Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (3): 56-70.DOI: 10.11686/cyxb2024165
Previous Articles Next Articles
Shao-xing LI(), Wen-feng SONG(
), Yu-ling ZHOU, Li-xia SONG, Ke REN, Qun MA, Long-chang WANG(
)
Received:
2024-05-07
Revised:
2024-06-24
Online:
2025-03-20
Published:
2025-01-02
Contact:
Long-chang WANG
Shao-xing LI, Wen-feng SONG, Yu-ling ZHOU, Li-xia SONG, Ke REN, Qun MA, Long-chang WANG. Effects of straw and milk vetch mulching on the ecological stoichiometric characteristics of soil-microbe-sweet potato plants[J]. Acta Prataculturae Sinica, 2025, 34(3): 56-70.
处理Treatment | 操作方法Method of operation |
---|---|
对照Control (CK) | 地表无覆盖。Uncovered land. |
秸秆覆盖Straw mulching (S) | 当季作物播种或移栽后,将前茬作物秸秆用铡刀切成20 cm左右长度并均匀覆盖在整个小区内,蚕豆、玉米秸秆覆盖量为7500 kg·hm-2(风干重),甘薯秸秆覆盖量为4500 kg·hm-2(风干重)。After planting or transplantation of crops in the current season, straw of the previous crops were cut into a length of about 20 cm by fodder chopper and evenly covered in the whole plot. The straw cover amount of fava bean and corn were 7500 kg·ha-1 (air-dry weight), and the straw cover amount of sweet potato was 4500 kg?ha-1 (air-dry weight). |
紫云英覆盖Milk vetch mulching (M) | 在蚕豆生育期内间作紫云英,紫云英于盛花期收获并切碎,在玉米移栽后均匀覆盖在整个小区内,覆盖量为2500 kg·hm-2(风干重)。During the growth period of fava bean, harvest and chop the milk vetch in full-blossom period, evenly covered in the whole plot after corn was transplanted, and the cover amount is 2500 kg·ha-1 (air-dry weight). |
秸秆+紫云英覆盖Straw and milk vetch mulching (S+M) | 秸秆覆盖量和覆盖方法同S,紫云英覆盖量和覆盖方法同M。The mulching amount and mulching method of straw and milk vetch are the same as S and M. |
Table 1 Treatment and operation methods of different biological coverage
处理Treatment | 操作方法Method of operation |
---|---|
对照Control (CK) | 地表无覆盖。Uncovered land. |
秸秆覆盖Straw mulching (S) | 当季作物播种或移栽后,将前茬作物秸秆用铡刀切成20 cm左右长度并均匀覆盖在整个小区内,蚕豆、玉米秸秆覆盖量为7500 kg·hm-2(风干重),甘薯秸秆覆盖量为4500 kg·hm-2(风干重)。After planting or transplantation of crops in the current season, straw of the previous crops were cut into a length of about 20 cm by fodder chopper and evenly covered in the whole plot. The straw cover amount of fava bean and corn were 7500 kg·ha-1 (air-dry weight), and the straw cover amount of sweet potato was 4500 kg?ha-1 (air-dry weight). |
紫云英覆盖Milk vetch mulching (M) | 在蚕豆生育期内间作紫云英,紫云英于盛花期收获并切碎,在玉米移栽后均匀覆盖在整个小区内,覆盖量为2500 kg·hm-2(风干重)。During the growth period of fava bean, harvest and chop the milk vetch in full-blossom period, evenly covered in the whole plot after corn was transplanted, and the cover amount is 2500 kg·ha-1 (air-dry weight). |
秸秆+紫云英覆盖Straw and milk vetch mulching (S+M) | 秸秆覆盖量和覆盖方法同S,紫云英覆盖量和覆盖方法同M。The mulching amount and mulching method of straw and milk vetch are the same as S and M. |
计量比Stoichiometric ratio | 土区Soil area | 处理Treatment | 30 d | 60 d | 90 d | 120 d | 150 d |
---|---|---|---|---|---|---|---|
C∶N | 根际Rhizosphere | CK | 16.43±0.18a | 15.83±0.43a | 15.15±0.11a | 15.98±0.14a | 17.64±0.38a |
S | 17.17±0.37a | 15.79±0.56a | 14.68±0.15a | 14.80±0.28a | 17.26±0.20a | ||
S+M | 17.11±0.19a | 14.26±0.18b | 14.41±0.30a | 15.11±0.50a | 16.77±0.37ab | ||
M | 16.40±0.62a | 14.80±0.33ab | 14.85±0.42a | 15.20±0.42a | 15.78±0.55b | ||
非根际Non-rhizosphere | CK | 18.91±0.67a | 15.80±0.39a | 15.64±0.32a | 16.34±0.92a | 15.43±0.18a | |
S | 15.26±0.93b | 14.86±0.75a | 15.83±0.31a | 14.57±0.61a | 14.42±0.26a | ||
S+M | 14.43±0.47b | 16.24±0.58a | 15.23±0.68a | 15.85±0.51a | 14.85±0.66a | ||
M | 15.22±1.03b | 15.73±0.46a | 15.30±0.60a | 14.29±0.26a | 15.62±0.31a | ||
C∶P | 根际Rhizosphere | CK | 42.03±0.41ab | 35.82±0.72c | 35.15±0.62b | 36.94±0.64a | 39.85±0.52a |
S | 43.72±1.11ab | 40.12±1.12ab | 39.44±0.61a | 40.38±1.05a | 42.30±1.23a | ||
S+M | 45.49±1.84a | 39.06±0.34b | 39.68±0.70a | 39.19±0.97a | 41.87±1.25a | ||
M | 41.47±0.71b | 41.77±0.69a | 38.82±1.13a | 40.32±1.38a | 39.77±1.45a | ||
非根际Non-rhizosphere | CK | 41.01±0.74b | 36.26±0.96b | 36.37±1.26c | 37.65±0.73b | 39.65±0.16b | |
S | 42.90±0.43ab | 44.49±0.79a | 43.46±0.57ab | 40.01±1.05b | 40.57±1.22ab | ||
S+M | 45.25±0.58a | 46.18±0.67a | 44.41±1.35a | 44.41±1.46a | 43.55±1.44a | ||
M | 42.34±1.54ab | 44.25±0.83a | 40.70±0.89b | 38.44±0.80b | 39.81±1.02b | ||
N∶P | 根际Rhizosphere | CK | 2.56±0.01a | 2.27±0.06c | 2.32±0.04b | 2.31±0.06b | 2.26±0.04b |
S | 2.55±0.08a | 2.54±0.08b | 2.69±0.03a | 2.73±0.06a | 2.45±0.07a | ||
S+M | 2.66±0.08a | 2.74±0.06ab | 2.76±0.09a | 2.60±0.08a | 2.50±0.04a | ||
M | 2.53±0.06a | 2.82±0.04a | 2.61±0.04a | 2.65±0.06a | 2.52±0.01a | ||
非根际Non-rhizosphere | CK | 2.17±0.08b | 2.30±0.05b | 2.33±0.10c | 2.32±0.17b | 2.57±0.03b | |
S | 2.83±0.16a | 3.00±0.10a | 2.75±0.04ab | 2.75±0.04a | 2.82±0.12a | ||
S+M | 3.14±0.06a | 2.85±0.10a | 2.92±0.08a | 2.80±0.03a | 2.94±0.08a | ||
M | 2.79±0.08a | 2.82±0.07a | 2.66±0.05b | 2.69±0.07a | 2.55±0.02b |
Table 2 Changes in C∶N, C∶P and N∶P in soil
计量比Stoichiometric ratio | 土区Soil area | 处理Treatment | 30 d | 60 d | 90 d | 120 d | 150 d |
---|---|---|---|---|---|---|---|
C∶N | 根际Rhizosphere | CK | 16.43±0.18a | 15.83±0.43a | 15.15±0.11a | 15.98±0.14a | 17.64±0.38a |
S | 17.17±0.37a | 15.79±0.56a | 14.68±0.15a | 14.80±0.28a | 17.26±0.20a | ||
S+M | 17.11±0.19a | 14.26±0.18b | 14.41±0.30a | 15.11±0.50a | 16.77±0.37ab | ||
M | 16.40±0.62a | 14.80±0.33ab | 14.85±0.42a | 15.20±0.42a | 15.78±0.55b | ||
非根际Non-rhizosphere | CK | 18.91±0.67a | 15.80±0.39a | 15.64±0.32a | 16.34±0.92a | 15.43±0.18a | |
S | 15.26±0.93b | 14.86±0.75a | 15.83±0.31a | 14.57±0.61a | 14.42±0.26a | ||
S+M | 14.43±0.47b | 16.24±0.58a | 15.23±0.68a | 15.85±0.51a | 14.85±0.66a | ||
M | 15.22±1.03b | 15.73±0.46a | 15.30±0.60a | 14.29±0.26a | 15.62±0.31a | ||
C∶P | 根际Rhizosphere | CK | 42.03±0.41ab | 35.82±0.72c | 35.15±0.62b | 36.94±0.64a | 39.85±0.52a |
S | 43.72±1.11ab | 40.12±1.12ab | 39.44±0.61a | 40.38±1.05a | 42.30±1.23a | ||
S+M | 45.49±1.84a | 39.06±0.34b | 39.68±0.70a | 39.19±0.97a | 41.87±1.25a | ||
M | 41.47±0.71b | 41.77±0.69a | 38.82±1.13a | 40.32±1.38a | 39.77±1.45a | ||
非根际Non-rhizosphere | CK | 41.01±0.74b | 36.26±0.96b | 36.37±1.26c | 37.65±0.73b | 39.65±0.16b | |
S | 42.90±0.43ab | 44.49±0.79a | 43.46±0.57ab | 40.01±1.05b | 40.57±1.22ab | ||
S+M | 45.25±0.58a | 46.18±0.67a | 44.41±1.35a | 44.41±1.46a | 43.55±1.44a | ||
M | 42.34±1.54ab | 44.25±0.83a | 40.70±0.89b | 38.44±0.80b | 39.81±1.02b | ||
N∶P | 根际Rhizosphere | CK | 2.56±0.01a | 2.27±0.06c | 2.32±0.04b | 2.31±0.06b | 2.26±0.04b |
S | 2.55±0.08a | 2.54±0.08b | 2.69±0.03a | 2.73±0.06a | 2.45±0.07a | ||
S+M | 2.66±0.08a | 2.74±0.06ab | 2.76±0.09a | 2.60±0.08a | 2.50±0.04a | ||
M | 2.53±0.06a | 2.82±0.04a | 2.61±0.04a | 2.65±0.06a | 2.52±0.01a | ||
非根际Non-rhizosphere | CK | 2.17±0.08b | 2.30±0.05b | 2.33±0.10c | 2.32±0.17b | 2.57±0.03b | |
S | 2.83±0.16a | 3.00±0.10a | 2.75±0.04ab | 2.75±0.04a | 2.82±0.12a | ||
S+M | 3.14±0.06a | 2.85±0.10a | 2.92±0.08a | 2.80±0.03a | 2.94±0.08a | ||
M | 2.79±0.08a | 2.82±0.07a | 2.66±0.05b | 2.69±0.07a | 2.55±0.02b |
1 | Wang L C. Theory and practice of sustainable agricultural development. Beijing: Science Press, 2015: 273-275. |
王龙昌. 农业可持续发展理论与实践. 北京: 科学出版社, 2015: 273-275. | |
2 | Gao Y H, Qu X M, Liang Y T, et al. Study on organic carbon pool of topsoil in farmland in a typical area of southwestern Chongqing. Journal of Southwest University (Natural Science Edition), 2014, 36(5): 120-126. |
高岩红, 瞿雪梅, 梁颖涛, 等. 渝西南典型区农田表层土壤有机碳库研究. 西南大学学报(自然科学版), 2014, 36(5): 120-126. | |
3 | Du W P, Yan H M, Zhen L, et al. The experience and practice of desertification control in karst region of southwest China. Acta Ecologica Sinica, 2019, 39(16): 5798-5808. |
杜文鹏, 闫慧敏, 甄霖, 等. 西南岩溶地区石漠化综合治理研究. 生态学报, 2019, 39(16): 5798-5808. | |
4 | Choudhury B U, Nengzouzam G, Islam A. Runoff and soil erosion in the integrated farming systems based on micro-watersheds under projected climate change scenarios and adaptation strategies in the eastern Himalayan mountain ecosystem (India). Journal of Environmental Management, 2022, 309: 114667. |
5 | Kader M A, Senge M, Mojid M A, et al. Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research, 2017, 168: 155-166. |
6 | Dai Y S, Cheng X, Liu B Y, et al. Impacts of synergistic mulching of straw and milk vetch on soil nutrients, enzyme activities and wheat yield in upland of southwest China. Chinese Journal of Soil Science, 2021, 52(6): 1339-1347. |
戴伊莎, 成欣, 刘帮艳, 等. 秸秆和紫云英协同覆盖对西南旱地土壤养分, 酶活性及小麦产量的影响. 土壤通报, 2021, 52(6): 1339-1347. | |
7 | Zhang Z S, Cao C G, Guo L J, et al. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields. The Scientific World Journal, 2014(1): 198231. |
8 | Sarkar S, Skalicky M, Hossain A, et al. Management of crop residues for improving input use efficiency and agricultural sustainability. Sustainability, 2020, 12(23): 9808. |
9 | Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3(6): 540-550. |
10 | Sterner R W, Elser J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton: Princeton University Press, 2003. |
11 | Zeng D P, Jiang L L, Zeng C S, et al. Reviews on the ecological stoichiometry characteristics and its applications. Acta Ecologica Sinica, 2013, 33(18): 5484-5492. |
曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展. 生态学报, 2013, 33(18): 5484-5492. | |
12 | Bao S D. Soil and agricultural chemistry analysis (Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
13 | Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17(6): 837-842. |
14 | Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
15 | Wu J S, Xiao H A, Chen G Q, et al. Measurement of microbial biomass-P in upland soils in China. Acta Pedologica Sinica, 2003, 40(1): 70-78. |
吴金水, 肖和艾, 陈桂秋, 等. 旱地土壤微生物磷测定方法研究. 土壤学报, 2003, 40(1): 70-78. | |
16 | Lu R K. Soil agrochemical analysis methods. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
17 | Makino W, Cotner J B, Sterner R W, et al. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C∶N∶P stoichiometry. Functional Ecology, 2003, 17(1): 121-130. |
18 | Persson J, Fink P, Goto A, et al. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 2010, 119(5): 741-751. |
19 | Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 2010, 98: 139-151. |
20 | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85(3): 235-252. |
21 | Pan L D, Li R, Zhang Y S, et al. Effects of straw mulching on soil ecological stoichiometry characteristics and yield on sloping farmland in karst area, Southwestern China. Acta Ecologica Sinica, 2022, 42(11): 4428-4438. |
盘礼东, 李瑞, 张玉珊, 等. 西南喀斯特区坡耕地秸秆覆盖对土壤生态化学计量特征及产量的影响. 生态学报, 2022, 42(11): 4428-4438. | |
22 | Wang K K, Ren T, Yan J Y, et al. Straw returning mediates soil microbial biomass carbon and phosphorus turnover to enhance soil phosphorus availability in a rice-oilseed rape rotation with different soil phosphorus levels. Agriculture, Ecosystems & Environment, 2022, 335: 107991. |
23 | Guenet B, Neill C, Bardoux G, et al. Is there a linear relationship between priming effect intensity and the amount of organic matter input? Applied Soil Ecology, 2010, 46(3): 436-442. |
24 | Yang G, Li Z G, Shi B D. Spatial and temporal evolution characteristics of soil available phosphorus and soil microbial biomass phosphorus in the burned area of Larix gmelinii. Acta Ecologica Sinica, 2023, 43(12): 5027-5037. |
杨光, 李兆国, 石炳东. 兴安落叶松林火烧迹地土壤有效磷与土壤微生物生物量磷时空演变特征. 生态学报, 2023, 43(12): 5027-5037. | |
25 | Liu X H, Gao X M, Yu M, et al. Effects of straw returning amount on soil phosphorus leaching and corn yield in dryland of northeast China. Journal of Agricultural Science and Technology, 2022, 24(10): 154-160. |
刘晓辉, 高晓梅, 于淼, 等. 秸秆还田量对东北旱地土壤磷素淋溶及玉米产量的影响. 中国农业科技导报, 2022, 24(10): 154-160. | |
26 | Bui E N, Henderson B L. C∶N∶P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 2013, 373: 553-568. |
27 | Wu P N, Wang Y L, Hou X Q, et al. Effects of straw returning with nitrogen fertilizer on maize yield and soil physical properties under drip-irrigation in Yanghuang irrigation area in Ningxia. Soils, 2020, 52(3): 470-475. |
吴鹏年, 王艳丽, 侯贤清, 等. 秸秆还田配施氮肥对宁夏扬黄灌区滴灌玉米产量及土壤物理性状的影响. 土壤, 2020, 52(3): 470-475. | |
28 | Xu W X, Li J Q, Meng L, et al. Effects of kudzu mulching on physical and chemical properties and enzyme activities of surface soil in young rubber plantation. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1740-1748. |
徐文娴, 李金秋, 孟磊, 等. 葛藤覆盖对幼龄橡胶园表层土壤理化性状和酶活性的影响. 植物营养与肥料学报, 2020, 26(9): 1740-1748. | |
29 | Janssen B H. Nitrogen mineralization in relation to C∶N ratio and decomposability of organic materials. Plant and Soil, 1996, 181: 39-45. |
30 | Zheng S M, Xia Y H, Hu Y J, et al. Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale. Soil and Tillage Research, 2021, 209: 104903. |
31 | Wu J. Study on soil ecological stoichiometry under different soil management practices in dry farmland of the Loess Plateau of central Gansu Province. Lanzhou: Gansu Agricultural University, 2018. |
武均. 不同管理措施下陇中黄土高原旱作农田土壤生态化学计量学特征研究. 兰州: 甘肃农业大学, 2018. | |
32 | Prommer J, Walker T W N, Wanek W, et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology, 2020, 26(2): 669-681. |
33 | Peng S X, Chen D P, Wang J W, et al. Progress in phosphorus biogeochemical cycle under global changes. Environmental Ecology, 2020, 2(12): 1-7, 22. |
彭淑娴, 陈登鹏, 王嘉伟, 等. 全球变化背景下磷生物地球化学循环研究进展. 环境生态学, 2020, 2(12): 1-7, 22. | |
34 | Malik A A, Martiny J B H, Brodie E L, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 2020, 14(1): 1-9. |
35 | Yang Y, Liu H, Yang X, et al. Plant and soil elemental C∶N∶P ratios are linked to soil microbial diversity during grassland restoration on the Loess Plateau, China. Science of the Total Environment, 2022, 806(1): 150557. |
36 | Peng Y M, Wu J, Cai L Q, et al. Effects of no-tillage and straw mulching on carbon, nitrogen, and phosphorus ecological stoichiometry in spring wheat and soil. Chinese Journal of Ecology, 2021, 40(4): 1062-1072. |
彭亚敏, 武均, 蔡立群, 等. 免耕及秸秆覆盖对春小麦-土壤碳氮磷生态化学计量特征的影响. 生态学杂志, 2021, 40(4): 1062-1072. | |
37 | Tang Z Y, Xu W T, Zhou G Y, et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proceedings of the National Academy of Sciences, 2018, 115(16): 4033-4038. |
38 | Lambers H, Raven J A, Shaver G R, et al. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 2008, 23(2): 95-103. |
39 | Lin S Y, Zeng Y, Yang W W, et al. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil. Chinese Journal of Plant Ecology, 2023, 47(4): 530-545. |
林少颖, 曾瑜, 杨文文, 等. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响. 植物生态学报, 2023, 47(4): 530-545. | |
40 | Güsewell S. N∶P ratios in terrestrial plants: variation and functional significance. New Phytologist, 2004, 164(2): 243-266. |
41 | Koerselman W, Meuleman A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33(6): 1441-1450. |
42 | Yu Y F, He T G, Zeng C C, et al. Carbon, nitrogen and phosphorus stoichiometry in plants, litter, soil, and microbes in degraded vegetation communities in a karst area of southwest China. Acta Ecologica Sinica, 2022, 42(3): 935-946. |
俞月凤, 何铁光, 曾成城, 等. 喀斯特区不同退化程度植被群落植物-凋落物-土壤-微生物生态化学计量特征. 生态学报, 2022, 42(3): 935-946. | |
43 | Wang C Y, Yang C, Song C G, et al. Root-soil ecological stoichiometric characteristics of alpine grassland in the source area of Three Rivers. Grassland and Turf, 2022, 42(5): 8-20. |
王春燕, 杨冲, 宋成刚, 等. 三江源区高寒草地根系-土壤C、N、P生态化学计量特征. 草原与草坪, 2022, 42(5): 8-20. | |
44 | Li S J, Sheng M J, Li G, et al. Variations in eco-enzymatic stoichiometric characteristics of fluvo-aquic soil with different use intensities in the north China plain. Journal of Agro-Environment Science, 2022, 41(12): 2733-2741. |
李胜君, 盛美君, 李刚, 等. 华北不同利用强度潮土酶生态化学计量特征比较. 农业环境科学学报, 2022, 41(12): 2733-2741. |
[1] | Ming-ming GU, Xing-hui JIANG, Zhi-yi MA, Shui-ling QIU, Hao-yu LIU, Ming-rui ZHANG, Jia-ning LU, Yu-jun QIU, Ben-zhi WANG, Qian-fu GAN. Degradation characteristics of sweet potato and taro in the rumen of Mindong goats and changes in microbial community attached to the surface [J]. Acta Prataculturae Sinica, 2024, 33(9): 169-184. |
[2] | Si-yuan LI, Zong-jiu SUN, Bing-jie YU, Chen-ye ZHOU, Lei ZHOU, Li ZHENG, Hui-xia LIU, Hua-wei YE. Effect of grazing exclusion on soil carbon, nitrogen, and phosphorus contents and enzyme activity and stoichiometry in Seriphidium transiliense desertgrasslands [J]. Acta Prataculturae Sinica, 2024, 33(7): 25-40. |
[3] | Si-yuan LI, Yu-xuan CUI, Zong-jiu SUN, Hui-xia LIU, Hua-wei YE. Effect of grazing exclusion on soil organic carbon and stoichiometry characteristics of soil microbial biomass in sagebrush desert [J]. Acta Prataculturae Sinica, 2023, 32(6): 58-70. |
[4] | Shuai-nan LIU, Guang LI, Jiang-qi WU, Wei-wei MA, Chuan-jie YANG, Shi-kang ZHANG, Yao YAO, Yan-hua LU, Xing-xing WEI, Juan ZHANG. Characteristics of soil nutrients under different land types in the loess hill region based on ecological chemometrics [J]. Acta Prataculturae Sinica, 2021, 30(3): 200-207. |
[5] | LI Ming, QIN Jie, HONG Yu, YANG Dian-lin, ZHOU Guang-fan, WANG Yu, WANG Li-juan. Effects of nitrogen addition on ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in Stipa baicalensis grassland soil aggregates [J]. Acta Prataculturae Sinica, 2019, 28(12): 29-40. |
[6] | WANG He-zheng, HUANG Ming, ZHANG Jun, MA Chao, WU Jin-zhi, LI You-jun, CHEN Ming-can, FU Guo-zhan. Effects of different quantities of straw mulch on oxidation resistance of dryland wheat at the grain-filling stage [J]. Acta Prataculturae Sinica, 2019, 28(11): 96-104. |
[7] | DONG Xue, HAO Yu-guang, XIN Zhi-ming, LI Xin-le, DUAN Rui-bing, LIU Fang, ZHAO Ying-ming, HUANG Ya-ru. Effects of time after rejuvenation pruning and stand age on leaf functional traits of Ammopiptanthus mongolicus and stoichiometric characteristics of rhizosphere soil [J]. Acta Prataculturae Sinica, 2019, 28(10): 122-133. |
[8] | HUANG Ming, WU Jin-zhi, LI You-jun, WANG He-zheng, FU Guo-zhan, CHEN Ming-can, LI Xue-lai, MA Jun-li. Effects of tillage method and straw mulching on grain yield and protein content in wheat and soil nitrate residue under a winter wheat and summer soybean crop rotation in drylands [J]. Acta Prataculturae Sinica, 2018, 27(9): 34-44. |
[9] | ZHANG Sai, WANG Long-Chang, DU Juan, ZHAO Lin-Lu, CHEN Jiao, SHI Chao, HUANG Zhao-Cun, XIONG Ying, JIA Hui-Juan. Effects of different crops and straw mulching on soil aggregate and carbon sequestration potential in the dryland, triple cropping systems of Southwest China [J]. Acta Prataculturae Sinica, 2016, 25(1): 98-107. |
[10] | WANG Hong-ze,WANG Zhi-sheng,KANG Kun,ZOU Hua-wei,SHEN Jun-hua,HU Rui. Effects of corn flour and lactic acid bacteria on quality of mixed silage made from sweet potato vines, distiller’s grains and rice straw [J]. Acta Prataculturae Sinica, 2014, 23(6): 103-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||