[1] Flowers T J. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55: 307-319. [2] 王遵亲, 祝寿泉, 俞仁培. 中国盐渍土[M]. 北京: 科学出版社, 1993. [3] 赵可夫, 李法曾. 中国盐生植物[M]. 北京: 科学出版社, 1999. [4] Munns R. Comparative physiology of salt and water stress[J]. Plant Cell and Environment, 2002, 25: 239-250. [5] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. [6] Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plant[J]. Plant and Soil, 2010, 326: 45-60. [7] 康建军, 王锁民, 赵明, 等. 苗期施用钠复合肥增强梭梭抗逆性的初步研究[J]. 草业学报, 2011, 20(2): 127-133. [8] 马清, 楼洁琼, 王锁民. Na+对渗透胁迫下霸王幼苗光合特性的影响[J]. 草业学报, 2010, 19(3): 198-203. [9] Horie T, Schroeder J I. Sodium transporters in plants. Diverse genes and physiological functions[J]. Plant Physiology, 2004, 136: 2457-2462. [10] 王毅, 武维华. 植物钾营养高效分子遗传机制[J]. 植物学报, 2009, 44(1): 27-36. [11] Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics, 2005, 37(10): 1141-1146. [12] Byrt C S, Platten J D, Spielmeyer W, et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1[J]. Plant Physiology, 2007, 143: 1918-1928. [13] Plett D C, Mller I S. Na+ transport in glycophytic plants: what we know and would like to know[J]. Plant Cell and Environment, 2010, 33(4): 612-626. [14] Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress[J]. Plant Cell and Environment, 2010, 33(4): 552-565. [15] Liu W, Schachtman D P, Zhang W. Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance[J]. Journal of Biological Chemistry, 2000, 275(36): 27924-27932. [16] Schachtman D P, Schroeder J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants[J]. Nature, 1994, 370: 655-658. [17] Uozumi N, Kim E J, Rubio F, et al. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae[J]. Plant Physiology, 2000, 122(4): 1249-1260. [18] Horie T, Yoshida K, Nakayama H, et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa[J]. Plant Journal, 2001, 27(2): 129-138. [19] Wang T B, Gassmann W, Rubio F, et al. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium[J]. Plant Physiology, 1998, 118: 651-659. [20] 李剑, 赵常玉, 吴永娜, 等. 小花碱茅HKT1;4基因片段的克隆与序列分析[J]. 草业科学, 2011, 28(6): 969-973. [21] Berthomieu P, Conéjéro G, Nublat A, et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance[J]. EMBO Journal, 2003, 22(9): 2004-2014. [22] 张宏飞, 王锁民. 高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展[J]. 植物学通报, 2007, 24(5): 561-571. [23] Horie T, Costa A, Kim T H, et al. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth[J]. EMBO Journal, 2007, 26: 3003-3014. [24] Wu Y, Hu Y, Xu G. Interactive effects of potassium and sodium on root growth and expression of K/Na transporter genes in rice[J]. Plant Growth Regulation, 2009, 57(3): 271-280. [25] Haro R, Bauelos M A, Rodríguez-Navarro A. High-affinity sodium uptake in land plants[J]. Plant and Cell Physiology, 2010, 51(1): 68-79. [26] 任伟, 王志峰, 徐安凯. 碱茅耐盐碱基因克隆研究进展[J]. 草业学报, 2010, 19(5): 260-266. [27] 王锁民. 不同程度盐胁迫对碱茅离子吸收与分配的影响[J]. 草地学报, 1996, 4(3): 186-193. [28] 石德成, 殷立娟. 盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J]. 植物学报, 1993, 34(5): 144-149. [29] Wang S M, Zhao G Q, Gao Y S, et al. Puccinellia tenuiflora exhibits stronger selectivity for K+ over Na+ than wheat[J]. Journal of Plant Nutrition, 2004, 27: 1841-1857. [30] Wang C M, Zhang J L, Liu X S, et al. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+[J]. Plant Cell and Environment, 2009, 32: 486-496. [31] Durell S R, Hao Y, Nakamura T, et al. Evolutionary relationship between K+ channels and symporters[J]. Biophysical Journal, 1999, 77(2): 775-788. [32] Kato Y, Sakaguchi M, Mori Y, et al. Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters[J]. Proceedings of the National Academy of Sciences USA, 2001, 98(11): 6488-6493. [33] 邵群, 丁同楼, 韩宁, 等. 高亲和K+转运蛋白(HKT)与植物抗盐性[J]. 植物生理学通讯, 2006, 42(2): 175-181. [34] Sunarpi, Horie T, Motoda J, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells[J]. Plant Journal, 2005, 44(6):928-938. [35] Haro R, Bauelos M A, Senn M E, et al. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast[J]. Plant Physiology, 2005, 139: 1495-1506. [36] Gassmann W, Rubio F, Schroeder J I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1[J]. Plant Journal, 1996, 10(5): 869-882. [37] Laurie S, Feeney K A, Maathuis F J, et al. A role for HKT1 in sodium uptake by wheat roots[J]. Plant Journal, 2002, 32(2): 139-149. [38] Garciadeblás B, Senn M E, Bauelos M A, et al. Sodium transport and HKT transporters: the rice model[J]. Plant Journal, 2003, 34(6): 788-801. [39] Golldack D, Su H, Quigley F, et al. Characterization of a HKT-type transporter in rice as a general alkali cation transporter[J]. Plant Journal, 2002, 31(4): 529-542. [40] Jabnoune M, Espeout S, Mieulet D, et al. Diversity in expression patterns and functional properties in the rice HKT transporter family[J]. Plant Physiology, 2009, 150: 1955-1971. [41] Mser P, Hosoo Y, Goshima S, et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants[J]. Proceedings of the National Academy of Sciences USA, 2002, 99(9): 6428-6433. |