[1] Liu W.High yield cultivation techniques of red kidney bean. Seed Science & Technology, 2011, 29(11): 42-43. 刘伟. 红芸豆优质高产标准化栽培技术. 种子科技, 2011, 29(11): 42-43. [2] Li L, Wang L F, Wu J, et al. Physiological characteristics of drought resistance in common bean (Phaseolus vulgaris L.). Acta Agronomic Sinica, 2014, 40(4): 702-710. 李龙, 王兰芬, 武晶, 等. 普通菜豆抗旱生理特性. 作物学报, 2014, 40(4): 702-710. [3] Torres-Franklin M L, Gigon A, De Melo D F, et al. Drought stress and rehydration affect the balance between MGDG and DGDG synthesis in cowpea leaves. Physiologia Plantarum, 2007, 131: 201-210. [4] Janik E, Bednarska J, Zubik M, et al. Molecular architecture of plant thylakoids under physiological and light stress conditions: A study of lip-light-harvesting complex II model membranes. Plant Cell, 2013, 25: 2155-2170. [5] Wang Y Q, Wang H C.Regulation of biomembrane components on membrane function and membrane phase transition-IV. Effects of membrane lipid components on the activity of rice root end oxidase and permeability. Acta Phytophysiologia Sinica, 1984, (2): 3-11. 王育启, 王洪春. 生物膜组分对膜功能和膜相变的调控-Ⅳ. 膜脂组分对水稻根端氧化酶活力和透性的影响. 植物生理学报, 1984, (2): 3-11. [6] Raison J K, Chapman E A.Membrane phase changes in chilling-sensitive vigna radiata and their significance to growth. Functional Plant Biology, 1976, 3(3): 291-299. [7] Santarius K A.Membrane lipids in heat injury of spinach chloroplasts. Physiologia Plantarum, 2006, 49(1): 1-6. [8] Ma H Y, Xu Y N, Gao L H.The effects on thylakoid membrane lipids of common bean under high temperature stress. Chinese Agricultural Science Bulletin, 2003, 19(6): 1-3. 马海艳, 许亦农, 高丽红. 高温逆境对菜豆类囊体膜脂的影响. 中国农学通报, 2003, 19(6): 1-3. [9] Powles B S.Photoinhibition of photosynthesis induced by visible light. Annual Review of Plant Physiology, 1984, 35(1): 15-44. [10] Wise R R.Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species produced during chilling in the light. Photosynthesis Research, 1995, 45(2): 79-97. [11] Yang X M, Liu X Y, Dong X C, et al. Effect of increase in unsaturation of thylakoid membrane lipids on salt tolerance in tomato plants. Scientia Agricultura Sinica, 2008, 41(10): 3177-3183. 杨秀梅, 刘训言, 董新纯, 等. 类囊体膜脂不饱和度的增加对番茄耐盐性的影响. 中国农业科学, 2008, 41(10): 3177-3183. [12] Ilk N, Ding J, Ihnatowicz A, et al. Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the ENHANCER OF AG-42 (HUA2) locus in combination with production of anthocyanin pigment1 (PAP1) and PAP2. New Phytologist, 2015, 206: 422-435. [13] He X T, Wang S X, Wang Y P.Effect of low temperature and week light on growth and physiological and biochemical characteristics of red kidney bean seedlings. Journal of Gansu Agricultural University, 2019, 54(1): 85-93. 何晓童, 王盛祥, 王玉萍. 低温弱光对红芸豆幼苗生长及生理生化特性的影响. 甘肃农业大学学报, 2019, 54(1): 85-93. [14] Bilger W B O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 1990, 25(3): 173-185. [15] Schreiber U, Schliwa U, Bilger W.Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 1986, 10(12): 51-62. [16] Arnon D I.Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949, 24: 1-15. [17] Su W A, Wang W Y, Li J S.Analysis technology of plant lipids and fatty acids. Plant Physiology Communications, 1980, (3): 54-60. 苏维埃, 王文英, 李锦树. 植物类脂及脂肪酸的分析技术. 植物生理学通讯, 1980, (3): 54-60. [18] Zhu Y F, Su W A.Analysis of plant membrane lipids. Beijing: Science Press, 1999: 72-75. 朱亚芳, 苏维埃. 植物膜类脂的分析. 北京: 科学出版社, 1999: 72-75. [19] Zeng N Y, He J X, Zhao W, et al. Changes in components of pigments and proteins in rice photosynthetic membrane during chilling stress. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(1): 8-14. 曾乃燕, 何军贤, 赵文, 等. 低温胁迫期间水稻光合膜色素与蛋白水平的变化. 西北植物学报, 2000, 20(1): 8-14. [20] Dai Y H, Liu X Y, Meng Q W, et al. Effect of low temperature on lipid metabolism of thylakoid membrane. Chinese Bulletin of Botany, 2004, 21(4): 506-511. 代玉华, 刘训言, 孟庆伟, 等. 低温胁迫对类囊体膜脂代谢的影响. 植物学通报, 2004, 21(4): 506-511. [21] Yordanov I, Velikova V.Photoinhibition of photosystem I. Bulgarian Journal of Plant Physiology, 2000, 26: 70-92. [22] Wang Y P, Chang H, Li C, et al. Effects of exogenous Ca2+ on growth, photosynthetic characteristics and photosystem II function of maize seedlings under cadmium stress. Acta Prataculturae Sinica, 2016, 25(5): 40-48. 王玉萍, 常宏, 李成, 等. Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响. 草业学报, 2016, 25(5): 40-48. [23] Dong C J, Cao N, Shang Q M.Effects of salicylic acid on fatty acid compositions in the roots of cucumber seedlings under low temperature. Acta Horticulturae Sinica, 2017, 44(7): 1319-1326. 董春娟, 曹宁, 尚庆茂. 外源水杨酸对低温胁迫下黄瓜幼苗根系脂肪酸不饱和度的影响. 园艺学报, 2017, 44(7): 1319-1326. [24] Miao X M, Zhang L J, Chen X L, et al. The relationship of fatty acid composition and resistance of Artemisia sphaerocephala seedlings under water stress. Acta Prataculturae Sinica, 2015, 24(2): 55-61. 缪秀梅, 张丽静, 陈晓龙, 等. 水分胁迫下白沙蒿幼苗抗性与其膜脂构成关系研究. 草业学报, 2015, 24(2): 55-61. [25] Dai Y H, Liu X Y, Meng Q W, et al. Changes of photoinhibition and fatty acid composition in thylakoid membrane of cucumber leaves during low temperature and weak light stress and the course of recovery. Plant Physiology Communications, 2004, 40(1): 14-18. 代玉华, 刘训言, 孟庆伟, 等. 低温弱光处理及恢复期间黄瓜叶片的光抑制与类囊体膜中脂肪酸组成的变化. 植物生理学通讯, 2004, 40(1): 14-18. [26] Norio M.Molecular species composition of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant and Cell Physiology, 1983, 24(1): 81-86. [27] Tasaka Y, Nishida I, Higashi S, et al. Fatty acid composition of phosphatidylglycerols in relation to chilling sensitivity of woody plants. Plant and Cell Physiology, 1990, 31(4): 545-550. [28] Dai Y H, Dai J M, Meng Q W.Changes of chlorophyll fluorescence and fatty acid compesition of phosphatidylgl ycerol in Rumex leaves during low temperature and weak light stress. Acta Horticulturae Sinica, 2003, 30(5): 93-95. 代玉华, 代金明, 孟庆伟. 低温弱光下K-1杂交酸模叶绿素荧光及膜脂脂肪酸的变化. 园艺学报, 2003, 30(5): 93-95. [29] Moon B Y, Higashi S I, Murata G N.Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low temperature photoinhibition in transgenic tobacco plants. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14): 6219-6223. [30] Gombos Z, Wada H, Murata N.The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: A mechanism of chilling tolerance. Proceedings of the National Academy of Sciences, 1994, 91(19): 8787-8791. [31] Aro E M, Virgin I, Andersson B.Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica Et Biophysica Acta, 1993, 1143(2): 113. [32] Vijayan P, Browse J.Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant Physiology, 2002, 129(2): 876-885. |