Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (6): 293-303.DOI: 10.11686/cyxb20140635
• Orginal Article • Previous Articles Next Articles
XU Li-ming1,ZHANG Zhen-bao2,LIANG Xiao-ling1,LU wen1,ZHANG Chen-lu1,HUANG Feng-zhu1,WANG lei1,ZHANG Su-zhi1
Received:
2013-11-11
Online:
2014-12-20
Published:
2014-12-20
CLC Number:
XU Li-ming,ZHANG Zhen-bao,LIANG Xiao-ling,LU wen,ZHANG Chen-lu,HUANG Feng-zhu,WANG lei,ZHANG Su-zhi. Advances in genetic engineering for drought tolerance in plants[J]. Acta Prataculturae Sinica, 2014, 23(6): 293-303.
Reference:[1]Boyer J S. Plant productivity and environment[J]. Science, 1982, 218: 443-448.[2]Ramachandra Reddy A, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161: 1189-1202.[3]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses[J]. Current Opinion In Plant Biology, 2003, 6: 410-417.[4]Umezawa T, Fujita M, Fujitam Y, et al. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future[J]. Current Opinion in Biotechnology, 2006, 17: 113-122.[5]Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current Opinion in Biotechnology, 2005, 16: 123-132.[6]Shou H, Bordallo P, Wang K. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize[J]. Journal of Experimental Botany, 2004, 55: 1013-1019.[7]Cutler S, Ghassemian M, Bonetta D, et al. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis[J]. Science, 1996, 273: 1239-1241.[8]Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2004, 279: 41758-41766.[9]Umezawa T, Yoshida R, Maruyama K, et al. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 17306-17311.[10]Cheong Y H, Kim K N, Pandey G K, et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis[J/OL]. The Plant Cell Online, 2003, 15: 1833-1845.[11]Posas F, Saito H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK[J]. Science,1997, 276: 1702-1705.[12]Bartels D, Sunkar R. Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences, 2005, 24: 23-58.[13]Finkelstein R R, Gampala S S, Rock C D. Abscisic acid signaling in seeds and seedlings[J]. Plant Cell, 2002, 14(Suppl): 15-45.[14]Fujita Y, Fujita M, Satoh R, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J/OL]. The Plant Cell Online, 2005, 17: 3470-3488.[15]Ding Z, Li S, An X, et al. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana[J]. Journal of Genetics and Genomics, 2009, 36: 17-29.[16]Cominelli E, Galbiati M, Vavasseur A, et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance[J]. Current Biology, 2005, 15: 1196-1200.[17]Oh S J, Kim Y S, Kwon C W, et al. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions[J]. Plant Physiology, 2009, 150: 1368-1379.[18]Wang Z, Liu J X. Advances in studies on DREB/CBF transcription factors,and their applications in genetic engineering for stress tolerance of turf and forage grasses[J]. Acta Prataculturae Sinica, 2011, 20(1): 222-236.[19]Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J/OL]. The Plant Cell Online, 1998, 10: 1391-1406.[20]Bhatnagar-Mathur P, Devi M J, Vadez V, et al. Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress[J]. Journal of Plant Physiology, 2009, 166: 1207-1217.[21]Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. The Plant Journal, 2003, 33: 751-763.[22]Tran L S P, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J/OL]. The Plant Cell Online, 2004, 16: 2481-2498.[23]Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences, 2006, 103: 12987-12992.[24]Sakamoto H, Maruyama K, Sakuma Y, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions[J]. Plant Physiology, 2004, 136: 2734-2746.[25]Kim S, Hong J, Lee S, et al. CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum[J]. Plant Molecular Biology, 2004, 55: 883-904.[26]Ashraf M. Inducing drought tolerance in plants: recent advances[J]. Biotechnology Advances, 2010, 28: 169-183.[27]Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59: 206-216.[28]Shen Y G, Du B X, Zhang W K, et al. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco[J]. Theoretical and Applied Genetics, 2002, 105: 815-821.[29]De Ronde J A, Cress W A, Krüger G H J, et al. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress[J]. Journal of Plant Physiology, 2004, 161: 1211-1224.[30]Gubi J, Vaňková R, ervená V, et al. Transformed tobacco plants with increased tolerance to drought[J]. South African Journal of Botany, 2007, 73: 505-511.[31]Yamada M, Morishita H, Urano K, et al. Effects of free proline accumulation in petunias under drought stress[J]. Journal of Experimental Botany, 2005, 56: 1975-1981.[32]Romero C, Bellés J M, Vayá J L, et al. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance[J]. Planta, 1997, 201: 293-297.[33]Miranda J, Avonce N, Suárez R, et al. A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis[J]. Planta, 2007, 226: 1411-1421.[34]Karim S, Aronsson H, Ericson H, et al. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose[J]. Plant Molecular Biology, 2007, 64: 371-386.[35]Jang I C, Oh S J, Seo J S, et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth[J]. Plant Physiology, 2003, 131: 516-524.[36]Wu R, Garg A. Engineering rice plants with trehalose-producing genes improves tolerance to drought, salt, and low temperature[R]. ISB News Report, 2003.[37]Abebe T, Guenzi A C, Martin B, et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity[J]. Plant Physiology, 2003, 131: 1748-1755.[38]Karakas B, Ozias-Akins P, Stushnoff C, et al. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco[J]. Plant, Cell & Environment, 1997, 20: 609-616.[39]Wojtaszek P. Oxidative burst: an early plant response to pathogen infection[J]. Biochemical Journal, 1997, 322: 681-692.[40]Jia X J, Dong L H, Ding C B et al. Effects of drought stress on reactive oxygen species and their scavenging systems in Chlorophytum capense var.medio-pictum leaf[J]. Acta Prataculturae Sinica, 2013, 22(5): 248-255.[41]Wang F Z, Wang Q B, Kwon S Y, et al. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase[J]. Journal of Plant Physiology, 2005, 162: 465-472.[42]Mittler R, Zilinskas B A. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought[J]. The Plant Journal, 1994, 5: 397-405.[43]Lee S H, Ahsan N, Lee K W, et al. Simultaneous overexpression of both Cu/Zn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses[J]. Journal of Plant Physiology, 2007, 164: 1626-1638.[44]Luna C M, Pastori G M, Driscoll S, et al. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat[J]. Journal of Experimental Botany, 2005, 56: 417-423.[45]Shikanai T, Takeda T, Yamauchi H, et al. Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts[J]. FEBS Letters, 1998, 428: 47-51.[46]Rizhsky L, Hallak-Herr E, Van Breusegem F, et al. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase[J]. The Plant Journal, 2002, 32: 329-342.[47]Munne-Bosch S. The role of α-tocopherol in plant stress tolerance[J]. Journal of Plant Physiology, 2005, 162: 743-748.[48]Yu L, Liu Y H, Zhou L P et al. A study on the changes of ascorbic acid and related physiological indexes in different cultivars of Zoysia under drought stress[J]. Acta Prataculturae Sinica, 2013, 22(4): 106-115.[49]Akashi K, Miyake C, Yokota A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger[J]. FEBS Letters, 2001, 508: 438-442.[50]Kusvuran S, Dasgan H Y, Abak K. Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon[J]. The Scientific World Journal, 2013, 8: 11-55.[51]Groppa M D, Benavides M P. Polyamines and abiotic stress: recent advances[J]. Amino Acids, 2008, 34: 35-45.[52]Liu Y,Zhang C M, Xie X R et al. Effect of drought stress on polyamine metabolism in the leaves and roots of alfalfa[J]. Acta Prataculturae Sinica, 2012, 21(6): 102-107.[53]Alcázar R, Altabella T, Marco F, et al. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance[J]. Planta, 2010, 231: 1237-1249.[54]Alcázar R, Marco F, Cuevas J C, et al. Involvement of polyamines in plant response to abiotic stress[J]. Biotechnology Letters, 2006, 28: 1867-1876.[55]Kasukabe Y, He L, Nada K, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana[J]. Plant and Cell Physiology, 2004, 45: 712-722.[56]Urano K, Yoshiba Y, Nanjo T, et al. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance[J]. Biochemical and Biophysical Research Communications, 2004, 313: 369-375.[57]Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations[J]. Genes & Development, 2006, 20: 759-771.[58]Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16: 2001-2019.[59]Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14: 787-799.[60]Arenas-Huertero C, Perez B, Rabanal F, et al. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress[J]. Plant Molecular Biology Reporter, 2009, 70: 385-401.[61]Liu H H, Tian X, Li Y J, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14: 836-843.[62]Lu S, Sun Y H, Chiang V L. Stress-responsive microRNAs in Populus[J]. Plant Journal, 2008, 55: 131-151.[63]Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters[J]. Trends in Plant Science, 2005, 10: 88-94.[64]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218: 1-14.[65]Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L[J]. Plant and Cell Physiology, 2004, 45: 1042-1052.[66]Novillo F, Alonso J M, Ecker J R, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 3985-3990.[67]Pellegrineschi A, Reynolds M, Pacheco M, et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions[J]. Genome, 2004, 47: 493-500.[68]Oh S J, Song S I, Kim Y S, et al.Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth[J]. Plant Physiology, 2005, 138: 341-351.[69]Aharoni A, Dixit S, Jetter R, et al. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis[J/OL]. The Plant Cell Online, 2004, 16: 2463-2480.[70]Zhang J Y, Broeckling C D, Blancaflor E B, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa)[J]. The Plant Journal, 2005, 42: 689-707.[71]Guo Q, Zhang J, Gao Q, et al. Drought tolerance through overexpression of monoubiquitin in transgenic tobacco[J]. Journal of Plant Physiology, 2008, 165: 1745-1755.[72]Quan R, Shang M, Zhang H, et al. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize[J]. Plant Biotechnology Journal, 2004, 2: 477-486.[73]Vendruscolo E C G, Schuster I, Pileggi M, et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat[J]. Journal of Plant Physiology, 2007, 164: 1367-1376.参考文献:[1]Boyer J S. Plant productivity and environment[J]. Science, 1982, 218: 443-448.[2]Ramachandra Reddy A, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161: 1189-1202.[3]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses[J]. Current Opinion In Plant Biology, 2003, 6: 410-417.[4]Umezawa T, Fujita M, Fujitam Y,et al. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future[J]. Current Opinion in Biotechnology, 2006, 17: 113-122.[5]Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current Opinion in Biotechnology, 2005, 16: 123-132.[6]Shou H, Bordallo P, Wang K. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize[J]. Journal of Experimental Botany, 2004, 55: 1013-1019.[7]Cutler S, Ghassemian M, Bonetta D,et al. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis[J]. Science, 1996, 273: 1239-1241.[8]Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2004, 279: 41758-41766.[9]Umezawa T, Yoshida R, Maruyama K,et al. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 17306-17311.[10]Cheong Y H, Kim K N, Pandey G K,et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis[J/OL]. The Plant Cell Online, 2003, 15: 1833-1845.[11]Posas F, Saito H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK[J]. Science,1997, 276: 1702-1705.[12]Bartels D, Sunkar R. Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences, 2005, 24: 23-58.[13]Finkelstein R R, Gampala S S, Rock C D. Abscisic acid signaling in seeds and seedlings[J]. Plant Cell, 2002, 14(Suppl): 15-45.[14]Fujita Y, Fujita M, Satoh R,et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J/OL]. The Plant Cell Online, 2005, 17: 3470-3488.[15]Ding Z, Li S, An X,et al. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana[J]. Journal of Genetics and Genomics, 2009, 36: 17-29.[16]Cominelli E, Galbiati M, Vavasseur A,et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance[J]. Current Biology, 2005, 15: 1196-1200.[17]Oh S J, Kim Y S, Kwon C W,et al. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions[J]. Plant Physiology, 2009, 150: 1368-1379.[18]王舟, 刘建秀. DREB/CBF 类转录因子研究进展及其在草坪草和牧草抗逆基因工程中的应用[J]. 草业学报, 2011, 20(1): 222-236.[19]Liu Q, Kasuga M, Sakuma Y,et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J/OL]. The Plant Cell Online, 1998, 10: 1391-1406.[20]Bhatnagar-Mathur P, Devi M J, Vadez V,et al. Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress[J]. Journal of Plant Physiology, 2009, 166: 1207-1217.[21]Dubouzet J G, Sakuma Y, Ito Y,et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. The Plant Journal, 2003, 33: 751-763.[22]Tran L S P, Nakashima K, Sakuma Y,et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J/OL]. The Plant Cell Online, 2004, 16: 2481-2498.[23]Hu H, Dai M, Yao J,et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences, 2006, 103: 12987-12992.[24]Sakamoto H, Maruyama K, Sakuma Y,et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions[J]. Plant Physiology, 2004, 136: 2734-2746.[25]Kim S, Hong J, Lee S,et al. CAZFP1, Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum[J]. Plant Molecular Biology, 2004, 55: 883-904.[26]Ashraf M. Inducing drought tolerance in plants: recent advances[J]. Biotechnology Advances, 2010, 28: 169-183.[27]Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59: 206-216.[28]Shen Y G, Du B X, Zhang W K,et al. AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco[J]. Theoretical and Applied Genetics, 2002, 105: 815-821.[29]De Ronde J A, Cress W A, Krüger G H J,et al. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress[J]. Journal of Plant Physiology, 2004, 161: 1211-1224.[30]Gubi J, Vaňková R, ervená V,et al. Transformed tobacco plants with increased tolerance to drought[J]. South African Journal of Botany, 2007, 73: 505-511.[31]Yamada M, Morishita H, Urano K,et al. Effects of free proline accumulation in petunias under drought stress[J]. Journal of Experimental Botany, 2005, 56: 1975-1981.[32]Romero C, Bellés J M, Vayá J L,et al. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance[J]. Planta, 1997, 201: 293-297.[33]Miranda J, Avonce N, Suárez R,et al. A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis[J]. Planta, 2007, 226: 1411-1421.[34]Karim S, Aronsson H, Ericson H,et al. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose[J]. Plant Molecular Biology, 2007, 64: 371-386.[35]Jang I C, Oh S J, Seo J S,et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth[J]. Plant Physiology, 2003, 131: 516-524.[36]Wu R, Garg A. Engineering rice plants with trehalose-producing genes improves tolerance to drought, salt, and low temperature[R]. ISB News Report, 2003.[37]Abebe T, Guenzi A C, Martin B,et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity[J]. Plant Physiology, 2003, 131: 1748-1755.[38]Karakas B, Ozias-Akins P, Stushnoff C,et al. Salinity and drought tolerance of mannitol-accumulating transgenic tobacco[J]. Plant, Cell & Environment, 1997, 20: 609-616.[39]Wojtaszek P. Oxidative burst: an early plant response to pathogen infection[J]. Biochemical Journal, 1997, 322: 681-692.[40]贾学静, 董立花, 丁春邦, 等. 干旱胁迫对金心吊兰叶片活性氧及其清除系统的影响[J]. 草业学报, 2013, 22(5): 248-255.[41]Wang F Z, Wang Q B, Kwon S Y,et al. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase[J]. Journal of Plant Physiology, 2005, 162: 465-472.[42]Mittler R, Zilinskas B A. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought[J]. The Plant Journal, 1994, 5: 397-405.[43]Lee S H, Ahsan N, Lee K W,et al. Simultaneous overexpression of both Cu/Zn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses[J]. Journal of Plant Physiology, 2007, 164: 1626-1638.[44]Luna C M, Pastori G M, Driscoll S,et al. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat[J]. Journal of Experimental Botany, 2005, 56: 417-423.[45]Shikanai T, Takeda T, Yamauchi H,et al. Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts[J]. FEBS Letters, 1998, 428: 47-51.[46]Rizhsky L, Hallak-Herr E, Van Breusegem F,et al. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase[J]. The Plant Journal, 2002, 32: 329-342.[47]Munne-Bosch S. The role of α-tocopherol in plant stress tolerance[J]. Journal of Plant Physiology, 2005, 162: 743-748.[48]俞乐, 刘拥海, 周丽萍, 等. 干旱胁迫下结缕草叶片抗坏血酸与相关生理指标变化的品种差异研究[J]. 草业学报, 2013, 22(4): 106-115.[49]Akashi K, Miyake C, Yokota A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger[J]. FEBS Letters, 2001, 508: 438-442.[50]Kusvuran S, Dasgan H Y, Abak K. Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon[J]. The Scientific World Journal, 2013, 8: 11-55.[51]Groppa M D, Benavides M P. Polyamines and abiotic stress: recent advances[J]. Amino Acids, 2008, 34: 35-45.[52]刘义, 张春梅, 谢晓蓉, 等. 干旱胁迫对紫花苜蓿叶片和根系多胺代谢的影响[J]. 草业学报, 2012, 21(6): 102-107.[53]Alcázar R, Altabella T, Marco F,et al. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance[J]. Planta, 2010, 231: 1237-1249.[54]Alcázar R, Marco F, Cuevas J C,et al. Involvement of polyamines in plant response to abiotic stress[J]. Biotechnology Letters, 2006, 28: 1867-1876.[55]Kasukabe Y, He L, Nada K,et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana[J]. Plant and Cell Physiology, 2004, 45: 712-722.[56]Urano K, Yoshiba Y, Nanjo T,et al. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance[J]. Biochemical and Biophysical Research Communications, 2004, 313: 369-375.[57]Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations[J]. Genes & Development, 2006, 20: 759-771.[58]Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16: 2001-2019.[59]Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14: 787-799.[60]Arenas-Huertero C, Perez B, Rabanal F,et al. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress[J]. Plant Molecular Biology Reporter, 2009, 70: 385-401.[61]Liu H H, Tian X, Li Y J,et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14: 836-843.[62]Lu S, Sun Y H, Chiang V L. Stress-responsive microRNAs in Populus[J]. Plant Journal, 2008, 55: 131-151.[63]Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters[J]. Trends in Plant Science, 2005, 10: 88-94.[64]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218: 1-14.[65]Qin F, Sakuma Y, Li J,et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L[J]. Plant and Cell Physiology, 2004, 45: 1042-1052.[66]Novillo F, Alonso J M, Ecker J R,et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 3985-3990.[67]Pellegrineschi A, Reynolds M, Pacheco M,et al. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions[J]. Genome, 2004, 47: 493-500.[68]Oh S J, Song S I, Kim Y S,et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth[J]. Plant Physiology, 2005, 138: 341-351.[69]Aharoni A, Dixit S, Jetter R,et al. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis[J/OL]. The Plant Cell Online, 2004, 16: 2463-2480.[70]Zhang J Y, Broeckling C D, Blancaflor E B,et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa)[J]. The Plant Journal, 2005, 42: 689-707.[71]Guo Q, Zhang J, Gao Q,et al. Drought tolerance through overexpression of monoubiquitin in transgenic tobacco[J]. Journal of Plant Physiology, 2008, 165: 1745-1755.[72]Quan R, Shang M, Zhang H,et al. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize[J]. Plant Biotechnology Journal, 2004, 2: 477-486.[73]Vendruscolo E C G, Schuster I, Pileggi M,et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat[J]. Journal of Plant Physiology, 2007, 164: 1367-1376. |
[1] | SONG Hui,NAN Zhi-biao,CAI Xiao-ning,ZHONG Xiao-xian,GU Hong-ru. Clone and sequence analysis of 5’RACE of PvVP1 in Paspalum vaginatum [J]. Acta Prataculturae Sinica, 2014, 23(5): 168-174. |
[2] | WANG Jia,ZHENG Lin-lin,GU Tian-pei,WANG Xue-feng,WANG Ying-chun. Cloning and expression analysis of two WRKY transcription factors from the rare recretohalophyte Reaumuria trigyna [J]. Acta Prataculturae Sinica, 2014, 23(4): 122-129. |
[3] | CUI Tong-xia, BAI Jiang-ping, WEI Gui-ming, ZHAO Xu, WANG Di, ZHANG Jin-wen. Red light induced SGT3 gene expression and functional analysis of the SGT3 promoter in potato [J]. Acta Prataculturae Sinica, 2014, 23(2): 196-206. |
[4] | ZHOU Zi-hang, LI Zhen, JIAO Jian, LI Yi, LIN Fan. Analysis of clonal growth patterns and branching architecture of Nitraria tangutorum clonal ramet in the Southern margin area of the Tengger Desert [J]. Acta Prataculturae Sinica, 2014, 23(1): 12-21. |
[5] | WANG Li1,2,3, ZHANG Jun-lian, ZHANG Jin-wen, LIU Yu-hui, Bai Jiang-ping, YU Bin, YANG Hong-yu, WANG Di. Cloning and analysis of sequence characteristics of cDNA encoding the AtHKT1 gene from Arabidopsis thaliana leaves [J]. Acta Prataculturae Sinica, 2013, 22(6): 230-238. |
[6] | ZHENG Lin-lin, WANG Jia, HE Long-mei, WANG Xue-feng, WANG Ying-chun. Over-expression vector construction and genetic transformation of a protein kinase NtCIPK2 from Nitraria tangutorum [J]. Acta Prataculturae Sinica, 2013, 22(6): 223-229. |
[7] | HU Ke,YAN Xue-feng,LI Dan,TANG Xiao-mei,YANG Hong,WANG Yan,DENG Hong-yuan,MA Xin-rong. Genetic improvement of perennial ryegrass with low lignin content by silencing genes of CCR and CAD [J]. Acta Prataculturae Sinica, 2013, 22(5): 72-83. |
[8] | CUI Hang, LI Li-ying, XIE Xiao-lin, ZHU Hong-hui, YAO Qing. Differences in root architecture of several Stylosanthes genotypes and their phosphorus efficiency [J]. Acta Prataculturae Sinica, 2013, 22(5): 265-271. |
[9] | ZHENG Lin-lin, ZHANG Hui-rong, HE Long-mei, WANG Ying-chun. Isolation and expression analysis of a plasma membrane Na+/H+ antiporter from Nitraria tangutorum [J]. Acta Prataculturae Sinica, 2013, 22(4): 179-186. |
[10] | SUN Li-li, CHEN Zhi-jian, LIU Pan-dao, LIAO Hong, LIU Guo-dao, TIAN Jiang. Cloning and analysis of the phosphate transporter protein SgPT1 from Stylosanthes [J]. Acta Prataculturae Sinica, 2013, 22(4): 187-198. |
[11] | ZHANG Le-xin, SU Man, MA Tian, MA Xing-yong, YAN Xue-qing, PENG Xian-jun, CHEN Shuang-yan, CHENG Li-qin, LIU Gong-she. Cloning and analysis of the Δ1-pyrroline-5-carboxylate synthetase (LcP5CS1)from Leymus chinensis [J]. Acta Prataculturae Sinica, 2013, 22(4): 197-204. |
[12] | LI Jian, ZHANG Jin-Lin, WANG Suo-Min, GUO Qiang. Cloning and bio-infomatical analysis of the high-affinity K+ transporter gene PutHKT2;1 from the halophyte Puccinellia tenuiflora [J]. Acta Prataculturae Sinica, 2013, 22(2): 140-149. |
[13] | LIU Ying, CAI Hua, LIU Jing, BAI Xi, JI Wei, ZHU Yan-ming. Transformation of the GsCRCK gene into Medicago sativa cv. Nongjing No.1 and salt tolerance analysis in transgenic plants [J]. Acta Prataculturae Sinica, 2013, 22(2): 150-157. |
[14] | REN Ai-qin, YI Jin, GAO Hong-wen, LI Jun, WANG Xue-min. Cloning and expression analysis of the promoter of Caragana korshinskii gene [J]. Acta Prataculturae Sinica, 2013, 22(2): 165-170. |
[15] | SU Shi-ping, LI Yi, CHONG Pei-fang, GAO Qian. Correlation analysis of phenotypic traits of Reaumuria soongorica seed in different natural populations in the Gansu Corridor [J]. Acta Prataculturae Sinica, 2013, 22(1): 87-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||