Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (6): 11-22.DOI: 10.11686/cyxb2021164
Previous Articles Next Articles
Rui-jing WANG(), Qi-sheng FENG(), Zhe-ren JIN, Jie LIU, Yu-ting ZHAO, Jing GE, Tian-gang LIANG
Received:
2021-04-27
Revised:
2021-07-27
Online:
2022-06-20
Published:
2022-05-11
Contact:
Qi-sheng FENG
Rui-jing WANG, Qi-sheng FENG, Zhe-ren JIN, Jie LIU, Yu-ting ZHAO, Jing GE, Tian-gang LIANG. A study on restoration potential of degraded grassland on the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2022, 31(6): 11-22.
草地类型 Grassland type | 未来趋势不确定Uncertain future trends | 持续性轻微退化Persistent slight degradation | 持续性显著退化Persistent significant degradation | 持续性稳定不变The continuity is stable | 持续性轻微改善Continuous slight improvement | 持续性显著改善Continuous significant improvement |
---|---|---|---|---|---|---|
热性灌草丛Thermal shrub tussock | 28.51 | 6.77 | 4.82 | 14.05 | 9.13 | 34.56 |
热性草丛Thermal tussock | 10.17 | 1.07 | 0.80 | 3.48 | 3.84 | 74.04 |
暖性灌草丛Warm-temperate shrub tussock | 29.89 | 4.03 | 1.41 | 15.54 | 12.41 | 18.98 |
暖性草丛Warm-temperate tussock | 25.73 | 3.16 | 1.21 | 19.66 | 14.08 | 17.48 |
低地草甸Lowland meadow | 6.12 | 1.87 | 1.77 | 24.09 | 8.12 | 53.70 |
山地草甸Mountain meadow | 42.43 | 2.02 | 0.34 | 16.59 | 12.94 | 16.58 |
温性草甸草原Temperate meadow steppe | 28.75 | 12.60 | 3.86 | 23.27 | 14.59 | 6.87 |
温性草原Temperate steppe | 43.47 | 1.98 | 0.53 | 12.67 | 12.61 | 25.25 |
温性荒漠草原Temperate desert grassland | 38.16 | 0.27 | 0.04 | 8.61 | 11.99 | 35.25 |
温性草原化荒漠Temperate steppe desert | 45.06 | 0.25 | 0.03 | 7.29 | 8.89 | 29.22 |
温性荒漠Temperate desert | 36.27 | 0.19 | 0.16 | 5.22 | 6.00 | 47.59 |
高寒草甸Alpine meadow | 50.23 | 2.99 | 0.33 | 17.56 | 15.70 | 7.30 |
高寒草甸草原Alpine meadow steppe | 44.78 | 1.16 | 0.28 | 15.48 | 17.86 | 18.78 |
高寒草原Alpine grassland | 39.31 | 1.57 | 0.38 | 12.06 | 18.99 | 24.95 |
高寒荒漠草原Alpine desert grassland | 41.55 | 0.29 | 0.08 | 4.84 | 12.23 | 36.83 |
高寒荒漠Alpine desert | 45.07 | 0.58 | 0.47 | 5.41 | 9.04 | 34.54 |
沼泽Marsh | 60.09 | 1.40 | 0.33 | 10.39 | 13.34 | 12.99 |
总计Total | 36.21 | 2.48 | 0.99 | 12.72 | 11.87 | 29.11 |
Table 1 Statistics of NPP trend (%)
草地类型 Grassland type | 未来趋势不确定Uncertain future trends | 持续性轻微退化Persistent slight degradation | 持续性显著退化Persistent significant degradation | 持续性稳定不变The continuity is stable | 持续性轻微改善Continuous slight improvement | 持续性显著改善Continuous significant improvement |
---|---|---|---|---|---|---|
热性灌草丛Thermal shrub tussock | 28.51 | 6.77 | 4.82 | 14.05 | 9.13 | 34.56 |
热性草丛Thermal tussock | 10.17 | 1.07 | 0.80 | 3.48 | 3.84 | 74.04 |
暖性灌草丛Warm-temperate shrub tussock | 29.89 | 4.03 | 1.41 | 15.54 | 12.41 | 18.98 |
暖性草丛Warm-temperate tussock | 25.73 | 3.16 | 1.21 | 19.66 | 14.08 | 17.48 |
低地草甸Lowland meadow | 6.12 | 1.87 | 1.77 | 24.09 | 8.12 | 53.70 |
山地草甸Mountain meadow | 42.43 | 2.02 | 0.34 | 16.59 | 12.94 | 16.58 |
温性草甸草原Temperate meadow steppe | 28.75 | 12.60 | 3.86 | 23.27 | 14.59 | 6.87 |
温性草原Temperate steppe | 43.47 | 1.98 | 0.53 | 12.67 | 12.61 | 25.25 |
温性荒漠草原Temperate desert grassland | 38.16 | 0.27 | 0.04 | 8.61 | 11.99 | 35.25 |
温性草原化荒漠Temperate steppe desert | 45.06 | 0.25 | 0.03 | 7.29 | 8.89 | 29.22 |
温性荒漠Temperate desert | 36.27 | 0.19 | 0.16 | 5.22 | 6.00 | 47.59 |
高寒草甸Alpine meadow | 50.23 | 2.99 | 0.33 | 17.56 | 15.70 | 7.30 |
高寒草甸草原Alpine meadow steppe | 44.78 | 1.16 | 0.28 | 15.48 | 17.86 | 18.78 |
高寒草原Alpine grassland | 39.31 | 1.57 | 0.38 | 12.06 | 18.99 | 24.95 |
高寒荒漠草原Alpine desert grassland | 41.55 | 0.29 | 0.08 | 4.84 | 12.23 | 36.83 |
高寒荒漠Alpine desert | 45.07 | 0.58 | 0.47 | 5.41 | 9.04 | 34.54 |
沼泽Marsh | 60.09 | 1.40 | 0.33 | 10.39 | 13.34 | 12.99 |
总计Total | 36.21 | 2.48 | 0.99 | 12.72 | 11.87 | 29.11 |
1 | Liu Y Y, Zhang Z Y, Tong L J, et al. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecological Indicators, 2019, 106: 105504. |
2 | Wang Y, Ren Z, Ma P P, et al. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of Total Environment, 2020, 722: 137910. |
3 | He J S, Liu Z P, Yao T, et al. Analysis of the main constrains and restoration techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 2020, 38(17): 66-80. |
4 | He L, Bin J, Deng D Z, et al. Review on progress in vegetation close-to-nature recovery. Journal of Sichuan Forestry Science and Technology, 2017, 38(5): 18-21. |
5 | He J S, Bu H Y, Hu X W, et al. Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach. Chinese Science Bulletin, 2020, 65(34): 3898-3908. |
贺金生, 卜海燕, 胡小文, 等. 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 2020, 65(34): 3898-3908. | |
6 | Venter Z S, Scott S L, Desmet P G, et al. Application of landsat-derived vegetation trends over South Africa: Potential for monitoring land degradation and restoration. Ecological Indicators, 2020, 113: 106206. |
7 | Gao H D, Pang G W, Li Z B, et al. Evaluating the potential of vegetation restoration in the Loess Plateau. Acta Geographica Sinica, 2017, 72(5): 863-874. |
高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究. 地理学报, 2017, 72(5): 863-874. | |
8 | Zhao G J, Mu X M, Tian P, et al. Prediction of vegetation variation and vegetation restoration potential in the Loess Plateau. Journal of Soil and Water Conservation, 2021, 35(1): 205-212. |
赵广举, 穆兴民, 田鹏, 等. 黄土高原植被变化与恢复潜力预测. 水土保持学报, 2021, 35(1): 205-212. | |
9 | Li H D, Qin W H, Zhang T, et al. Comprehensive evaluation model for revegetation potentiality on moving sandy land in alpine valley of Tibet, China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(16): 220-228. |
李海东, 秦卫华, 张涛, 等. 西藏高寒河谷流动沙地植被恢复潜力综合评价模型. 农业工程学报, 2015, 31(16): 220-228. | |
10 | Pan J H, Xu B C. Modeling spatial distribution of potential vegetation NPP in China. Chinese Journal of Ecology, 2020, 39(3): 1001-1012. |
潘竟虎, 徐柏翠. 中国潜在植被NPP的空间分布模拟. 生物学杂志, 2020, 39(3): 1001-1012. | |
11 | Li Q, Gao S G, Zhang C L, et al. Assessment of the impacts of climate change and human activities on the dynamic grassland change in Inner Mongolia. Geography and Geo-Information Science, 2019, 35(3): 99-104. |
李庆, 高素改, 张春来, 等. 内蒙古草地变化过程中气候变化和人类活动的相对作用评估. 地理与地理信息科学, 2019, 35(3): 99-104. | |
12 | Feng Q S, Gao X H, Huang X D, et al. Remote sensing dynamic monitoring of grass growth in Qinghai-Tibet plateau from 2001 to 2010. Journal of Lanzhou University (Natural Sciences), 2011, 47(4): 76-81, 90. |
冯琦胜, 高新华, 黄晓东, 等. 2001-2010年青藏高原草地生长状况遥感动态监测. 兰州大学学报(自然科学版), 2011, 47(4): 76-81, 90. | |
13 | Ge J, Meng B P, Liang T G, et al. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sensing of Environment, 2018, 218: 162-173. |
14 | Jin X, Yang L X. Solar radiation calculation under complex topography based on ArcGIS. Journal of Anhui Agriculture Science, 2014, 42(23): 7952-7955, 7973. |
金鑫, 杨礼箫. 基于ArcGIS的复杂地形下太阳辐射分析计算. 安徽农业科学, 2014, 42(23): 7952-7955, 7973. | |
15 | Liu J, Meng B P, Ge J, et al. Spatio-temporal dynamic changes of grassland NPP in Gannan prefecture, as determined by the CASA model. Acta Prataculturae Sinica, 2019, 28(6): 19-32. |
刘洁, 孟宝平, 葛静, 等. 基于CASA模型和MODIS数据的甘南草地NPP时空动态变化研究. 草业学报, 2019, 28(6): 19-32. | |
16 | Zhu W Q, Pan Y Z, Zhang J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Journal of Plant Ecology (formerly Acta Phytoecologica Sinica), 2007, 31(3): 413-424. |
朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007, 31(3): 413-424. | |
17 | Xu H J, Wang X P, Zhang X X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecological Engineering, 2016, 92: 251-259. |
18 | Li H, Hong Y, Deng G R, et al. Impact of climate change and human activities on net primary productivity of grasslands in Inner Mongolia, China during 1982-2015. Chinese Journal of Applied Ecology, 2021, 32(2): 415-424. |
李辉, 红英, 邓国荣, 等. 1982-2015年气候变化和人类活动对内蒙古草地净初级生产力的影响. 应用生态学报, 2021, 32(2): 415-424. | |
19 | Yuan L H, Jiang W G, Shen W M, et al. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecologica Sinica, 2013, 33(24): 7798-7910. |
袁丽华, 蒋卫国, 申文明, 等. 2000-2010年黄河流域植被覆盖的时空变化. 生态学报, 2013, 33(24): 7798-7910. | |
20 | Deji Y Z, Lu X Y. Analysis of vegetation net primary productivity on Qinghai-Tibetan Plateau and its response to climate change. Journal of Green Science and Technology, 2013(10): 4-6. |
德吉央宗, 鲁旭阳. 青藏高原植被净初级生产力及其对气候变化的响应. 绿色科技, 2013(10): 4-6. | |
21 | Chen S T, Guo B, Yang F, et al. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015. Journal of Nature Resources, 2020, 35(10): 2511-2527. |
陈舒婷, 郭兵, 杨飞, 等. 2000-2015年青藏高原植被NPP时空变化格局及其对气候变化的响应. 自然资源学报, 2020, 35(10): 2511-2527. | |
22 | Wang B L, Wang J J, Yang Y, et al. Algorithm improvements for two important parameters of FPAR and maximum solar energy utilization efficiency. Acta Prataculturae Sinica, 2013, 22(5): 220-228. |
王保林, 王晶杰, 杨勇, 等. 植被光合有效辐射吸收分量及最大光能利用率算法的改进. 草业学报, 2013, 22(5): 220-228. | |
23 | Raymood E, Hunt J R. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. International Journal of Remote Sensing, 1994, 15(8): 1725-1730. |
24 | Lv Z G, Li W B, Huang X R, et al. Larix principis-rupprechtii growth suitability based on potential NPP under climate change scenarios in Hebei Province. Scientia Silvae Sinicae, 2019, 55(11): 37-44. |
吕振刚, 李文博, 黄选瑞, 等. 气候变化情景下基于潜在NPP的河北省华北落叶松生长适宜性. 林业科学, 2019, 55(11): 37-44. | |
25 | Ren Z C, Zhu H Z, Shi H, et al. Spatiotemporal-distribution pattern variation of net primary productivity in potential natural vegetation and its response to climate and topography in China. Acta Agrestia Sinica, 2017, 25(3): 474-485. |
任正超, 朱华忠, 史华, 等. 中国潜在自然植被NPP时空分布格局变化及其对气候和地形的响应. 草地学报, 2017, 25(3): 474-485. |
[1] | Dou-dou LIN, Ze-liang JU, Ji-kuan CHAI, Gui-qin ZHAO. Screening and identification of low temperature tolerant lactic acid bacterial epiphytes from oats on the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2022, 31(5): 103-114. |
[2] | Ya-hui WANG, Wen-jia TANG, Sen LI, Hong-yan ZHAO, Jia-li XIE, Chao MA, Chang-zhen YAN. Change in grassland productivity in Qinghai Province and its driving factors [J]. Acta Prataculturae Sinica, 2022, 31(2): 1-13. |
[3] | Xin YANG, Wen-xia CAO, Xiao-jun YU, Hai-bin WANG, Yuan-yuan HAO. Dynamic monitoring of grassland resources and their responses to environmental factors in Qinghai Province based on analyses of daily MODIS NDVI data from the past 20 years [J]. Acta Prataculturae Sinica, 2021, 30(9): 1-14. |
[4] | Zhi-biao NAN, Yan-rong WANG, Bin NIE, Chun-jie LI, Wei-guo ZHANG, Chao XIA. Breeding of Lanjian No. 3 common vetch and evaluation of its characteristics [J]. Acta Prataculturae Sinica, 2021, 30(4): 111-120. |
[5] | Chen CHEN, Chang-qing JING, Wen-yuan XING, Xiao-jin DENG, Hao-yu FU, Wen-zhang GUO. Desert grassland dynamics in the last 20 years and its response to climate change in Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(3): 1-14. |
[6] | Hui-long LIN, Di FAN, Qi-sheng FENG, Tian-gang LIANG. New focus for the study of the Comprehensive Sequential Classification System for grassland: A review from 2008 to 2020 and prospects for future research [J]. Acta Prataculturae Sinica, 2021, 30(10): 201-213. |
[7] | CUI Bo-chao, ZHENG Jiang-hua, TUERXUN·Hasimu, DUAN Su-su, DU Meng-jie. Spatio-temporal characteristics of grassland net primary productivity (NPP) in the Tarim River basin [J]. Acta Prataculturae Sinica, 2020, 29(6): 1-13. |
[8] | QIU Yue, WU Peng-fei, WEI Xue. Differences among three artificial grasslands in dynamics and community diversity of soil microarthropods [J]. Acta Prataculturae Sinica, 2020, 29(5): 21-32. |
[9] | WU Ni-tu, LIU Gui-xiang, YANG Yong, SONG Xiang-yang, BAI Hai-hua. Dynamic monitoring of net primary productivity and its response to climate factors in native grassland in Inner Mongolia using a light-use efficiency model [J]. Acta Prataculturae Sinica, 2020, 29(11): 1-10. |
[10] | HOU Meng-jing, GAO Jin-long, GE Jing, LI Yuan-chun, LIU Jie, YIN Jian-peng, FENG Qi-sheng, LIANG Tian-gang. An analysis of dynamic changes and their driving factors in marsh wetlands in the eastern Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2020, 29(1): 13-27. |
[11] | LIU Jie, MENG Bao-ping, GE Jing, GAO Jin-long, YIN Jian-peng, HOU Meng-jing, FENG Qi-sheng, LIANG Tian-gang. Spatio-temporal dynamic changes of grassland NPP in Gannan prefecture, as determined by the CASA model [J]. Acta Prataculturae Sinica, 2019, 28(6): 19-32. |
[12] | HE Zhen-fu, HE Chun-gui, WANG Guo-dong, GE Yu-bin. Effect of planting density on plant nutrients and their dynamics in PPS sorghum-sudangrass hybrids [J]. Acta Prataculturae Sinica, 2018, 27(10): 93-104. |
[13] | GENG Yuan-bo, WANG Song, HU Xue-di. Responses of aboveground net primary productivity of the alpine meadow steppe to climate change: simulations based on the CENTURY model [J]. Acta Prataculturae Sinica, 2018, 27(1): 1-13. |
[14] | ZHAO Yu-Hao, RONG Zhan-Lei, ZHANG Yu-Feng, YE Miao, JIANG Hui, ZHAO Chuan-Yan. Analysis of change in grassland area in the Heihe River basin over the past 30 years and prediction of future trends [J]. Acta Prataculturae Sinica, 2017, 26(6): 1-15. |
[15] | WANG Meng-Jia, SUN Rui, LIU Zhe, XIN Xiao-Ping, LIU Gang, ZHANG Lei, QIAO Chen. A study of grazing intensity in the Hulunbuir grasslands using remote sensing [J]. Acta Prataculturae Sinica, 2017, 26(6): 28-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||