[1] Copley J. Ecology goes underground[J]. Nature, 2000, 406: 452-454. [2] Chapin F S, Walker B H, Hobbs R J, et al. Biotic control over the functioning of ecosystems[J]. Science, 1997, 277: 500-504. [3] Sutherland W J, Armstrong-Brown S, Armsworth P R, et al. The identification of 100 ecological questions of high policy relevance in the UK[J]. Journal of Applied Ecology, 2006, 43: 617-627. [4] 王少昆, 赵学勇, 赵哈林, 等. 不同强度放牧后沙质草场土壤微生物的分布特征[J]. 干旱区资源与环境, 2008, 22(12): 164-167. [5] 李春莉, 赵萌莉, 韩国栋, 等. 放牧对短花针茅草原土壤微生物和土壤养分的影响及其季节动态[J]. 干旱区资源与环境, 2009, 23(4): 184-189. [6] 宁远英, 徐杰, 张功. 科尔沁沙地放牧干扰恢复过程中植被组成和生物结皮微生物数量的变化[J]. 内蒙古大学学报(自然科学版), 2009, 40(6): 670-675. [7] 高雪峰, 武春燕, 韩国栋. 放牧对典型草原土壤中几种生态因子影响的研究[J]. 干旱区资源与环境, 2010, 24(4): 130-133. [8] 顾爱星, 范燕敏, 武红旗, 等. 天山北坡退化草地土壤环境与微生物数量的关系[J]. 草业学报, 2010, 19(2): 116-123. [9] 李东, 黄耀, 吴琴, 等. 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究[J]. 草业学报, 2010, 19(2): 160-168. [10] 赵有翼, 蔡立群, 王静, 等. 不同保护性耕作措施对三种土壤微生物氮素类群数量及其分布的影响[J]. 草业学报, 2009, 18(4): 125-130. [11] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews, 1995, 59: 143-169. [12] 钟文辉, 蔡祖聪. 土壤微生物多样性研究方法[J]. 应用生态学报, 2004, 15(5): 899-904. [13] 颜慧, 蔡祖聪, 钟文辉. 磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J]. 土壤学报, 2006, 43(5): 851-859. [14] Zelles L, Bai Q Y, Beck T, et al. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils[J]. Soil Biology and Biochemistry, 1992, 24(4): 317-323. [15] Bth E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities[J]. Microbial Ecology, 2003, 45(4): 373-383. [16] Priha O, Grayston S J, Pennanen T, et al. Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic andmineral soil[J]. FEMS Microbiology Ecology, 1999, 30(2): 187-199. [17] Frotegard , Bth E, Tunlid A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipids fatty acid analysis[J]. Soil Biology and Biochemistry, 1993, 25(6): 723-732. [18] Bai Q, Gattinger A, Zelles L. Characterization of microbial consortia in paddy rice soil by phospholipid acid analysis[J]. Microbial Ecology, 2000, 9(4): 273-281. [19] 白震, 何红波, 张威, 等. 磷脂脂肪酸技术及其在土壤微生物研究中的应用[J]. 生态学报, 2006, 26(7): 2387-2394. [20] 高伟, 鲍雅静, 李政海, 等. 不同保护和利用方式下羊草草原群落生物量及能量功能群构成的比较[J]. 干旱区资源与环境, 2010, 24(6): 132-136. [21] 李季春. 内蒙古羊草草原主要建群草种的光合参数[J]. 中国农学通报, 2010, 26(1): 227-230. [22] 林启美, 吴玉光, 刘焕龙. 熏蒸法测定土壤微生物量碳的改进[J]. 生态学杂志, 1999, 18(2): 63-66. [23] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass[J]. Soil Biology and Biochemistry, 1987, 19: 703-707. [24] O′Leary W M, Wilkinson S G. Gram-positive bacteria[A]. Microbial Lipids[M]. London: Academic Press, 1988: 117-202. [25] Vestal J R, White D C. Lipid analysis in microbial ecology: Quantitative approaches to the study of microbial communities[J]. BioScience, 1989, 39: 535-541. [26] Bossio D A, Scow K M. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns[J]. Microbial Ecology, 1998, 35: 265-278. [27] 王启兰, 王长庭, 杜岩功, 等. 放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土壤环境的关系[J]. 草业学报, 2008, 17(2): 39-46. [28] 谷雪景, 赵吉, 王娟. 内蒙古典型草原土壤微生物生物量研究[J]. 农业环境科学学报, 2007, 26(4): 1444-1448. [29] Zornoza R, Guerrero C, Mataix-Solera J, et al. Changes in soil microbial community structure following the abandonment of agricultural terraces in mountainous areas of Eastern Spain[J]. Applied Soil Ecology, 2009, 42: 315-323. [30] Thornton B, Millard P. Effects of severity of defoliation on root functioning in grass[J]. Journal of Range Manage, 1996, 49: 443-447. [31] Feng Y, Motta A C, Reeves D W, et al. Soil microbial communities under conventional-till and no till continuous cotton systems[J]. Soil Biology and Biochemistry, 2003, 35: 1693-1703. [32] Bünemann E K, Bossio D A, Smithson P C, et al. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization[J]. Soil Biology and Biochemistry, 2004, 36: 889-901. [33] Hackl E, Pfeffer M, Donat C, et al. Composition of the microbial communities in the mineral soil under different types of natural forest[J]. Soil Biology and Biochemistry, 2005, 37: 661-671. [34] Allison V J, Miller R M, Jastrow J D, et al. Changes in soil microbial community structure in a tall grass prairie chronosequence[J]. Soil Science Society of American Journal, 2005, 69: 1412-1421. [35] Liu B R, Jia G M, Chen J, et al. A review of methods for studying microbial diversity in soils[J]. Pedosphere, 2006, 16(1): 18-24. [36] Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisaton of microbial communities in soil: A review[J]. Biology and Fertility of Soils, 1999, 29(2): 111-129. [37] Frostegard A, Baath E, Tunlid A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis[J]. Soil Biology and Biochemistry, 1993, 25: 723-730. [38] Federle T W. Microbial distribution in the soil-new techniques[A]. In: Megusar F, Gantar M. Perspectives in Microbial Ecology[M]. Ljubljana, Yugoslavia: Slovene Society for Microbiology, 1986: 493-498. [39] Van der Wal A, van Veen J A, Smant W, et al. Fungal biomass development in a chronosequence of land abandonment[J]. Soil Biology and Biochemistry, 2006, 38: 51-60. |