Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (11): 1-14.DOI: 10.11686/cyxb2022059
Previous Articles Next Articles
Ying LI(), Jing WU(), Chun-bin LI, Ge-xia QIN
Received:
2022-02-14
Revised:
2022-03-14
Online:
2022-11-20
Published:
2022-10-01
Contact:
Jing WU
Ying LI, Jing WU, Chun-bin LI, Ge-xia QIN. Temporal and spatial variation in grassland ground surface soil heat flux on the Qinghai-Tibetan Plateau from 2003 to 2018[J]. Acta Prataculturae Sinica, 2022, 31(11): 1-14.
站点名 Site name | 位置(经度/纬度/海拔) Location (longitude/ latitude/altitude) | 下垫面 Underlying surface | 观测项目 Observation item | 时间分辨率Temporal resolution (min) | 观测无效时段 Observation invalid period (年-月-日Year-month-day) |
---|---|---|---|---|---|
大沙龙站 Dashalong station (DSL) | 98.9406° E 38.8399° N 3739 m | 沼泽类 Swamp | 降水量 Precipitation | 10 | 2015-9-13 |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤水分 Soil moisture | |||||
阿柔站 Arou station (AR) | 100.4643° E 38.0473° N 3033 m | 高寒草甸类 Alpine meadow | 降水量 Precipitation | 10 | 2015-7-31, 2015-8-4-2015-8-5, 2015-8-9-2015-8-16, 2015-8-18-2015-8-27, 2015-8-31-2015-9-20, 2015-9-30-2015-10-20 |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤水分 Soil moisture | |||||
峨堡站 Ebao station (EB) | 100.9151° E 37.9492° N 3294 m | 高寒草甸类 Alpine meadow | 降水量 Precipitation | 10 | 2015-11-1-2015-11-5 |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤水分 Soil moisture | |||||
景阳岭站 Jingyangling station (JYL) | 101.1160° E 37.8384° N 3750 m | 高寒草甸类 Alpine meadow | 降水量 Precipitation | 10 | |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤水分 Soil moisture | |||||
西大滩站 Xidatan station (XDT) | 94.1170° E 35.7170° N 4538 m | 高寒草原类 Alpine grassland | 降水量 Precipitation | 30 | |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤含水量 Soil moisture content | |||||
向上长波辐射 Upward long wave radiation | |||||
向下长波辐射 Downward long wave radiation | |||||
唐古拉站 Tanggula station (TGL) | 91.9330° E 33.0670° N 5110 m | 高寒草甸类 Alpine meadow | 降水量 Precipitation | 30 | |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤含水量 Soil moisture content | |||||
向上长波辐射 Upward long wave radiation | |||||
向下长波辐射 Downward long wave radiation | |||||
垭口站 Yakou station (YK) | 100.2421° E 38.0142° N 4148 m | 高寒草甸类 Alpine meadow | 降水量 Precipitation | 30 | 2015-6-1-2015-6-30 |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤水分 Soil moisture |
Table 1 The information of observation sites
站点名 Site name | 位置(经度/纬度/海拔) Location (longitude/ latitude/altitude) | 下垫面 Underlying surface | 观测项目 Observation item | 时间分辨率Temporal resolution (min) | 观测无效时段 Observation invalid period (年-月-日Year-month-day) |
---|---|---|---|---|---|
大沙龙站 Dashalong station (DSL) | 98.9406° E 38.8399° N 3739 m | 沼泽类 Swamp | 降水量 Precipitation | 10 | 2015-9-13 |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤水分 Soil moisture | |||||
阿柔站 Arou station (AR) | 100.4643° E 38.0473° N 3033 m | 高寒草甸类 Alpine meadow | 降水量 Precipitation | 10 | 2015-7-31, 2015-8-4-2015-8-5, 2015-8-9-2015-8-16, 2015-8-18-2015-8-27, 2015-8-31-2015-9-20, 2015-9-30-2015-10-20 |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤水分 Soil moisture | |||||
峨堡站 Ebao station (EB) | 100.9151° E 37.9492° N 3294 m | 高寒草甸类 Alpine meadow | 降水量 Precipitation | 10 | 2015-11-1-2015-11-5 |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤水分 Soil moisture | |||||
景阳岭站 Jingyangling station (JYL) | 101.1160° E 37.8384° N 3750 m | 高寒草甸类 Alpine meadow | 降水量 Precipitation | 10 | |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤水分 Soil moisture | |||||
西大滩站 Xidatan station (XDT) | 94.1170° E 35.7170° N 4538 m | 高寒草原类 Alpine grassland | 降水量 Precipitation | 30 | |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤含水量 Soil moisture content | |||||
向上长波辐射 Upward long wave radiation | |||||
向下长波辐射 Downward long wave radiation | |||||
唐古拉站 Tanggula station (TGL) | 91.9330° E 33.0670° N 5110 m | 高寒草甸类 Alpine meadow | 降水量 Precipitation | 30 | |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤含水量 Soil moisture content | |||||
向上长波辐射 Upward long wave radiation | |||||
向下长波辐射 Downward long wave radiation | |||||
垭口站 Yakou station (YK) | 100.2421° E 38.0142° N 4148 m | 高寒草甸类 Alpine meadow | 降水量 Precipitation | 30 | 2015-6-1-2015-6-30 |
土壤热通量 Soil heat flux | |||||
土壤温度 Soil temperature | |||||
土壤水分 Soil moisture |
数据集名称 Dataset name | 内容 Content | 时间分辨率Temporal resolution | 空间分辨率Spatial resolution | 来源网址 Source URL |
---|---|---|---|---|
中国西部1 km全天候地表温度数据集1 km all-weather surface temperature data set in Western China | 地表温度Surface temperature | Daily | 1000 m | https://data.tpdc.ac.cn/zh-hans/ |
MOD13Q1 | 归一化植被指数Normalized difference vegetation index (NDVI) 红光、近红外波段地表反射率 Surface reflectance in red and near infrared bands | 16 day | 250 m | https://ladsweb.modaps.eosdis.nasa.gov/ |
MOD09GA | 1~7波段地表反射率1-7 band surface reflectance | Daily | 500 m | https://ladsweb.modaps.eosdis.nasa.gov/ |
中国区域地面气象要素驱动数据集China regional surface meteorological element driven data set | 向下短波辐射Downward short wave radiation 向下长波辐射Downward long wave radiation | 3-hour 3-hour | 0.1° 0.1° | https://www.tpdc.ac.cn/zh-hans/ |
Table 2 The information of remote sensing data
数据集名称 Dataset name | 内容 Content | 时间分辨率Temporal resolution | 空间分辨率Spatial resolution | 来源网址 Source URL |
---|---|---|---|---|
中国西部1 km全天候地表温度数据集1 km all-weather surface temperature data set in Western China | 地表温度Surface temperature | Daily | 1000 m | https://data.tpdc.ac.cn/zh-hans/ |
MOD13Q1 | 归一化植被指数Normalized difference vegetation index (NDVI) 红光、近红外波段地表反射率 Surface reflectance in red and near infrared bands | 16 day | 250 m | https://ladsweb.modaps.eosdis.nasa.gov/ |
MOD09GA | 1~7波段地表反射率1-7 band surface reflectance | Daily | 500 m | https://ladsweb.modaps.eosdis.nasa.gov/ |
中国区域地面气象要素驱动数据集China regional surface meteorological element driven data set | 向下短波辐射Downward short wave radiation 向下长波辐射Downward long wave radiation | 3-hour 3-hour | 0.1° 0.1° | https://www.tpdc.ac.cn/zh-hans/ |
Fig.3 Scatter point distribution and annual mean diurnal variation curve of ground surface soil heat flux (G0) and soil heat flux (G5) with a depth of 5 cm at TGL station in 2015
站点名Site name | 线性关系式Linear relation | R2 |
---|---|---|
大沙龙站 DSL station | G0=1.05G | 0.88 |
阿柔站 AR station | G0=0.98G | 0.55 |
峨堡站 EB station | G0=1.11G | 0.96 |
景阳岭站 JYL station | G0=1.17G | 0.84 |
西大滩站 XDT station | G0=1.05G | 0.94 |
唐古拉站 TGL station | G0=1.02G | 0.96 |
垭口站 YK station | G0=1.02G | 0.92 |
Table 3 The linear relationship between G0 and G of each site
站点名Site name | 线性关系式Linear relation | R2 |
---|---|---|
大沙龙站 DSL station | G0=1.05G | 0.88 |
阿柔站 AR station | G0=0.98G | 0.55 |
峨堡站 EB station | G0=1.11G | 0.96 |
景阳岭站 JYL station | G0=1.17G | 0.84 |
西大滩站 XDT station | G0=1.05G | 0.94 |
唐古拉站 TGL station | G0=1.02G | 0.96 |
垭口站 YK station | G0=1.02G | 0.92 |
Fig.4 Comparison between ground surface soil heat flux (G0_Ma) estimated by Ma model and corresponding surface soil heat flux single point calculated value (G0_obs)
站点 Station | 地表层土壤热通量Ground surface soil heat flux (G0,W·m-2) | ||||
---|---|---|---|---|---|
春季Spring | 夏季Summer | 秋季Autumn | 冬季Winter | 年均值Average annual value | |
唐古拉站 TGL station | 4.840 | 11.240 | -5.740 | -10.270 | 0.690 |
西大滩站 XDT station | 9.650 | 2.470 | -4.550 | -8.640 | 2.810 |
峨堡站 EB station | 7.250 | 4.977 | -7.149 | -8.288 | -0.312 |
阿柔站 AR station | 2.030 | 3.870 | -1.557 | -1.533 | 1.468 |
大沙龙站DSL station | 1.338 | 5.541 | 1.057 | -9.621 | 1.558 |
景阳岭站 JYL station | 3.110 | 8.091 | -9.793 | -13.567 | -1.909 |
垭口站 YK station | 4.147 | 21.739 | -19.587 | -24.580 | -6.856 |
Table 4 Seasonal and annual average values of ground surface soil heat flux in the surface layer of each station
站点 Station | 地表层土壤热通量Ground surface soil heat flux (G0,W·m-2) | ||||
---|---|---|---|---|---|
春季Spring | 夏季Summer | 秋季Autumn | 冬季Winter | 年均值Average annual value | |
唐古拉站 TGL station | 4.840 | 11.240 | -5.740 | -10.270 | 0.690 |
西大滩站 XDT station | 9.650 | 2.470 | -4.550 | -8.640 | 2.810 |
峨堡站 EB station | 7.250 | 4.977 | -7.149 | -8.288 | -0.312 |
阿柔站 AR station | 2.030 | 3.870 | -1.557 | -1.533 | 1.468 |
大沙龙站DSL station | 1.338 | 5.541 | 1.057 | -9.621 | 1.558 |
景阳岭站 JYL station | 3.110 | 8.091 | -9.793 | -13.567 | -1.909 |
垭口站 YK station | 4.147 | 21.739 | -19.587 | -24.580 | -6.856 |
1 | Tang Y H, Wan S Q, He J S, et al. Foreword to the special issue: looking into the impacts of global warming from the roof of the world. Journal of Plant Ecology, 2009, 2(4): 169-171. |
2 | Guo X X, Wang K, Li L, et al. Surface energy exchanges and evapotranspiration of an alpine meadow on the Zoige Plateau. Chinese Journal of Agrometeorology, 2021, 42(8): 642-656. |
郭小璇, 王凯, 李磊, 等. 若尔盖高原高寒草甸地表能量交换和蒸散研究. 中国农业气象, 2021, 42(8): 642-656. | |
3 | Su Y R, Lv S H, Fan G Z. The characteristics analysis on the summer atmospheric boundary layer height and surface heat fluxes over the Qinghai-Tibetan Plateau. Plateau Meteorology, 2018, 37(6): 1470-1485. |
苏彦入, 吕世华, 范广洲. 青藏高原夏季大气边界层高度与地表能量输送变化特征分析. 高原气象, 2018, 37(6): 1470-1485. | |
4 | Chen X L, Liu Y M, Wu G X. Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau. Advances in Atmospheric Sciences, 2017, 34(12): 1447-1460. |
5 | de Andrade B C C, Pedrollo O C, Ruhoff A, et al. Artificial neural network model of soil heat flux over multiple land covers in South America. Remote Sensing, 2021, 13(12): 2337. |
6 | Yang Q D, Zuo H C, Yang Y, et al. On the effect of the near-surface layer energy closure degree on land surface process simulations. Chinese Journal of Geophysics, 2012, 55(9): 2876-2888. |
杨启东, 左洪超, 杨扬, 等. 近地层能量闭合度对陆面过程模式影响. 地球物理学报, 2012, 55(9): 2876-2888. | |
7 | Hu H C, Li N N, Tian F Q, et al. Modification of harmonic analysis model for diurnal surface soil heat flux estimate from multiple remote sensing data. Journal of Applied Remote Sensing, 2018, 12(3): 1-19. |
8 | Xiao Y, Zhao L, Li R, et al. Seasonal variation characteristics of energy budget components in permafrost regions of Northern Tibetan Plateau. Journal of Glaciology and Geocryology, 2011, 33(5): 1033-1039. |
肖瑶, 赵林, 李韧, 等.青藏高原腹地高原多年冻土区能量收支各分量的季节变化特征. 冰川冻土, 2011, 33(5): 1033-1039. | |
9 | Zhong L, Ma Y M, Ma W Q, et al. Land surface heat fluxes in the Middle Reaches of Yarlung Zangbo River and its two tributaries derived from AVHRR and MODIS data. Journal of Glaciology and Geocryology, 2011, 33(2): 309-317. |
仲雷, 马耀明, 马伟强, 等. 西藏中部“一江两河”地区地表通量的卫星遥感估算. 冰川冻土, 2011, 33(2): 309-317. | |
10 | Liu Y. National grassland monitoring report in 2016. China Animal Husbandry, 2017(8): 18-35. |
刘源. 2016年全国草原监测报告. 中国畜牧业, 2017(8): 18-35. | |
11 | Wu S N, Zhang X, Gao X X, et al. Succession dynamics of a plant community of degraded alpine meadow during the human-induced restoration process in the Three Rivers Source region. Acta Ecologica Sinica, 2019, 39(7): 2444-2453. |
武胜男, 张曦, 高晓霞, 等. 三江源区“黑土滩”型退化草地人工恢复植物群落的演替动态. 生态学报, 2019, 39(7): 2444-2453. | |
12 | Choudhury B J, Idso S B, Reginato R J. Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agricultural and Forest Meteorology, 1987, 39(4): 283-297. |
13 | Bastiaanssen W. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 2000, 229(1/2): 87-100. |
14 | Ma Y M, Ishikawa H, Tsukamoto O, et al. Regionalization of surface fluxes over heterogeneous landscape of the Tibetan Plateau by using satellite remote sensing data. Journal of the Meteorological Society of Japan, 2003, 81(2): 277-293. |
15 | Yang C, Wu T H, Wang J M, et al. Estimating surface soil heat flux in permafrost regions using remote sensing-based models on the Northern Qinghai-Tibetan Plateau under clear-sky conditions. Remote Sensing, 2019, 11(4): 416. |
16 | Su D X. The compilation and study of the grassland resource map of China on the scale of 1∶1000000, 1996(1): 75-83. |
苏大学.1∶1000000中国草地资源图的编制与研究. 自然资源学报, 1996(1): 75-83. | |
17 | Liu S M, Xu Z W, Wang W Z, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 2011, 15(4): 1291-1306. |
18 | Li X, Cheng G D, Liu S M, et al. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160. |
19 | Xiao Y. Meteorological data set of permafrost in Xidatan, Qinghai-Tibet Plateau, 2014-2016. Lanzhou: National Cryosphere Desert Data Center, 2020. |
肖瑶. 2014-2016年青藏高原西大滩冻土气象数据集. 兰州: 国家冰川冻土沙漠科学数据中心, 2020. | |
20 | Xiao Y. Meteorological dataset of Tanggula permafrost on Qinghai-Tibet Plateau from 2014 to 2016. Lanzhou: National Cryosphere Desert Data Center, 2020. |
肖瑶. 2014-2016年青藏高原唐古拉冻土气象数据集. 兰州: 国家冰川冻土沙漠科学数据中心, 2020. | |
21 | Yang C, Wu T H, Yao J M, et al. An assessment of using remote sensing-based models to estimate ground surface soil heat flux on the Tibetan Plateau during the freeze-thaw process. Remote Sensing, 2020, 12(3): 501. |
22 | Zhang X D, Zhou J, Göttsche F M, et al. A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4670-4691. |
23 | He J, Yang K, Tang W J, et al. The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 2020, 7(1): 25. |
24 | Yang K, Jie H, Tang W J, et al. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agricultural and Forest Meteorology, 2009, 150(1): 38-46. |
25 | Yang K, He J. China regional surface meteorological element driven data set (1979-2018). Beijing: National Tibetan Plateau Data Center, 2019. |
阳坤, 何杰. 中国区域地面气象要素驱动数据集(1979-2018). 北京: 国家青藏高原科学数据中心, 2019. | |
26 | Yang K, He J. China meteorological forcing dataset (1979-2018). Beijing: National Tibetan Plateau Data Center, 2019. |
阳坤, 何杰. 中国气象强迫数据集(1979-2018). 北京: 国家青藏高原科学数据中心, 2019. | |
27 | Yang K, Wang J M. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data. Science in China Series D: Earth Sciences, 2008, 51(5): 721-729. |
28 | Wu Y Y, Wen J, Wang Z L, et al. The characteristics of land-atmospheric water and heat exchange during soil freezing-thawing process over the underlying surface of the alpine grassland in the source region of the yellow river. Plateau Meteorology, 2022, 41(1): 132-142. |
武月月, 文军, 王作亮, 等. 黄河源高寒草原下垫面土壤冻融过程中陆-气间的水热交换特征分析. 高原气象, 2022, 41(1): 132-142. | |
29 | Yao J M, Zhao L, Gu L L, et al. The surface energy budget in the permafrost region of the Tibetan Plateau. Atmospheric Research, 2011, 102(4): 394-407. |
30 | Tanaka K, Tamagawa I, Ishikawa H, et al. Surface energy budget and closure of the eastern Tibetan Plateau during the GAME-Tibet IOP 1998. Journal of Hydrology, 2003, 283(1/2/3/4): 169-183. |
31 | Osterkamp T E. Freezing and thawing of soils and permafrost containing unfrozen water or brine. Water Resources Research, 1987, 23(12): 2279-2285. |
32 | Li G W, Wen J, Wang X, et al. Analysis of the characteristics of soil heat flux in the freezing process of alpine wetland at Maduo station. Chinese Journal of Atmospheric Sciences, 2019, 43(4): 719-729. |
李光伟, 文军, 王欣, 等. 麻多高寒湿地冻结过程中土壤热通量变化特征分析. 大气科学, 2019, 43(4): 719-729. | |
33 | Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 2002, 6(1): 85-100. |
34 | Liang S L. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sensing of Environment, 2001, 76(2): 213-238. |
35 | Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994, 48(2): 119-126. |
36 | Amatya P M, Ma Y M, Han C B, et al. Recent trends (2003-2013) of land surface heat fluxes on the southern side of the central Himalays, Nepal. Journal of Geophysical Research: Atmospheres, 2015, 120(23): 11957-11970. |
37 | Qin Z H, Li W J, Xu B, et al. The estimation of land surface emissivity for Landsat TM6. Remote Sensing for Land & Resources, 2004, 16(3): 28-32, 36, 41. |
覃志豪, 李文娟, 徐斌, 等. 陆地卫星TM6波段范围内地表比辐射率的估计. 国土资源遥感, 2004, 16(3): 28-32, 36, 41. | |
38 | Li M C, Luo T X, Guo J, et al. Soil heat flux in abies george virgin forest at the alpine timberline, southeastern Tibetan Plateau. Mountain Research, 2008(4): 490-495. |
李明财, 罗天祥, 郭军, 等. 藏东南高山林线冷杉原始林土壤热通量. 山地学报, 2008(4): 490-495. | |
39 | Wu T H, Zhao L, Li R, et al. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. International Journal of Climatology, 2013, 33: 920-930. |
40 | Hao Y J, Deng Q L, Wang Y X, et al. Dynamic characteristics of soil heat flux and their relationships with meteorological factors in the valley-type savanna of Yuanjiang of southwest China. Journal of Northwest Forestry University, 2019, 34(5): 23-28. |
郝雅婕, 邓巧玲, 王艳霞, 等. 元江干热河谷稀树灌丛土壤热通量特征. 西北林学院学报, 2019, 34(5): 23-28. | |
41 | Ji G L. The characteristics of transparency of atmosphere on the main part of Qinghai-Xizang Plateau. Plateau Meteorology, 1985 (Supple 2): 122-129. |
季国良. 青藏高原主体的大气透明度特征. 高原气象, 1985(增刊2): 122-129. | |
42 | He D Y, Tian H, Deng W T. Characteristics of seasonal surface temperature variation over the Tibetan Plateau. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2014, 6(6): 558-569. |
何冬燕, 田红, 邓伟涛. 青藏高原不同季节地表温度变化特征分析. 南京信息工程大学学报(自然科学版), 2014, 6(6): 558-569. | |
43 | Yang C, Wu T H, Yao J M, et al. Temporal and spatial characteristics of ground surface soil heat flux over the Qinghai-Tibetan Plateau. Plateau Meteorology, 2020, 39(4): 706-718. |
杨成, 吴通华, 姚济敏, 等. 青藏高原表层土壤热通量的时空分布特征. 高原气象, 2020, 39(4): 706-718. | |
44 | Liu J H, Gao J X, Wang W J. Variations of vegetation coverage and its relations to global climate changes on the Tibetan Plateau during 1981-2005. Mountain Research, 2013, 31(2): 234-242. |
刘军会, 高吉喜, 王文杰. 青藏高原植被覆盖变化及其与气候变化的关系. 山地学报, 2013, 31(2): 234-242. | |
45 | Li N N, Jia L, Lu J. An improved algorithm to estimate the surface soil heat flux over a heterogeneous surface: A case study in the Heihe River Basin. Scientia Sinica(Terrae), 2015, 45(4): 494-507. |
李娜娜, 贾立, 卢静. 复杂下垫面地表土壤热通量算法改进: 以黑河流域为例. 中国科学: 地球科学, 2015, 45(4): 494-507. | |
46 | Zhang F W, Li Y N, Zhao L, et al. Primary study on energy exchange and energy balance ratio in an alpine meadow of Kobersia humilis. Mountain Research, 2006, 24(B10): 258-265. |
张法伟, 李英年, 赵亮, 等. 高寒矮嵩(Kobersia humilis)草甸能量平衡和闭合状况的初步研究. 山地学报, 2006, 24(B10): 258-265. |
[1] | Rui-jing WANG, Qi-sheng FENG, Zhe-ren JIN, Jie LIU, Yu-ting ZHAO, Jing GE, Tian-gang LIANG. A study on restoration potential of degraded grassland on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(6): 11-22. |
[2] | Dou-dou LIN, Ze-liang JU, Ji-kuan CHAI, Gui-qin ZHAO. Screening and identification of low temperature tolerant lactic acid bacterial epiphytes from oats on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 103-114. |
[3] | Gang FU, Jun-hao WANG, Shao-wei LI, Ping HE. Responses of forage nutrient quality to grazing in the alpine grassland of Northern Tibet [J]. Acta Prataculturae Sinica, 2021, 30(9): 38-50. |
[4] | Zhi-biao NAN, Yan-rong WANG, Bin NIE, Chun-jie LI, Wei-guo ZHANG, Chao XIA. Breeding of Lanjian No. 3 common vetch and evaluation of its characteristics [J]. Acta Prataculturae Sinica, 2021, 30(4): 111-120. |
[5] | Guang-yi LV, Xue-bao XU, Cui-ping GAO, Zhi-hui YU, Xin-ya WANG, Cheng-jie WANG. Effects of grazing on total nitrogen and stable nitrogen isotopes of plants and soil in different types of grasslands in Inner Mongolia [J]. Acta Prataculturae Sinica, 2021, 30(3): 208-214. |
[6] | Wen ZHAO, Ya-li YIN, Shi-xiong LI, Yan LIU, Jing-jing LIU, Yi-ling DONG, Shi-feng SU, Ling-he JI. The characteristics of bacterial communities in different vegetation types in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2021, 30(12): 161-171. |
[7] | QIU Yue, WU Peng-fei, WEI Xue. Differences among three artificial grasslands in dynamics and community diversity of soil microarthropods [J]. Acta Prataculturae Sinica, 2020, 29(5): 21-32. |
[8] | HOU Meng-jing, GAO Jin-long, GE Jing, LI Yuan-chun, LIU Jie, YIN Jian-peng, FENG Qi-sheng, LIANG Tian-gang. An analysis of dynamic changes and their driving factors in marsh wetlands in the eastern Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2020, 29(1): 13-27. |
[9] | HUANG Ze, TIAN Fu-Ping, LIU Yu, ZHANG Jing-Ge, MIAO Hai-Tao, WU Gao-Lin. Effects of different grassland types on particle size distribution and stability of water stable aggregate on the Loess Plateau [J]. Acta Prataculturae Sinica, 2017, 26(11): 216-221. |
[10] | QIAO Yu-Xin, ZHU Hua-Zhong, SHAO Xiao-Ming, ZHONG Hua-Ping, ZHOU Li-Lei, WU Zhao-Wen. Automatic classification of grassland type in Xinjiang Ili based on spatial interpolation of remote sensing and other data [J]. Acta Prataculturae Sinica, 2017, 26(10): 30-45. |
[11] | LU Guang-Xin, LI Zong-Ren, LI Xi-Lai, WANG Jun-Bang, WU Chu, LI Xin, ZHANG Geng-Xiong, SUN Qian, LI Feng-Ke, ZHENG Hui-Mei. Community structure characteristics of culturable cellulose-decomposing fungi in soils from different ecosystems in the Sanjiangyuan Regions [J]. Acta Prataculturae Sinica, 2016, 25(1): 76-87. |
[12] | WANG Jian-lin, ZHONG Zhi-ming, WANG Zhong-hong, YU Cheng-qun, SHEN Zhen-xi, ZHANG Xian-zhou, HU Xing-xiang, Dacizhuoga. Soil C/P distribution characteristics of alpine steppe ecosystems in the Qinhai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2014, 23(2): 9-19. |
[13] | YANG Yang, HAN Guo-dong, LI Yuan-heng, CHEN Zhi-fang, WANG Cheng-jie. Response of soil respiration to grazing intensity, water contents, and temperature of soil in different grasslands of Inner Mongolia [J]. Acta Prataculturae Sinica, 2012, 21(6): 8-14. |
[14] | QIN Yu, YI Shu-hua, LI Nai-jie, REN Shi-long, WANG Xiao-yun, CHEN Jian-jun. Advance in studies of carbon cycling on alpine grasslands of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2012, 21(6): 275-285. |
[15] | SUO Nan-ji, TAN Yan-rong, ZHU Wei-xin, GU Zhen-kuan, DU Guo-zhen. A study on soil enzyme activity in four different grasslands of the eastern Tibetan Plateau [J]. Acta Prataculturae Sinica, 2012, 21(4): 10-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||