Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (9): 129-138.DOI: 10.11686/cyxb2021379
Wei-dong CHEN1(), Yu-xia ZHANG1,2(), Qing-xin ZHANG1, Ting-yu LIU1, Xian-guo WANG3, Dong-ru WANG4
Received:
2021-10-19
Revised:
2021-12-06
Online:
2022-09-20
Published:
2022-08-12
Contact:
Yu-xia ZHANG
Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck[J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138.
刈割时间 Cutting time (Month-day) | Logistic回归方程 Logistic regression equation | 显著性 Significance | 半致死温度 Semi-lethal temperature (℃) |
---|---|---|---|
未刈割Uncut | y=1/(0.01352+0.11968×T1.13234) | 0.011 | -18.03 |
08-25 | y=1/(0.01360+0.09669×T1.12580) | 0.013 | -17.61 |
09-05 | y=1/(0.01340+0.08834×T1.12522) | 0.013 | -17.03 |
09-15 | y=1/(0.01331+0.09098×T1.13087) | 0.007 | -16.59 |
09-25 | y=1/(0.01239+0.05809×T1.11903) | 0.010 | -15.80 |
10-05 | y=1/(0.01295+0.06625×T1.12157) | 0.007 | -15.82 |
10-15 | y=1/(0.01338+0.09164×T1.12887) | 0.009 | -16.83 |
10-25 | y=1/(0.01324+0.09564×T1.13382) | 0.006 | -16.34 |
11-05 | y=1/(0.01302+0.09986×T1.13232) | 0.010 | -17.12 |
Table 1 The Logistic regression equation and LT50 of relative conductivity of alfalfa root-neck under different last cutting time
刈割时间 Cutting time (Month-day) | Logistic回归方程 Logistic regression equation | 显著性 Significance | 半致死温度 Semi-lethal temperature (℃) |
---|---|---|---|
未刈割Uncut | y=1/(0.01352+0.11968×T1.13234) | 0.011 | -18.03 |
08-25 | y=1/(0.01360+0.09669×T1.12580) | 0.013 | -17.61 |
09-05 | y=1/(0.01340+0.08834×T1.12522) | 0.013 | -17.03 |
09-15 | y=1/(0.01331+0.09098×T1.13087) | 0.007 | -16.59 |
09-25 | y=1/(0.01239+0.05809×T1.11903) | 0.010 | -15.80 |
10-05 | y=1/(0.01295+0.06625×T1.12157) | 0.007 | -15.82 |
10-15 | y=1/(0.01338+0.09164×T1.12887) | 0.009 | -16.83 |
10-25 | y=1/(0.01324+0.09564×T1.13382) | 0.006 | -16.34 |
11-05 | y=1/(0.01302+0.09986×T1.13232) | 0.010 | -17.12 |
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 0.46±0.02aD | 0.53±0.03abcD | 0.67±0.05bcdC | 0.90±0.04cdB | 1.00±0.08eAB | 1.05±0.01gA |
08-25 | 0.45±0.01aE | 0.46±0.03bcE | 0.62±0.03dD | 0.77±0.08dC | 1.13±0.03eB | 1.58±0.05eA |
09-05 | 0.41±0.03aD | 0.48±0.01bcD | 0.63±0.02cdC | 0.89±0.04cdB | 1.35±0.05dA | 1.42±0.04fA |
09-15 | 0.53±0.05aE | 0.54±0.03abcE | 0.79±0.04bD | 0.95±0.04abcC | 1.58±0.04bcB | 1.98±0.08cA |
09-25 | 0.50±0.03aD | 0.60±0.03abD | 0.96±0.02aC | 1.07±0.10aC | 1.59±0.05bB | 2.39±0.10bA |
10-05 | 0.48±0.01aF | 0.62±0.02aE | 0.76±0.03bcD | 1.04±0.07abC | 2.27±0.13aB | 2.90±0.10aA |
10-15 | 0.46±0.01aE | 0.47±0.02bcE | 0.71±0.03bcdD | 0.90±0.05cC | 1.44±0.05dB | 1.67±0.07eA |
10-25 | 0.44±0.02aE | 0.46±0.02cE | 0.69±0.02bcdD | 0.95±0.07abcC | 1.45±0.05cdB | 1.61±0.09eA |
11-05 | 0.50±0.04aE | 0.50±0.03abcE | 0.73±0.03bcdD | 0.92±0.03bcC | 1.41±0.04dB | 1.84±0.08dA |
Table 2 Changes of MDA content in alfalfa root-neck at different last cutting times under low temperature treatment (nmol·g-1 FW)
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 0.46±0.02aD | 0.53±0.03abcD | 0.67±0.05bcdC | 0.90±0.04cdB | 1.00±0.08eAB | 1.05±0.01gA |
08-25 | 0.45±0.01aE | 0.46±0.03bcE | 0.62±0.03dD | 0.77±0.08dC | 1.13±0.03eB | 1.58±0.05eA |
09-05 | 0.41±0.03aD | 0.48±0.01bcD | 0.63±0.02cdC | 0.89±0.04cdB | 1.35±0.05dA | 1.42±0.04fA |
09-15 | 0.53±0.05aE | 0.54±0.03abcE | 0.79±0.04bD | 0.95±0.04abcC | 1.58±0.04bcB | 1.98±0.08cA |
09-25 | 0.50±0.03aD | 0.60±0.03abD | 0.96±0.02aC | 1.07±0.10aC | 1.59±0.05bB | 2.39±0.10bA |
10-05 | 0.48±0.01aF | 0.62±0.02aE | 0.76±0.03bcD | 1.04±0.07abC | 2.27±0.13aB | 2.90±0.10aA |
10-15 | 0.46±0.01aE | 0.47±0.02bcE | 0.71±0.03bcdD | 0.90±0.05cC | 1.44±0.05dB | 1.67±0.07eA |
10-25 | 0.44±0.02aE | 0.46±0.02cE | 0.69±0.02bcdD | 0.95±0.07abcC | 1.45±0.05cdB | 1.61±0.09eA |
11-05 | 0.50±0.04aE | 0.50±0.03abcE | 0.73±0.03bcdD | 0.92±0.03bcC | 1.41±0.04dB | 1.84±0.08dA |
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 109.87±1.90aF | 126.69±6.06aE | 162.05±2.36aD | 194.72±4.88abC | 235.08±7.61aB | 261.62±11.13abA |
08-25 | 110.20±4.78aF | 127.63±3.43aE | 153.35±7.23abD | 205.06±4.37aC | 229.83±10.31aB | 249.36±8.47bcA |
09-05 | 108.09±4.16aD | 118.14±5.88aD | 148.32±3.17abcC | 192.83±2.78abB | 205.23±11.04bB | 236.28±10.58cA |
09-15 | 116.38±10.24aE | 123.46±7.98aE | 143.08±4.96bcD | 182.61±1.89bC | 204.92±3.91bB | 238.92±10.94cA |
09-25 | 106.33±2.33aD | 126.14±5.68aC | 131.50±3.36cC | 160.17±3.49cB | 202.45±6.09bA | 204.48±10.44dA |
10-05 | 104.39±2.65aE | 113.62±5.96aE | 143.53±6.16bcD | 181.92±4.21bC | 209.20±8.57bB | 273.26±7.04aA |
10-15 | 103.37±7.42aE | 119.10±5.18aE | 148.63±4.15abcD | 186.65±2.40bC | 229.71±8.09aB | 257.07±12.29abA |
10-25 | 109.68±2.08aD | 112.21±5.66aD | 146.00±3.09abcC | 191.85±4.13abB | 207.41±10.53bAB | 211.57±10.31dA |
11-05 | 115.56±3.70aD | 114.19±1.20aD | 134.83±5.97cC | 191.49±3.60abB | 227.29±9.80aA | 239.51±8.77cA |
Table 3 Changes of superoxide dismutase activity in alfalfa root-neck with different last cutting time under low temperature treatment (U·g-1 FW)
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 109.87±1.90aF | 126.69±6.06aE | 162.05±2.36aD | 194.72±4.88abC | 235.08±7.61aB | 261.62±11.13abA |
08-25 | 110.20±4.78aF | 127.63±3.43aE | 153.35±7.23abD | 205.06±4.37aC | 229.83±10.31aB | 249.36±8.47bcA |
09-05 | 108.09±4.16aD | 118.14±5.88aD | 148.32±3.17abcC | 192.83±2.78abB | 205.23±11.04bB | 236.28±10.58cA |
09-15 | 116.38±10.24aE | 123.46±7.98aE | 143.08±4.96bcD | 182.61±1.89bC | 204.92±3.91bB | 238.92±10.94cA |
09-25 | 106.33±2.33aD | 126.14±5.68aC | 131.50±3.36cC | 160.17±3.49cB | 202.45±6.09bA | 204.48±10.44dA |
10-05 | 104.39±2.65aE | 113.62±5.96aE | 143.53±6.16bcD | 181.92±4.21bC | 209.20±8.57bB | 273.26±7.04aA |
10-15 | 103.37±7.42aE | 119.10±5.18aE | 148.63±4.15abcD | 186.65±2.40bC | 229.71±8.09aB | 257.07±12.29abA |
10-25 | 109.68±2.08aD | 112.21±5.66aD | 146.00±3.09abcC | 191.85±4.13abB | 207.41±10.53bAB | 211.57±10.31dA |
11-05 | 115.56±3.70aD | 114.19±1.20aD | 134.83±5.97cC | 191.49±3.60abB | 227.29±9.80aA | 239.51±8.77cA |
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 516.70±29.41aD | 654.90±37.23aC | 637.60±20.65bcC | 746.30±23.49abB | 827.60±24.51aA | 692.40±25.78bcBC |
08-25 | 494.00±19.08abD | 525.80±11.22cdD | 727.70±17.32aB | 655.70±11.39dC | 836.60±20.24aA | 795.00±41.52aAB |
09-05 | 414.45±46.80cD | 601.00±32.82abC | 737.50±20.46aB | 729.60±13.23abcdB | 853.70±15.38aA | 753.60±35.54abB |
09-15 | 417.00±24.72cD | 501.80±24.25cdC | 668.40±16.27abB | 766.00±15.91aA | 795.30±28.57aA | 775.80±30.67aA |
09-25 | 406.75±40.49cD | 466.00±30.80dD | 648.70±22.27bcC | 762.00±21.65abB | 847.10±29.98aA | 742.80±9.20abB |
10-05 | 463.20±17.55abcE | 521.50±35.37cdDE | 581.70±53.95cCD | 732.20±18.85abcB | 803.40±18.18aA | 636.50±16.52cC |
10-15 | 410.00±42.94cE | 531.00±15.88bcdD | 623.20±19.84bcC | 755.02±34.90abAB | 806.90±25.36aA | 697.60±14.66bcB |
10-25 | 423.55±41.72bcD | 545.30±16.59bcC | 663.60±21.61abB | 671.00±81.99cdB | 833.90±3.97aA | 656.90±12.16cB |
11-05 | 501.40±27.92aC | 637.50±15.79aB | 647.00±26.86bcB | 691.20±57.01bcdB | 803.80±32.30aA | 684.70±23.07bcB |
Table 4 Changes of peroxidase activity in alfalfa root-neck with different last cutting time under low temperature treatment (U·min-1·g-1 FW)
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 516.70±29.41aD | 654.90±37.23aC | 637.60±20.65bcC | 746.30±23.49abB | 827.60±24.51aA | 692.40±25.78bcBC |
08-25 | 494.00±19.08abD | 525.80±11.22cdD | 727.70±17.32aB | 655.70±11.39dC | 836.60±20.24aA | 795.00±41.52aAB |
09-05 | 414.45±46.80cD | 601.00±32.82abC | 737.50±20.46aB | 729.60±13.23abcdB | 853.70±15.38aA | 753.60±35.54abB |
09-15 | 417.00±24.72cD | 501.80±24.25cdC | 668.40±16.27abB | 766.00±15.91aA | 795.30±28.57aA | 775.80±30.67aA |
09-25 | 406.75±40.49cD | 466.00±30.80dD | 648.70±22.27bcC | 762.00±21.65abB | 847.10±29.98aA | 742.80±9.20abB |
10-05 | 463.20±17.55abcE | 521.50±35.37cdDE | 581.70±53.95cCD | 732.20±18.85abcB | 803.40±18.18aA | 636.50±16.52cC |
10-15 | 410.00±42.94cE | 531.00±15.88bcdD | 623.20±19.84bcC | 755.02±34.90abAB | 806.90±25.36aA | 697.60±14.66bcB |
10-25 | 423.55±41.72bcD | 545.30±16.59bcC | 663.60±21.61abB | 671.00±81.99cdB | 833.90±3.97aA | 656.90±12.16cB |
11-05 | 501.40±27.92aC | 637.50±15.79aB | 647.00±26.86bcB | 691.20±57.01bcdB | 803.80±32.30aA | 684.70±23.07bcB |
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 60.94±4.20aD | 72.96±1.99aC | 83.17±6.54aB | 116.50±2.76aA | 65.07±3.55bcD | 67.18±2.07bcCD |
08-25 | 57.47±1.71aD | 70.12±1.24abC | 77.33±10.96abBC | 122.55±3.60aA | 71.59±2.72abBC | 78.19±3.28aB |
09-05 | 54.14±2.17aE | 61.65±4.29cDE | 79.74±2.11abB | 118.00±5.42aA | 68.74±2.10abCD | 74.23±1.94abBC |
09-15 | 56.89±2.68aD | 68.97±4.48abcBC | 73.83±2.38bcB | 98.67±3.74deA | 56.63±1.81deD | 61.54±3.88cdCD |
09-25 | 58.88±3.22aD | 68.33±1.97abcC | 77.25±1.79abB | 98.67±0.82deA | 75.47±1.78aBC | 58.19±2.13dD |
10-05 | 57.58±2.82aCD | 61.17±2.57cBC | 67.96±2.77cB | 96.55±2.09eA | 53.33±3.05eD | 65.02±2.05cdBC |
10-15 | 58.00±2.00aD | 71.99±1.77abC | 80.41±3.37abB | 107.55±3.90bcA | 55.72±1.60deD | 79.47±2.19aBC |
10-25 | 53.33±2.62aD | 72.63±1.37abBC | 77.79±1.92abB | 114.72±2.96abA | 57.00±4.74cdeD | 68.57±1.18bcC |
11-05 | 52.92±1.67aD | 64.55±1.48bcC | 73.68±1.49bcB | 106.26±2.36cdA | 63.52±1.66bcdD | 46.35±2.44eD |
Table 5 Changes of catalase activity in alfalfa root-neck with different last cutting time under low temperature treatment (U·min-1·g-1 FW)
刈割时间 Cutting time (Month-day) | 处理温度 Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
未刈割Uncut | 60.94±4.20aD | 72.96±1.99aC | 83.17±6.54aB | 116.50±2.76aA | 65.07±3.55bcD | 67.18±2.07bcCD |
08-25 | 57.47±1.71aD | 70.12±1.24abC | 77.33±10.96abBC | 122.55±3.60aA | 71.59±2.72abBC | 78.19±3.28aB |
09-05 | 54.14±2.17aE | 61.65±4.29cDE | 79.74±2.11abB | 118.00±5.42aA | 68.74±2.10abCD | 74.23±1.94abBC |
09-15 | 56.89±2.68aD | 68.97±4.48abcBC | 73.83±2.38bcB | 98.67±3.74deA | 56.63±1.81deD | 61.54±3.88cdCD |
09-25 | 58.88±3.22aD | 68.33±1.97abcC | 77.25±1.79abB | 98.67±0.82deA | 75.47±1.78aBC | 58.19±2.13dD |
10-05 | 57.58±2.82aCD | 61.17±2.57cBC | 67.96±2.77cB | 96.55±2.09eA | 53.33±3.05eD | 65.02±2.05cdBC |
10-15 | 58.00±2.00aD | 71.99±1.77abC | 80.41±3.37abB | 107.55±3.90bcA | 55.72±1.60deD | 79.47±2.19aBC |
10-25 | 53.33±2.62aD | 72.63±1.37abBC | 77.79±1.92abB | 114.72±2.96abA | 57.00±4.74cdeD | 68.57±1.18bcC |
11-05 | 52.92±1.67aD | 64.55±1.48bcC | 73.68±1.49bcB | 106.26±2.36cdA | 63.52±1.66bcdD | 46.35±2.44eD |
指标 Index | 处理温度Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
丙二醛Malondialdehyde (MDA) | 0.33 | 0.58 | 0.71* | 0.83** | 0.84** | 0.85** |
过氧化物酶Peroxidase (POD) | -0.65* | -0.71* | -0.42 | 0.27 | -0.10 | -0.30 |
过氧化氢酶Catalase (CAT) | -0.16 | -0.34 | -0.61 | -0.75* | -0.25 | -0.25 |
超氧化物歧化酶Superoxide dismutase (SOD) | -0.34 | -0.41 | -0.73* | -0.77** | -0.78** | -0.37 |
Table 6 Correlation between the semi-lethal temperature of alfalfa root-neck and its antioxidant system in different last cutting times
指标 Index | 处理温度Treatment temperature (℃) | |||||
---|---|---|---|---|---|---|
4 | -10 | -15 | -20 | -25 | -30 | |
丙二醛Malondialdehyde (MDA) | 0.33 | 0.58 | 0.71* | 0.83** | 0.84** | 0.85** |
过氧化物酶Peroxidase (POD) | -0.65* | -0.71* | -0.42 | 0.27 | -0.10 | -0.30 |
过氧化氢酶Catalase (CAT) | -0.16 | -0.34 | -0.61 | -0.75* | -0.25 | -0.25 |
超氧化物歧化酶Superoxide dismutase (SOD) | -0.34 | -0.41 | -0.73* | -0.77** | -0.78** | -0.37 |
1 | Mccallum M H, Connor D J, O’leary G J. Water use by lucerne and effect on crops in the Victoria Wimmera. Australian Journal of Agricultural Research, 2001, 52(2): 193-201. |
2 | Wang X, Liu X J, Zhao Y J, et al. Nitrogen utilization and interspecific feedback characteristics of intercropped alfalfa/oat with different root barriers. Acta Prataculturae Sinica, 2021, 30(8): 73-85. |
汪雪, 刘晓静, 赵雅姣, 等. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究. 草业学报, 2021, 30(8): 73-85. | |
3 | Wang Y F, Zhang J Q, Ma Q Y, et al. Response of aeolian desertification to regional climate change in Horqin sandy land at begining of 21st century. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 177-185. |
王永芳, 张继权, 马齐云, 等. 21世纪初科尔沁沙地沙漠化对区域气候变化的响应. 农业工程学报, 2016, 32(S2): 177-185. | |
4 | Zhao X Y, Zhang C M, Zuo X A, et al. Challenge to the desertification reversion in Horqin Sandy Land. Chinese Journal of Applied Ecology, 2009, 20(7): 1559-1564. |
赵学勇, 张春民, 左小安, 等. 科尔沁沙地沙漠化土地恢复面临的挑战. 应用生态学报, 2009, 20(7): 1559-1564. | |
5 | Meng L L, Hu J H, Wan P, et al. Desertification issue caused by three productive modes in the Horqin regions. Pratacultural Science, 2011, 28(1): 39-46. |
孟利利, 胡敬华, 万平, 等. 科尔沁地区3类生产方式下的荒漠化问题研究. 草业科学, 2011, 28(1): 39-46. | |
6 | Liang Q W, Yang X F, Narisu, et al. SWOT analysis and suggestions on development of alfalfa industry in Ar Horqin Banner. Heilongjiang Animal Science and Veterinary Medicine, 2019(22): 7-12. |
梁庆伟, 杨秀芳, 娜日苏, 等. 阿鲁科尔沁旗紫花苜蓿产业发展的SWOT分析与建议. 黑龙江畜牧兽医, 2019(22): 7-12. | |
7 | Chu J M, Wang Q, Fan Z P, et al. Effects of soil moisture condition and freeze-thaw cycle on soil respiration of different land-use types in Horqin Sandy Land. Chinese Journal of Ecology, 2013, 32(6): 1399-1404. |
褚建民, 王琼, 范志平, 等. 水分条件和冻融循环对科尔沁沙地不同土地利用方式土壤呼吸的影响. 生态学杂志, 2013, 32(6): 1399-1404. | |
8 | Zhang Y X, Wang X G, Tian Y L, et al. Effect of sowing date on cold resistance of different alfalfa varieties in Horqin sandy land. Acta Prataculturae Sinica, 2020, 29(4): 73-80. |
张玉霞, 王显国, 田永雷, 等. 科尔沁沙地播种时期对不同紫花苜蓿品种抗寒性的影响. 草业学报, 2020, 29(4): 73-80. | |
9 | Zhu A M, Han G D, Zhang Y X, et al. Influence and analysis of different sowing time on overwintering rate of alfalfa. Acta Agrestia Sinica, 2020, 28(2): 446-453. |
朱爱民, 韩国栋, 张玉霞, 等. 不同播种时期对紫花苜蓿越冬率影响及分析. 草地学报, 2020, 28(2): 446-453. | |
10 | Li X L, Wan L Q. Alfalfa fall dormancy and its relationship to winter hardiness and yield. Acta Prataculturae Sinica, 2004, 13(3): 57-61. |
李向林, 万里强. 苜蓿秋眠性及其与抗寒性和产量的关系. 草业学报, 2004, 13(3): 57-61. | |
11 | Mckenzie J S, Mclean G E. Some factors associated with injury to alfalfa during the 1977-1978 winter at Beaverlodge, Alberta. Canadian Journal of Plant Science, 1980, 60(1): 103-112. |
12 | Paquin R, Mehugs G R. Influence of soil moisture on cold tolerance of alfalfa. Canadian Journal of Plant Science, 1980(60): 139-147. |
13 | Bélanger G, Kunelius T, McKenzie D, et al. Fall cutting management affects yield and persistence of alfalfa in Atlantic Canada. Canadian Journal of Plant Science, 1999, 79: 57-63. |
14 | SchWab P M, Burner D K, Sheaffer C C, et al. Factor affecting a laboratory evaluation of alfalfa cold tolerance. Crop Science, 1996(36): 318-324. |
15 | Silkett V W, Megee C R, Rather H C. The effect of late summer and early fall cutting on crown bud formation and winter hardiness of alfalfa. Agronomy Journal, 1937, 29(1): 53-62. |
16 | Hanson C H. Alfalfa science and technology. Wisconsin: American Society of Agronomy, 1972: 489-490. |
17 | Tesar M B, Yager J L. Fall cutting of alfalfa in the North Central USA. Agronomy Journal, 1985, 77: 774-778. |
18 | Sheaffer C C, Wiersma J V, Warnes D D, et al. Fall cutting and alfalfa yield, persistence and quality. Canadian Journal of Plant Science, 1986, 66: 329-338. |
19 | Zha X, Mimaqiongla. Observation on the root system of four legumes. Pratacultural Science, 1987, 4(4): 56-57. |
扎西, 米玛穷拉. 四种豆科牧草根系的观测. 草业科学, 1987, 4(4): 56-57. | |
20 | Zhang Y X, Cong B M, Wang X G, et al. Correlation analysis of cold resistance and antioxidant enzyme activity in alfalfa roots. Acta Agrestia Sinica, 2021, 29(2): 244-249. |
张玉霞, 丛百明, 王显国, 等. 苜蓿抗寒性与根系抗氧化酶活性相关性分析. 草地学报, 2021, 29(2): 244-249. | |
21 | Sun H, Wang X G, Zhang Y X, et al. Study on the optimal fall harvesting period of alfalfa in Ar Horqin//Proceedings of Chinese grassland society. Beijing: China Agriculture Press, 2016: 1-8. |
孙浩, 王显国, 张玉霞, 等. 阿鲁科尔沁旗苜蓿适宜末次刈割期的研究//中国草学会论文集. 北京: 中国农业出版社, 2016: 1-8. | |
22 | Zou Q. Experimental guidance of plant physiology. Beijing: Higher Education Press, 2009: 129-174. |
邹琦. 植物生理学实验指导. 北京: 高等教育出版社, 2009: 129-174. | |
23 | Liu J, Xiang D Y, Chen J B, et al. Low temperature LT50 of three eucalyptus seedlings with electrical conductivity method and Logistic equation. Guangxi Forestry Science, 2009, 38(2): 75-78. |
刘建, 项东云, 陈健波, 等. 应用Logistic方程确定三种桉树的低温半致死温度. 广西林业科学, 2009, 38(2): 75-78. | |
24 | Liu Y P, Zhu Y L, Kang X Y, et al. Cold resistance determination of different type Magnolia grandiflora with synergistic electrical conductivity method and Logistic equation. Journal of Central South University of Forestry & Technology, 2012, 32(10): 69-71, 78. |
刘艳萍, 朱延林, 康向阳, 等. 电导法协同Logistic方程确定不同类型广玉兰的抗寒性. 中南林业科技大学学报, 2012, 32(10): 69-71, 78. | |
25 | Shen X H, Jiang C, Feng P, et al. Comparison of MDA content and antioxidant enzymes activity of several alfalfa roots in cold region. Crops, 2015(4): 88-91. |
申晓慧, 姜成, 冯鹏, 等. 寒区6个紫花苜蓿品种根系中MDA含量及抗氧化酶活性的比较研究. 作物杂志, 2015(4): 88-91. | |
26 | Zhu A M, Zhang Y X, Wang X G, et al. Comparison of cold resistance of 8 alfalfa varieties. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(1): 45-52. |
朱爱民, 张玉霞, 王显国, 等. 8个苜蓿品种抗寒性的比较. 西北农林科技大学学报(自然科学版), 2019, 47(1): 45-52. | |
27 | Theocharis A, Clément C, Barka E A. Physiological and molecular changes in plants grown at low temperatures. Planta, 2012, 235(6): 1091-1105. |
28 | Janská A, Maršík P, Zelenková S, et al. Cold stress and acclimation-what is important for metabolic adjustment? Plant Biology, 2010, 12(3): 395-405. |
29 | Hu Y, Cao J J, Liu P, et al. Protective role of tea polyphenols in combination against radiation-induced haematopoietic and biochemical alterations in mice. Phytotherapy Research, 2011, 25(12): 1761-1769. |
30 | Munnik T, Ligterink W, Meskiene I, et al. Distinct osmo‐sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant Journal, 1999, 20(3): 381-388. |
31 | Xu H Y, Zhen L L, Li Y Y, et al. Effect of freeze-drying environment on freezing tolerance of alfalfa crowns. Acta Agrestia Sinica, 2021, 29(4): 724-733. |
徐洪雨, 甄莉丽, 李钰莹, 等. 低温干旱环境对紫花苜蓿根颈耐寒性的影响. 草地学报, 2021, 29(4): 724-733. | |
32 | Cheng J H, Zhang M L, Wang C, et al. Effect of low temperature stress on physiological index of four strawberry varieties. Journal of Northeast Agricultural Sciences, 2021, 46(1): 85-88, 113. |
程嘉惠, 张梅丽, 王超, 等. 低温胁迫对4个草莓品种生理指标的影响. 东北农业科学, 2021, 46(1): 85-88, 113. | |
33 | Zhang X F, She M Z, Li H Y, et al. Growth promotion mechanisms of Flavobacterium succinicans and their physiological regulation on the growth and stress tolerance in Lolium perenne. Acta Agrestia Sinica, 2021, 29(8): 1704-1711. |
张新飞, 佘木子, 李晗玉, 等. 琥珀酸黄杆菌促生机理及其对多年生黑麦草生长和抗逆性的生理调控作用. 草地学报, 2021, 29(8): 1704-1711. | |
34 | Zhang X, Yang Y, Liu X Y, et al. Effect of exogenous salicylic acid on the antioxidant enzyme activities and fatty acid profiles in seashore paspalum under low temperature stress. Acta Prataculturae Sinica, 2020, 29(1): 117-124. |
张翔, 杨勇, 刘学勇, 等. 外源水杨酸对低温胁迫下海滨雀稗抗寒生理特征的影响. 草业学报, 2020, 29(1): 117-124. | |
35 | Li C Y, Xu W, Liu L W, et al. Changes of endogenous hormones contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage. Chinese Journal of Applied Ecology, 2015, 26(7): 2015-2022. |
李春燕, 徐雯, 刘立伟, 等. 低温条件下拔节期小麦叶片内源激素含量和抗氧化酶活性的变化. 应用生态学报, 2015, 26(7): 2015-2022. | |
36 | Qi C Y, Liu F Q, Liu J L, et al. Cluster analysis of antioxidant enzymes and soluble protein of alfalfa hybrid under low temperature stress. Chinese Journal of Grassland, 2017, 39(2): 53-58, 70. |
亓春宇, 刘凤歧, 刘杰淋, 等. 低温胁迫下紫花苜蓿杂交代抗氧化酶及可溶性蛋白的动态聚类分析. 中国草地学报, 2017, 39(2): 53-58, 70. |
[1] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[2] | Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels [J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128. |
[3] | Jian-tao ZHAO, Ya-fei YUE, Qian-bing ZHANG, Chun-hui MA. Relationship between cold resistance of alfalfa, degree of fall-dormancy and snow cover thickness in Northern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 24-34. |
[4] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
[5] | Xue-meng WANG, Xin HE, Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis [J]. Acta Prataculturae Sinica, 2022, 31(7): 197-208. |
[6] | Huan ZHANG, Yi-xiao MU, Gui-jie ZHANG. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage [J]. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
[7] | Hong-ren SUN, Xian-guo WANG, Yao-jun BU, Nan QIAO, Bo REN. Preliminary study of a sufficiency index of soil N and recommended N fertilizer application rates for alfalfa in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2022, 31(4): 32-42. |
[8] | Li-min GAO, Chun CHEN, Yi-xin SHEN. Effects of nitrogen and phosphorus fertilizer rates on forage dry matter yield and regrowth of alfalfa in seasonal cultivation systems [J]. Acta Prataculturae Sinica, 2022, 31(4): 43-52. |
[9] | Cheng-ming OU, Mei-qi ZHAO, Ming SUN, Pei-sheng MAO. Effects of ascorbic acid and salicylic acid pelleting on germination characteristics in alfalfa seeds under NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 93-101. |
[10] | Chang-chun TONG, Xiao-jing LIU, Yong WU, Ya-jiao ZHAO, Jing WANG. Regulation of endogenous isoflavones on alfalfa nodulation and nitrogen fixation and nitrogen use efficiency [J]. Acta Prataculturae Sinica, 2022, 31(3): 124-135. |
[11] | Yu-huan WU, Zi-kui WANG, Ya-nan LIU, Qian-hu MA. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping [J]. Acta Prataculturae Sinica, 2022, 31(3): 144-155. |
[12] | Li-ying LIU, Yu-shan JIA, Wen-qiang FAN, Qiang YIN, Qi-ming CHENG, Zhi-jun WANG. An investigation of the main environmental factors affecting the natural drying of alfalfa for hay, and hay quality [J]. Acta Prataculturae Sinica, 2022, 31(2): 121-132. |
[13] | Bin WANG, Yu-qi YANG, Man-you LI, Wang NI, Yi-rui HAI, Shun-xiang ZHANG, Xiu DONG, Jian LAN. The effect of sowing rate and row spacing on the yield and quality of alfalfa in the Ningxia Yellow River irrigation area [J]. Acta Prataculturae Sinica, 2022, 31(2): 147-158. |
[14] | Hui-hui ZHANG, Shang-li SHI, Bei WU, Zi-li LI, Xiao-long LI. A study of yield interactions in mixed sowings of alfalfa and three perennial grasses [J]. Acta Prataculturae Sinica, 2022, 31(2): 159-170. |
[15] | Jie BAI, Zhen-feng ZANG, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Ke-zhen WANG, Yang QU, Shu-bin HE. Lipid peroxidation and carbon and nitrogen characteristics in leaves and roots of alfalfa (Medicago sativa) in response to water and nitrogen addition [J]. Acta Prataculturae Sinica, 2022, 31(2): 213-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||