetically active radiation (PAR) under different water conditions in two alpine grasslands of northern Tibet
年份 Year | 季节 Period | 水分条件 Water scale | 平均温度 Temperature (℃) | 土壤含水量 Soil water content (m3·m-3) | a | b | Q10 | R2 |
---|---|---|---|---|---|---|---|---|
2009 | SWC=0.08 m3·m-3 | 4.99 | 0.080 | 0.0171 | 0.0655 | 1.93 | 0.55 | |
GS | 低 Low | 9.73 | 0.066 | 0.0195 | 0.0563 | 1.76 | 0.43 | |
中 Medium | 10.94 | 0.098 | 0.0238 | 0.0453 | 1.57 | 0.19 | ||
高 High | 11.00 | 0.156 | 0.0288 | 0.0336 | 1.40 | 0.06 | ||
NG | 低 Low | -6.60 | 0.061 | 0.0156 | 0.0877 | 2.40 | 0.50 | |
中 Medium | 1.43 | 0.105 | 0.0154 | 0.0428 | 1.53 | 0.22 | ||
高 High | 1.97 | 0.128 | 0.0148 | 0.0325 | 1.38 | 0.07 | ||
2010 | SWC=0.09 m3·m-3 | 2.04 | 0.090 | 0.0160 | 0.0628 | 1.87 | 0.42 | |
GS | 低 Low | 8.92 | 0.070 | 0.0248 | 0.0374 | 1.45 | 0.19 | |
中 Medium | 11.20 | 0.092 | 0.0235 | 0.0427 | 1.53 | 0.23 | ||
高 High | 11.83 | 0.220 | 0.0296 | 0.0300 | 1.35 | 0.22 | ||
NG | 低 Low | -3.25 | 0.050 | 0.0104 | 0.0069 | 1.07 | 0.00 | |
中 Medium | -1.20 | 0.100 | 0.0179 | -0.0258 | 0.77 | 0.05 | ||
高 High | 6.05 | 0.120 | 0.0245 | 0.0555 | 0.57 | 0.06 | ||
2011 | SWC=0.10 m3·m-3 | 3.03 | 0.100 | 0.0174 | -0.0554 | 1.74 | 0.37 | |
GS | 低 Low | 8.32 | 0.070 | 0.0178 | -0.0029 | 0.97 | 0.00 | |
中 Medium | 8.16 | 0.097 | 0.0198 | 0.0295 | 1.34 | 0.08 | ||
高 High | 10.28 | 0.192 | 0.0392 | 0.0012 | 1.01 | 0.00 | ||
NG | 低 Low | -5.68 | 0.062 | 0.0110 | 0.0768 | 2.15 | 0.15 | |
中 Medium | 2.42 | 0.095 | 0.0127 | 0.0633 | 1.88 | 0.13 | ||
高 High | 3.76 | 0.126 | -- | -- | -- | -- |
Table 3 Responses of alpine meadow ecosystem respiration to temperature at divergent soil water scales during different periods
年份 Year | 季节 Period | 水分条件 Water scale | 平均温度 Temperature (℃) | 土壤含水量 Soil water content (m3·m-3) | a | b | Q10 | R2 |
---|---|---|---|---|---|---|---|---|
2009 | SWC=0.08 m3·m-3 | 4.99 | 0.080 | 0.0171 | 0.0655 | 1.93 | 0.55 | |
GS | 低 Low | 9.73 | 0.066 | 0.0195 | 0.0563 | 1.76 | 0.43 | |
中 Medium | 10.94 | 0.098 | 0.0238 | 0.0453 | 1.57 | 0.19 | ||
高 High | 11.00 | 0.156 | 0.0288 | 0.0336 | 1.40 | 0.06 | ||
NG | 低 Low | -6.60 | 0.061 | 0.0156 | 0.0877 | 2.40 | 0.50 | |
中 Medium | 1.43 | 0.105 | 0.0154 | 0.0428 | 1.53 | 0.22 | ||
高 High | 1.97 | 0.128 | 0.0148 | 0.0325 | 1.38 | 0.07 | ||
2010 | SWC=0.09 m3·m-3 | 2.04 | 0.090 | 0.0160 | 0.0628 | 1.87 | 0.42 | |
GS | 低 Low | 8.92 | 0.070 | 0.0248 | 0.0374 | 1.45 | 0.19 | |
中 Medium | 11.20 | 0.092 | 0.0235 | 0.0427 | 1.53 | 0.23 | ||
高 High | 11.83 | 0.220 | 0.0296 | 0.0300 | 1.35 | 0.22 | ||
NG | 低 Low | -3.25 | 0.050 | 0.0104 | 0.0069 | 1.07 | 0.00 | |
中 Medium | -1.20 | 0.100 | 0.0179 | -0.0258 | 0.77 | 0.05 | ||
高 High | 6.05 | 0.120 | 0.0245 | 0.0555 | 0.57 | 0.06 | ||
2011 | SWC=0.10 m3·m-3 | 3.03 | 0.100 | 0.0174 | -0.0554 | 1.74 | 0.37 | |
GS | 低 Low | 8.32 | 0.070 | 0.0178 | -0.0029 | 0.97 | 0.00 | |
中 Medium | 8.16 | 0.097 | 0.0198 | 0.0295 | 1.34 | 0.08 | ||
高 High | 10.28 | 0.192 | 0.0392 | 0.0012 | 1.01 | 0.00 | ||
NG | 低 Low | -5.68 | 0.062 | 0.0110 | 0.0768 | 2.15 | 0.15 | |
中 Medium | 2.42 | 0.095 | 0.0127 | 0.0633 | 1.88 | 0.13 | ||
高 High | 3.76 | 0.126 | -- | -- | -- | -- |
年份 Year | 季节 Period | 水分条件 Water scale | 平均温度 Temperature (℃) | 土壤含水量 Soil water content (m3·m-3) | a | b | Q10 | R2 |
---|---|---|---|---|---|---|---|---|
2009 | SWC=0.51 m3·m-3 | 3.71 | 0.51 | 0.0605 | 0.0769 | 2.16 | 0.61 | |
GS | 低 Low | 14.50 | 0.42 | 0.0605 | 0.0807 | 2.24 | 0.53 | |
中 Medium | 9.79 | 0.56 | 0.0821 | 0.0663 | 1.94 | 0.52 | ||
高 High | 8.15 | 0.71 | 0.1317 | 0.0276 | 1.32 | 0.10 | ||
NG | 低 Low | -3.96 | 0.12 | 0.0485 | 0.0124 | 1.13 | 0.03 | |
中 Medium | 9.45 | 0.56 | 0.0785 | 0.0686 | 1.98 | 0.56 | ||
高 High | 1.66 | 0.86 | 0.0560 | 0.0636 | 1.89 | 0.50 | ||
2010 | SWC=0.38 m3·m-3 | 3.20 | 0.38 | 0.0753 | 0.0490 | 1.63 | 0.46 | |
GS | 低 Low | 10.65 | 0.29 | 0.1115 | 0.0257 | 1.29 | 0.17 | |
中 Medium | 9.86 | 0.55 | 0.1887 | -0.0220 | 0.80 | 0.08 | ||
高 High | 6.84 | 0.68 | 0.1200 | -0.0109 | 0.90 | 0.05 | ||
NG | 低 Low | -2.85 | 0.14 | 0.0679 | 0.0325 | 1.38 | 0.22 | |
中 Medium | -3.74 | 0.58 | 0.0198 | 0.1040 | 2.83 | 0.75 | ||
高 High | 0.28 | 0.87 | 0.0475 | 0.0343 | 1.41 | 0.22 | ||
2011 | SWC=0.41 m3·m-3 | 2.94 | 0.41 | 0.0536 | 0.0557 | 1.74 | 0.44 | |
GS | 低 Low | 8.86 | 0.33 | 0.0856 | 0.0258 | 1.29 | 0.13 | |
中 Medium | 11.88 | 0.57 | 0.1840 | -0.0294 | 0.74 | 0.11 | ||
高 High | 8.29 | 0.69 | 0.1010 | -0.0015 | 0.98 | 0.00 | ||
NG | 低 Low | -4.28 | 0.12 | 0.0273 | 0.0212 | 1.24 | 0.06 | |
中 Medium | -0.23 | 0.51 | 0.0326 | -0.0066 | 0.93 | 0.00 | ||
高 High | 0.13 | 0.89 | 0.0493 | 0.0102 | 1.10 | 0.07 |
Table 4 Responses of alpine wetland ecosystem respiration to temperature at divergent soil water scales during different periods
年份 Year | 季节 Period | 水分条件 Water scale | 平均温度 Temperature (℃) | 土壤含水量 Soil water content (m3·m-3) | a | b | Q10 | R2 |
---|---|---|---|---|---|---|---|---|
2009 | SWC=0.51 m3·m-3 | 3.71 | 0.51 | 0.0605 | 0.0769 | 2.16 | 0.61 | |
GS | 低 Low | 14.50 | 0.42 | 0.0605 | 0.0807 | 2.24 | 0.53 | |
中 Medium | 9.79 | 0.56 | 0.0821 | 0.0663 | 1.94 | 0.52 | ||
高 High | 8.15 | 0.71 | 0.1317 | 0.0276 | 1.32 | 0.10 | ||
NG | 低 Low | -3.96 | 0.12 | 0.0485 | 0.0124 | 1.13 | 0.03 | |
中 Medium | 9.45 | 0.56 | 0.0785 | 0.0686 | 1.98 | 0.56 | ||
高 High | 1.66 | 0.86 | 0.0560 | 0.0636 | 1.89 | 0.50 | ||
2010 | SWC=0.38 m3·m-3 | 3.20 | 0.38 | 0.0753 | 0.0490 | 1.63 | 0.46 | |
GS | 低 Low | 10.65 | 0.29 | 0.1115 | 0.0257 | 1.29 | 0.17 | |
中 Medium | 9.86 | 0.55 | 0.1887 | -0.0220 | 0.80 | 0.08 | ||
高 High | 6.84 | 0.68 | 0.1200 | -0.0109 | 0.90 | 0.05 | ||
NG | 低 Low | -2.85 | 0.14 | 0.0679 | 0.0325 | 1.38 | 0.22 | |
中 Medium | -3.74 | 0.58 | 0.0198 | 0.1040 | 2.83 | 0.75 | ||
高 High | 0.28 | 0.87 | 0.0475 | 0.0343 | 1.41 | 0.22 | ||
2011 | SWC=0.41 m3·m-3 | 2.94 | 0.41 | 0.0536 | 0.0557 | 1.74 | 0.44 | |
GS | 低 Low | 8.86 | 0.33 | 0.0856 | 0.0258 | 1.29 | 0.13 | |
中 Medium | 11.88 | 0.57 | 0.1840 | -0.0294 | 0.74 | 0.11 | ||
高 High | 8.29 | 0.69 | 0.1010 | -0.0015 | 0.98 | 0.00 | ||
NG | 低 Low | -4.28 | 0.12 | 0.0273 | 0.0212 | 1.24 | 0.06 | |
中 Medium | -0.23 | 0.51 | 0.0326 | -0.0066 | 0.93 | 0.00 | ||
高 High | 0.13 | 0.89 | 0.0493 | 0.0102 | 1.10 | 0.07 |
1 | Green J K, Seneviratne S I, Berg A M, et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019, 565(7740): 476-479. |
2 | Friedlingstein P, O'sullivan M, Jones M W, et al. Global carbon budget 2020. Earth System Science Data, 2020, 12(4): 3269-3340. |
3 | Keenan T F, Williams C A. The terrestrial carbon sink. Annual Review of Environment and Resources, 2018, 43(1): 219-243. |
4 | Liu Y, Piao S, Gasser T, et al. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 2019, 12(10): 809-814. |
5 | Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809): 184-187. |
6 | Kato T, Tang Y, Gu S, et al. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology, 2004, 124(1/2): 121-134. |
7 | Luo Y Q. Terrestrial carbon-cycle feedback to climate warming. Annual Review of Environment and Resources, 2007, 38: 683-712. |
8 | Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 2008, 451(7176): 289-292. |
9 | Stocker T, Qin D, Plattner G, et al. Climate change 2013-The physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. England, Cambridge: Cambridge University Press, 2014. |
10 | Intergovernmental Panel on Climate Change. Climate change 2014-impacts, adaptation and vulnerability: regional aspects. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2014. |
11 | Crowther T W, Todd-Brown K E O, Rowe C W, et al. Quantifying global soil carbon losses in response to warming. Nature, 2016, 540(7631): 104-108. |
12 | Lu M, Zhou X, Yang Q, et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology, 2013, 94(3): 726-738. |
13 | Simon E, Canarini A, Martin V, et al. Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment. Communications Biology, 2020, 3(1): 584. |
14 | Fang J, Kato T, Guo Z, et al. Evidence for environmentally enhanced forest growth. Proceedings of the National Academy of Sciences, 2014, 111(26): 9527-9532. |
15 | Piao S, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 2013, 19(7): 2117-2132. |
16 | Niu B, He Y, Zhang X, et al. CO2 exchange in an alpine swamp meadow on the central Tibetan Plateau. Wetlands, 2017, 37(3): 525-543. |
17 | Yu Z L, Ge J P, Yu G R, et al. Ecology: Current knowledge and future challenges. Beijing: Higher Education Press, 2017. |
于振良, 葛剑平, 于贵瑞, 等. 生态学的现状与发展趋势. 北京: 高等教育出版社, 2017. | |
18 | Wang S, Zhang Y, Ju W, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science, 2020, 370(6522): 1295-1300. |
19 | Winkler A J, Myneni R B, Hannart A, et al. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences, 2021, 18(17): 4985-5010. |
20 | Song J, Wan S, Piao S, et al. Elevated CO2 does not stimulate carbon sink in a semi-arid grassland. Ecology Letters, 2019, 22(3): 458-468. |
21 | Frankenberg C, Yin Y, Byrne B, et al. Comment on "Recent global decline of CO2 fertilization effects on vegetation photosynthesis". Science, 2021, 373(6562): eabg2947. |
22 | Sang Y, Huang L, Wang X, et al. Comment on "Recent global decline of CO2 fertilization effects on vegetation photosynthesis". Science, 2021, 373(6562): eabg4420. |
23 | Zhu Z, Zeng H, Myneni R B, et al. Comment on "Recent global decline of CO2 fertilization effects on vegetation photosynthesis". Science, 2021, 373(6562): eabg5673. |
24 | Lei J, Guo X, Zeng Y, et al. Temporal changes in global soil respiration since 1987. Nature Communications, 2021, 12(1): 403. |
25 | Tian J, Zong N, Hartley I P, et al. Microbial metabolic response to winter warming stabilizes soil carbon. Global Change Biology, 2021, 27(10): 2011-2028. |
26 | Editorial Committee of Chinese Vegetation Map, Chinese Academy of Sciences. Atlas of vegetation in China. Beijing: Science Press, 2001. |
中国科学院中国植被图编辑委员会. 中国植被图集. 北京: 科学出版社, 2001. | |
27 | Zheng D, Zhang Q, Wu S. Mountain geoecology and sustainable development of the Tibetan Plateau. Springer Science & Business Media, 2000. |
28 | Ni J. Carbon storage in grasslands of China. Journal of Arid Environments, 2002, 50(2): 205-218. |
29 | Saito M, Kato T, Tang Y. Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology, 2009, 15(1): 221-228. |
30 | Climate Change Centre, China Meteorological Administration. Blue book on climate change in China (2021). Beijing: Science Press, 2021. |
中国气象局气候变化中心. 中国气候变化蓝皮书(2021). 北京: 科学出版社, 2021. | |
31 | Chen H, Zhu Q, Peng C, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 2013, 19(10): 2940-2955. |
32 | Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 2000, 20(14): 1729-1742. |
33 | Mao S J, Wu Q H, Zhu J B, et al. Response of the maintain performance in alpine grassland to enclosure on the Northern Tibetan Plateau. Acta Prataculturae Sinica, 2015, 24(1): 21-30. |
毛绍娟, 吴启华, 祝景彬, 等. 藏北高寒草原群落维持性能对封育年限的响应. 草业学报, 2015, 24(1): 21-30. | |
34 | Wang J L, Chang T J, Li P, et al. The vegetation carbon reserve and its spatial distribution configuration of grassland ecosystem in Tibet. Acta Ecologica Sinica, 2009, 29(2): 931-938. |
王建林, 常天军, 李鹏, 等. 西藏草地生态系统植被碳贮量及其空间分布格局. 生态学报, 2009, 29(2): 931-938. | |
35 | Wang G X, Cheng G D, Shen Y P. Soil organic carbon pool of grasslands on the Tibetan plateau and its global implication. Journal of Glaciology and Geocryology, 2002, 24(6): 693-700. |
王根绪, 程国栋, 沈永平. 青藏高原草地土壤有机碳库及其全球意义. 冰川冻土, 2002, 24(6): 693-700. | |
36 | Zhang X Z, Yang Y P, Piao S L, et al. Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 2015, 60(32): 3048-3056. |
张宪洲, 杨永平, 朴世龙, 等. 青藏高原生态变化. 科学通报, 2015, 60(32): 3048-3056. | |
37 | Wei D, Qi Y, Ma Y, et al. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 2021, 118(33): e2015283118. |
38 | Yu G R, Zhang L M, Sun X M. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX). Progress in Geography, 2014, 33(7): 903-917. |
于贵瑞, 张雷明, 孙晓敏. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望. 地理科学进展, 2014, 33(7): 903-917. | |
39 | Chen S P, You C H, Hu Z M, et al. Eddy covariance technique and its applications in flux observations of terrestrial ecosystems. Chinese Journal of Plant Ecology, 2020, 44(4): 291-304. |
陈世苹, 游翠海, 胡中民, 等. 涡度相关技术及其在陆地生态系统通量研究中的应用. 植物生态学报, 2020, 44(4): 291-304. | |
40 | Xu M, Zhang T, Zhang Y, et al. Drought limits alpine meadow productivity in northern Tibet. Agricultural and Forest Meteorology, 2021, 303: 108371. |
41 | Zhang T, Zhang Y, Xu M, et al. Water availability is more important than temperature in driving the carbon fluxes of an alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 2018, 256/257: 22-31. |
42 | Shi P, Sun X, Xu L, et al. Net ecosystem CO2 exchange and controlling factors in a steppe-Kobresia meadow on the Tibetan Plateau. Science in China Series D: Earth Sciences, 2006, 49(S2): 207-218. |
43 | Niu B, He Y, Zhang X, et al. Tower-based validation and improvement of MODIS gross primary production in an alpine swamp meadow on the Tibetan Plateau. Remote Sensing, 2016, 8(7): 592. |
44 | Niu B, He Y, Zhang X, et al. Satellite-based inversion and field validation of autotrophic and heterotrophic respiration in an alpine meadow on the Tibetan Plateau. Remote Sensing, 2017, 9(6): 615. |
45 | Niu B, Zhang X, He Y, et al. Satellite-based estimation of gross primary production in an alpine swamp meadow on the Tibetan Plateau: A multi-model comparison. Journal of Resources and Ecology, 2017, 8(1): 57-66. |
46 | Fu G, Wu J S. Validation of MODIS collection 6 FPAR/LAI in the alpine grassland of the Northern Tibetan Plateau. Remote Sensing Letters, 2017, 8(9): 831-838. |
47 | Zhang T, Xu M, Xi Y, et al. Lagged climatic effects on carbon fluxes over three grassland ecosystems in China. Journal of Plant Ecology, 2015, 8(3): 291-302. |
48 | Zhang T, Zhang Y, Xu M, et al. Ecosystem response more than climate variability drives the inter-annual variability of carbon fluxes in three Chinese grasslands. Agricultural and Forest Meteorology, 2016, 225: 48-56. |
49 | Niu B, Zhang X, Piao S, et al. Warming homogenizes apparent temperature sensitivity of ecosystem respiration. Science Advances, 2021, 7(15): eabc7358. |
50 | Chai X, Shi P, Zong N, et al. A growing season climatic index to simulate gross primary productivity and carbon budget in a Tibetan alpine meadow. Ecological Indicators, 2017, 81: 285-294. |
51 | Li C, He H L, Liu M, et al. The design and application of CO2 flux data processing system at ChinaFLUX. Geo-Information Science, 2008, 10(5): 557-565. |
李春, 何洪林, 刘敏, 等. ChinaFLUX CO2通量数据处理系统与应用. 地球信息科学, 2008, 10(5): 557-565. | |
52 | Yu G R, Wen X F, Sun X M, et al. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 2006, 137(3/4): 125-137. |
53 | Michaelis L, Menten M L. Die kinetik der invertinwirkung. Biochemische Zeitschrift, 1913, 49(333/369): 352. |
54 | Ruimy A, Jarvis P G, Baldocchi D D, et al. CO2 fluxes over plant canopies and solar radiation: a review. Advances in Ecological Research, 1995(26): 1-68. |
55 | Zhou L, Zhou G, Jia Q. Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquatic Botany, 2009, 91(2): 91-98. |
56 | Van't Hoff J H. Über die zunehmende Bedeutung der anorganischen Chemie. Vortrag, gehalten auf der 70. Versammlung der Gesellschaft deutscher Naturforscher und Ärzte zu Düsseldorf. Zeitschrift für anorganische Chemie, 1898, 18(1): 1-13. |
57 | Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 1995, 9(1): 23-36. |
58 | Zhang P C, Hirota M, Shen H H, et al. Characterization of CO2 flux in three Kobresia meadows differing in dominant species. Journal of Plant Ecology, 2009, 2(4): 187-196. |
59 | Zhao L, Li Y, Xu S, et al. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology, 2006, 12(10): 1940-1953. |
60 | Zhao L, Li Y, Zhao X, et al. Comparative study of the net exchange of CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau. Chinese Science Bulletin, 2005, 50(16): 1767-1774. |
61 | Xu L, Zhang X, Shi P, et al. Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau. Ecological Modelling, 2007, 208(2/4): 129-134. |
62 | Xu L, Baldocchi D D. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agricultural and Forest Meteorology, 2004, 123(1/2): 79-96. |
63 | Lafleur P M, Roulet N T, Admiral S W. Annual cycle of CO2 exchange at a bog peatland. Journal of Geophysical Research, 2001, 106(D3): 3071. |
64 | Zhang L M, Yu G R, Sun X M, et al. Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China. Agricultural and Forest Meteorology, 2006, 137(3/4): 176-187. |
65 | Han G, Yang L, Yu J, et al. Environmental controls on net ecosystem CO2 exchange over a reed (Phragmites australis) wetland in the Yellow River Delta, China. Estuaries and Coasts, 2012, 36(2): 401-413. |
66 | Hao Y B, Cui X Y, Wang Y F, et al. Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of Southwest China. Wetlands, 2011, 31(2): 413-422. |
67 | Zhao L, Li J, Xu S, et al. Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences, 2010, 7(4): 1207-1221. |
68 | Xu L, Zhang X, Shi P, et al. Response of canopy quantum yield of alpine meadow to temperature under low atmospheric pressure on Tibetan Plateau. Science in China Series D: Earth Sciences, 2006, 49(2): 219-225. |
69 | Wohlfahrt G, Anderson-Dunn M, Bahn M, et al. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. Ecosystems, 2008, 11(8): 1338-1351. |
70 | Jia Z J, Song C C. Net CO2 exchange and water vapour flux in wetland ecosystem and their relationship. Journal of Ecology and Rural Environment, 2006, 22(2): 75-79. |
贾志军, 宋长春. 湿地生态系统CO2净交换水汽通量及二者关系浅析. 生态与农村环境学报, 2006, 22(2): 75-79. | |
71 | Bonneville M C, Strachan I B, Humphreys E R, et al. Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology, 2008, 148(1): 69-81. |
72 | Lafleur P M, Moore T R, Roulet N T, et al. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems, 2005, 8(6): 619-629. |
73 | Bubier J, Crill P, Mosedale A. Net ecosystem CO2 exchange measured by autochambers during the snow-covered season at a temperate peatland. Hydrological Processes, 2002, 16(18): 3667-3682. |
74 | Hirota M, Tang Y, Hu Q, et al. Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau. Ecosystems, 2006, 9(4): 673-688. |
75 | Tjoelker M G, Oleksyn J, Reich P B. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Global Change Biology, 2001, 7(2): 223-230. |
76 | Xu M, Qi Y. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles, 2001, 15(3): 687-696. |
77 | Janssens I A, Pilegaard K I M. Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 2003, 9(6): 911-918. |
78 | Zhou X, Wan S, Luo Y. Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 2007, 13(4): 761-775. |
79 | Flanagan L B, Johnson B G. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 2005, 130(3/4): 237-253. |
80 | Li H, Zhu J, Zhang F, et al. Growth stage-dependant variability in water vapor and CO2 exchanges over a humid alpine shrubland on the northeastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 268: 55-62. |
81 | Gorham E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1991, 1(2): 182-195. |
82 | Dušek J, Čížková H, Czerný R, et al. Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agricultural and Forest Meteorology, 2009, 149(9): 1524-1530. |
83 | Moore T R, Bubier J L, Frolking S E, et al. Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology, 2002, 90(1): 25-36. |
84 | Meng W Q, Wu Z L, Wang Z L. Control factors and critical conditions between carbon sinking and sourcing of wetland ecosystem. Ecology and Environmental Sciences, 2011, 20(8/9):1359-1366. |
孟伟庆, 吴绽蕾, 王中良. 湿地生态系统碳汇与碳源过程的控制因子和临界条件. 生态环境学报, 2011, 20(8/9): 1359-1366. |
[1] | Zhi-yuan YOU, Shu-juan MA, Chang-ting WANG, Lu-ming DING, Xiao-yan SONG, Gao-fei YIN, Jun MAO. Using the model MaxEnt to predict plant distribution patterns of different functional groups in the alpine meadow ecosystem on Sichuan-Yunnan Plateau [J]. Acta Prataculturae Sinica, 2024, 33(3): 1-12. |
[2] | Dong ZHANG, Chen HOU, Wen-ming MA, Chang-ting WANG, Zhuo-ma DENGZENG, Ting ZHANG. Study on soil enzyme activities under shrub encroachment gradients in alpine grassland [J]. Acta Prataculturae Sinica, 2023, 32(9): 79-92. |
[3] | Ji-liang LIU, Wen-zhi ZHAO, Yong-zhen WANG, Yi-lin FENG, Jin-xian QI, Yong-yuan LI. Effect of fencing and grazing on soil macro- and meso-arthropod diversity in alpine grassland ecosystems in the Qilian Mountains in the fall [J]. Acta Prataculturae Sinica, 2023, 32(8): 214-221. |
[4] | Kai-feng WANG, Gang BAO, Zhi-hui YUAN, Si-qin TONG, Zhi-gang YE, Xiao-jun HUANG, Yu-hai BAO. Climate sensitivity of the start of the growing season in spring and the end of the growing season in autumn for vegetation in Inner Mongolia [J]. Acta Prataculturae Sinica, 2023, 32(4): 30-41. |
[5] | Shi-long LEI, Li-rong LIAO, Jie WANG, Lu ZHANG, Zhen-cheng YE, Guo-bin LIU, Chao ZHANG. The diversity-Godron stability relationship of alpine grassland and its environmental drivers [J]. Acta Prataculturae Sinica, 2023, 32(3): 1-12. |
[6] | Zi-jing LI, Cui-ping GAO, Zhong-wu WANG, Guo-dong HAN. Research status and suggestions for grassland carbon sequestration and emission reduction in China [J]. Acta Prataculturae Sinica, 2023, 32(2): 191-200. |
[7] | Hong-yu QIAN, Yu-lin PU, Shan-xin LANG, Yi-ran LI, Nan-ding ZHOU. Response of soil organic phosphorus mineralization to alpine meadow degradation and temperature [J]. Acta Prataculturae Sinica, 2023, 32(10): 15-27. |
[8] | Juan-juan ZHOU, Wei WEI. Interactive effect of fertilization and cutting on community dynamics and transgressive overyielding effect of grass pasture in the northern Tibetan Plateau [J]. Acta Prataculturae Sinica, 2023, 32(10): 28-39. |
[9] | Ge-xia QIN, Jing WU, Chun-bin LI, Shuai-jie SHEN, Huai-hai LI, Dao-han YANG, Mei-rong JIAO, Qi QI. Sensitivity analysis of WOFOST model crop parameters in different grassland types [J]. Acta Prataculturae Sinica, 2022, 31(5): 13-25. |
[10] | You-shun JIN, Fu-jiang HOU. Determination of the nutrient digestibility of herbage consumed by grazing animals [J]. Acta Prataculturae Sinica, 2022, 31(5): 200-212. |
[11] | Ya-ni WANG, Yi-gang HU, Zeng-ru WANG, Yi-kang LI, Zhen-hua ZHANG, Hua-kun ZHOU. Impacts of desertification and artificial revegetation on soil bacterial communities in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(5): 26-39. |
[12] | Lei ZHOU, Xue WEI, Chang-ting WANG, Peng-fei WU. Differences in soil microarthropod community structure in alpine grasslands with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2022, 31(3): 34-46. |
[13] | Xiao-min FAN, Xin JING, Bo-wen XIAO, Xiao-liang MA, Jin-sheng HE. Climate and land-use change jointly determine the spatial-temporal changes of ecosystem services in Hainan and Haibei Tibetan Autonomous Prefectures, Qinghai Province [J]. Acta Prataculturae Sinica, 2022, 31(12): 17-30. |
[14] | Bi-hua GUO, Xue-mei ZHANG, Jin-ping LIU, Ming-hong YOU, Xiao-hong GAN, Yong YANG. Effects of slope on soil properties and post construction desertification of highway embankments in an Alpine Meadow region [J]. Acta Prataculturae Sinica, 2022, 31(11): 15-24. |
[15] | Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||