Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2012, Vol. 21 ›› Issue (5): 134-143.

Previous Articles     Next Articles

Genetic analysis of morphological characters of zoysiagrass

GUO Hai-lin, CHEN Xuan, XUE Dan-dan, LIU Jian-xiu   

  1. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
  • Received:2011-08-26 Online:2012-05-25 Published:2012-10-20

Abstract: The heredity of morphological characters, including density, turf height, leaf length, leaf width, leaf length/width, internode length, internode diameter, and internode length/diameter, in two F1 populations of J36×Z039 and Z039×J36 was analyzed by major gene and polygene mixed genetic models to reveal the genetic mechanisms of these characters of zoysiagrass. The range of variation for each character in reciprocal progenies was far beyond that of their parents. The widest variation was in density, followed by internode length/diameter, internode length, leaf length/width, turf height, internode diameter, leaf length, and leaf width. Significant differences were observed between two reciprocal crosses for turf height, leaf length, leaf width, leaf length/width, internode diameter and internode length/diameter, which suggested that there could be maternal genetic phenomenon for these characters in zoysiagrass. However, no significant differences were found between two reciprocal crosses for density and internode length. The density from the reciprocal cross J36 ×Z039 was controlled by two additive-dominance-epistasis major genes model (B-1), and the heritability of major genes of positive and negative crosses were 93.67% and 63.22%, respectively. A no major gene model (A-0) was the most suitable model for turf height, leaf length, leaf width, leaf length/width, internode length of reciprocal crosses, internode diameter of negative crosses and internode length/diameter of positive crosses. Internode diameter of positive crosses and internode length/diameter of negative crosses of J36 ×Z039 were controlled by one major gene model.

CLC Number: