Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (9): 168-182.DOI: 10.11686/cyxb2021347
Li-yuan HOU1(), Ju-qing JIA2, Xiao-dong JIANG2, Yu-chuan WANG1, Jing ZHAO1, Yu-huai CHEN3, Sheng-xiong HUANG4(), Shen-jie WU1(), Yan-hui DONG1()
Received:
2021-09-14
Revised:
2021-12-15
Online:
2022-09-20
Published:
2022-08-12
Contact:
Sheng-xiong HUANG,Shen-jie WU,Yan-hui DONG
Li-yuan HOU, Ju-qing JIA, Xiao-dong JIANG, Yu-chuan WANG, Jing ZHAO, Yu-huai CHEN, Sheng-xiong HUANG, Shen-jie WU, Yan-hui DONG. The evolution, characterization and transcriptional responses to multiple stresses of the WRKY genes in Chenopodium quinoa[J]. Acta Prataculturae Sinica, 2022, 31(9): 168-182.
基因名 Gene name | 原始数据库编号 Locus name | 染色体定位 Chromosome location | 蛋白序列长度 Protein sequence length (aa) | WRKY结构域数目 WRKY domain number | 分组 Group |
---|---|---|---|---|---|
CqWRKY01 | AUR62021917-RA | Chr01:38208086-38211722 | 554 | 1 | Ⅱ-a |
CqWRKY02 | AUR62040662-RA | Chr01:41775764-41783826 | 551 | 2 | Ⅰ |
CqWRKY03 | AUR62024943-RA | Chr01:43875072-43877592 | 169 | 1 | NG |
CqWRKY04 | AUR62034455-RA | Chr01:57959517-57963772 | 465 | 2 | Ⅰ |
CqWRKY05 | AUR62009104-RA | Chr01:107241991-107242734 | 163 | 1 | Ⅱ-c |
CqWRKY06 | AUR62009363-RA | Chr01:110924944-110929629 | 491 | 2 | Ⅰ |
CqWRKY07 | AUR62023400-RA | Chr01:113698649-113699630 | 84 | 1 | NG |
CqWRKY08 | AUR62004411-RA | Chr01:118507284-118509071 | 238 | 1 | Ⅱ-e |
CqWRKY09 | AUR62004415-RA | Chr01:118526620-118532476 | 197 | 1 | NG |
CqWRKY10 | AUR62004466-RA | Chr01:119081433-119085048 | 373 | 1 | Ⅲ |
CqWRKY11 | AUR62041828-RA | Chr01:123569655-123571740 | 298 | 1 | Ⅱ-e |
CqWRKY12 | AUR62027582-RA | Chr01:130910533-130928523 | 354 | 1 | Ⅱ-c |
CqWRKY13 | AUR62012739-RA | Chr02:1822446-1825621 | 462 | 1 | Ⅱ-a |
CqWRKY14 | AUR62039475-RA | Chr02:9252429-9253764 | 168 | 1 | NG |
CqWRKY15 | AUR62017056-RA | Chr02:21804094-21811919 | 580 | 2 | Ⅰ |
CqWRKY16 | AUR62030160-RA | Chr02:30059138-30065792 | 388 | 1 | Ⅱ-e |
CqWRKY17 | AUR62030260-RA | Chr02:34031077-34038129 | 252 | 1 | Ⅱ-c |
CqWRKY18 | AUR62043687-RA | Chr03:29405201-29406855 | 302 | 1 | Ⅱ-d |
CqWRKY19 | AUR62002702-RA | Chr03:49414886-49421542 | 383 | 1 | Ⅱ-e |
CqWRKY20 | AUR62012478-RA | Chr03:75647735-75651312 | 299 | 1 | Ⅱ-b |
CqWRKY21 | AUR62031604-RA | Chr04:1501766-1505059 | 310 | 1 | Ⅱ-b |
CqWRKY22 | AUR62023044-RA | Chr04:8688937-8691771 | 462 | 2 | Ⅰ |
CqWRKY23 | AUR62020567-RA | Chr04:14876253-14877758 | 190 | 1 | Ⅱ-c |
CqWRKY24 | AUR62018123-RA | Chr04:35199821-35203349 | 456 | 2 | Ⅰ |
CqWRKY25 | AUR62030596-RA | Chr04:48810761-48812831 | 173 | 1 | NG |
CqWRKY26 | AUR62037715-RA | Chr04:50908753-50909904 | 174 | 1 | Ⅱ-d |
CqWRKY27 | AUR62015908-RA | Chr05:435350-438098 | 329 | 1 | Ⅲ |
CqWRKY28 | AUR62015815-RA | Chr05:1471437-1476258 | 430 | 1 | Ⅱ-a |
CqWRKY29 | AUR62004902-RA | Chr05:66860908-66862973 | 304 | 1 | Ⅱ-d |
CqWRKY30 | AUR62006655-RA | Chr05:77289532-77293737 | 755 | 2 | Ⅰ |
CqWRKY31 | AUR62019339-RA | Chr05:79912043-79914657 | 242 | 1 | Ⅲ |
CqWRKY32 | AUR62028825-RA | Chr06:3898935-3901720 | 454 | 1 | Ⅱ-a |
CqWRKY33 | AUR62032850-RA | Chr06:6105039-6109784 | 486 | 2 | Ⅰ |
CqWRKY34 | AUR62003119-RA | Chr06:11861700-11866570 | 314 | 1 | Ⅱ-c |
CqWRKY35 | AUR62017414-RA | Chr06:42111914-42114982 | 507 | 2 | Ⅰ |
CqWRKY36 | AUR62006150-RA | Chr07:72108787-72118523 | 562 | 1 | Ⅲ |
CqWRKY37 | AUR62016230-RA | Chr07:75538327-75540007 | 317 | 1 | Ⅱ-c |
CqWRKY38 | AUR62018478-RA | Chr07:85862994-85870698 | 1178 | 1 | Ⅲ |
CqWRKY39 | AUR62006298-RA | Chr07:88930361-88933011 | 454 | 2 | Ⅰ |
CqWRKY40 | AUR62006427-RA | Chr07:90989279-90992003 | 325 | 1 | Ⅲ |
CqWRKY41 | AUR62036235-RA | Chr07:112281685-112283961 | 418 | 2 | Ⅰ |
CqWRKY42 | AUR62011775-RA | Chr08:988047-988819 | 102 | 1 | Ⅱ-c |
CqWRKY43 | AUR62011795-RA | Chr08:1181350-1182524 | 211 | 1 | Ⅱ-e |
CqWRKY44 | AUR62011926-RA | Chr08:2678718-2680825 | 294 | 1 | NG |
CqWRKY45 | AUR62021729-RA | Chr08:8545709-8559517 | 509 | 1 | Ⅱ-a |
CqWRKY46 | AUR62032212-RA | Chr08:14272865-14273429 | 143 | 1 | NG |
CqWRKY47 | AUR62029580-RA | Chr08:27816081-27826652 | 222 | 1 | NG |
CqWRKY48 | AUR62003648-RA | Chr09:4713878-4717289 | 244 | 1 | Ⅱ-c |
CqWRKY49 | AUR62003924-RA | Chr09:7798854-7801974 | 290 | 1 | Ⅱ-d |
CqWRKY50 | AUR62024642-RA | Chr09:11682383-11691897 | 424 | 1 | Ⅱ-e |
CqWRKY51 | AUR62024618-RA | Chr09:11982778-11983536 | 146 | 1 | Ⅱ-c |
CqWRKY52 | AUR62032241-RA | Chr09:13313236-13317450 | 349 | 1 | NG |
CqWRKY53 | AUR62023484-RA | Chr10:2033001-2036555 | 371 | 1 | Ⅲ |
CqWRKY54 | AUR62022617-RA | Chr10:4697680-4699188 | 283 | 1 | Ⅱ-e |
CqWRKY55 | AUR62022621-RA | Chr10:4717142-4718114 | 212 | 1 | Ⅱ-c |
CqWRKY56 | AUR62013751-RA | Chr10:13605433-13612166 | 129 | 1 | NG |
CqWRKY57 | AUR62038804-RA | Chr10:34116524-34117756 | 231 | 1 | Ⅱ-d |
CqWRKY58 | AUR62020945-RA | Chr11:1752595-1762500 | 1162 | 1 | Ⅲ |
CqWRKY59 | AUR62039260-RA | Chr11:74163714-74165384 | 388 | 1 | Ⅱ-c |
CqWRKY60 | AUR62000311-RA | Chr12:3584311-3588565 | 706 | 2 | Ⅰ |
CqWRKY61 | AUR62001049-RA | Chr12:13518617-13520608 | 333 | 1 | Ⅱ-d |
CqWRKY62 | AUR62020401-RA | Chr12:55639586-55644905 | 481 | 1 | Ⅱ-a |
CqWRKY63 | AUR62020314-RA | Chr12:56890585-56891458 | 129 | 1 | Ⅲ |
CqWRKY64 | AUR62020288-RA | Chr12:57347810-57348994 | 253 | 1 | Ⅱ-d |
CqWRKY65 | AUR62007485-RA | Chr13:589572-591021 | 286 | 1 | Ⅱ-d |
CqWRKY66 | AUR62010821-RA | Chr13:7153914-7155613 | 361 | 1 | Ⅲ |
CqWRKY67 | AUR62010755-RA | Chr13:8078579-8080104 | 297 | 1 | Ⅱ-e |
CqWRKY68 | AUR62007938-RA | Chr14:2701764-2706207 | 224 | 1 | Ⅱ-c |
CqWRKY69 | AUR62037832-RA | Chr14:45048099-45055461 | 1058 | 2 | Ⅰ |
CqWRKY70 | AUR62005736-RA | Chr14:56112914-56116278 | 422 | 1 | Ⅱ-a |
CqWRKY71 | AUR62005858-RA | Chr14:58268244-58273300 | 487 | 2 | Ⅰ |
CqWRKY72 | AUR62026996-RA | Chr15:268971-270747 | 296 | 1 | Ⅱ-b |
CqWRKY73 | AUR62017958-RA | Chr15:21074268-21077689 | 242 | 1 | Ⅱ-c |
CqWRKY74 | AUR62024046-RA | Chr15:26625857-26629365 | 245 | 1 | NG |
CqWRKY75 | AUR62015063-RA | Chr15:57542216-57547401 | 500 | 2 | Ⅰ |
CqWRKY76 | AUR62008370-RA | Chr16:3731574-3745535 | 675 | 1 | Ⅱ-a |
CqWRKY77 | AUR62038863-RA | Chr16:13862997-13866799 | 589 | 1 | Ⅱ-a |
CqWRKY78 | AUR62038851-RA | Chr16:14451516-14451878 | 120 | 1 | NG |
CqWRKY79 | AUR62019754-RA | Chr16:70647711-70649134 | 296 | 1 | Ⅱ-e |
CqWRKY80 | AUR62019820-RA | Chr16:71712382-71714094 | 361 | 1 | Ⅲ |
CqWRKY81 | AUR62039941-RA | Chr16:78777309-78778496 | 276 | 1 | Ⅱ-d |
CqWRKY82 | AUR62026343-RA | Chr17:57960771-57963505 | 446 | 2 | Ⅰ |
CqWRKY83 | AUR62029778-RA | Chr17:60158005-60160227 | 323 | 1 | Ⅲ |
CqWRKY84 | AUR62030836-RA | Chr17:83307838-83309577 | 289 | 1 | Ⅱ-b |
CqWRKY85 | AUR62040434-RA | Chr18:4550853-4554429 | 230 | 1 | NG |
CqWRKY86 | AUR62009710-RA | Chr18:27460868-27463405 | 492 | 2 | Ⅰ |
CqWRKY87 | AUR62021101-RA | Chr00:34656729-34658003 | 356 | 1 | Ⅱ-e |
CqWRKY88 | AUR62038238-RA | Chr00:134168426-134171808 | 338 | 1 | Ⅱ-d |
CqWRKY89 | AUR62017520-RA | Chr00:135537911-135543127 | 500 | 2 | Ⅰ |
CqWRKY90 | AUR62044535-RA | Chr00:163451415-163456457 | 138 | 1 | NG |
Table 1 The WRKY family members in C. quinoa
基因名 Gene name | 原始数据库编号 Locus name | 染色体定位 Chromosome location | 蛋白序列长度 Protein sequence length (aa) | WRKY结构域数目 WRKY domain number | 分组 Group |
---|---|---|---|---|---|
CqWRKY01 | AUR62021917-RA | Chr01:38208086-38211722 | 554 | 1 | Ⅱ-a |
CqWRKY02 | AUR62040662-RA | Chr01:41775764-41783826 | 551 | 2 | Ⅰ |
CqWRKY03 | AUR62024943-RA | Chr01:43875072-43877592 | 169 | 1 | NG |
CqWRKY04 | AUR62034455-RA | Chr01:57959517-57963772 | 465 | 2 | Ⅰ |
CqWRKY05 | AUR62009104-RA | Chr01:107241991-107242734 | 163 | 1 | Ⅱ-c |
CqWRKY06 | AUR62009363-RA | Chr01:110924944-110929629 | 491 | 2 | Ⅰ |
CqWRKY07 | AUR62023400-RA | Chr01:113698649-113699630 | 84 | 1 | NG |
CqWRKY08 | AUR62004411-RA | Chr01:118507284-118509071 | 238 | 1 | Ⅱ-e |
CqWRKY09 | AUR62004415-RA | Chr01:118526620-118532476 | 197 | 1 | NG |
CqWRKY10 | AUR62004466-RA | Chr01:119081433-119085048 | 373 | 1 | Ⅲ |
CqWRKY11 | AUR62041828-RA | Chr01:123569655-123571740 | 298 | 1 | Ⅱ-e |
CqWRKY12 | AUR62027582-RA | Chr01:130910533-130928523 | 354 | 1 | Ⅱ-c |
CqWRKY13 | AUR62012739-RA | Chr02:1822446-1825621 | 462 | 1 | Ⅱ-a |
CqWRKY14 | AUR62039475-RA | Chr02:9252429-9253764 | 168 | 1 | NG |
CqWRKY15 | AUR62017056-RA | Chr02:21804094-21811919 | 580 | 2 | Ⅰ |
CqWRKY16 | AUR62030160-RA | Chr02:30059138-30065792 | 388 | 1 | Ⅱ-e |
CqWRKY17 | AUR62030260-RA | Chr02:34031077-34038129 | 252 | 1 | Ⅱ-c |
CqWRKY18 | AUR62043687-RA | Chr03:29405201-29406855 | 302 | 1 | Ⅱ-d |
CqWRKY19 | AUR62002702-RA | Chr03:49414886-49421542 | 383 | 1 | Ⅱ-e |
CqWRKY20 | AUR62012478-RA | Chr03:75647735-75651312 | 299 | 1 | Ⅱ-b |
CqWRKY21 | AUR62031604-RA | Chr04:1501766-1505059 | 310 | 1 | Ⅱ-b |
CqWRKY22 | AUR62023044-RA | Chr04:8688937-8691771 | 462 | 2 | Ⅰ |
CqWRKY23 | AUR62020567-RA | Chr04:14876253-14877758 | 190 | 1 | Ⅱ-c |
CqWRKY24 | AUR62018123-RA | Chr04:35199821-35203349 | 456 | 2 | Ⅰ |
CqWRKY25 | AUR62030596-RA | Chr04:48810761-48812831 | 173 | 1 | NG |
CqWRKY26 | AUR62037715-RA | Chr04:50908753-50909904 | 174 | 1 | Ⅱ-d |
CqWRKY27 | AUR62015908-RA | Chr05:435350-438098 | 329 | 1 | Ⅲ |
CqWRKY28 | AUR62015815-RA | Chr05:1471437-1476258 | 430 | 1 | Ⅱ-a |
CqWRKY29 | AUR62004902-RA | Chr05:66860908-66862973 | 304 | 1 | Ⅱ-d |
CqWRKY30 | AUR62006655-RA | Chr05:77289532-77293737 | 755 | 2 | Ⅰ |
CqWRKY31 | AUR62019339-RA | Chr05:79912043-79914657 | 242 | 1 | Ⅲ |
CqWRKY32 | AUR62028825-RA | Chr06:3898935-3901720 | 454 | 1 | Ⅱ-a |
CqWRKY33 | AUR62032850-RA | Chr06:6105039-6109784 | 486 | 2 | Ⅰ |
CqWRKY34 | AUR62003119-RA | Chr06:11861700-11866570 | 314 | 1 | Ⅱ-c |
CqWRKY35 | AUR62017414-RA | Chr06:42111914-42114982 | 507 | 2 | Ⅰ |
CqWRKY36 | AUR62006150-RA | Chr07:72108787-72118523 | 562 | 1 | Ⅲ |
CqWRKY37 | AUR62016230-RA | Chr07:75538327-75540007 | 317 | 1 | Ⅱ-c |
CqWRKY38 | AUR62018478-RA | Chr07:85862994-85870698 | 1178 | 1 | Ⅲ |
CqWRKY39 | AUR62006298-RA | Chr07:88930361-88933011 | 454 | 2 | Ⅰ |
CqWRKY40 | AUR62006427-RA | Chr07:90989279-90992003 | 325 | 1 | Ⅲ |
CqWRKY41 | AUR62036235-RA | Chr07:112281685-112283961 | 418 | 2 | Ⅰ |
CqWRKY42 | AUR62011775-RA | Chr08:988047-988819 | 102 | 1 | Ⅱ-c |
CqWRKY43 | AUR62011795-RA | Chr08:1181350-1182524 | 211 | 1 | Ⅱ-e |
CqWRKY44 | AUR62011926-RA | Chr08:2678718-2680825 | 294 | 1 | NG |
CqWRKY45 | AUR62021729-RA | Chr08:8545709-8559517 | 509 | 1 | Ⅱ-a |
CqWRKY46 | AUR62032212-RA | Chr08:14272865-14273429 | 143 | 1 | NG |
CqWRKY47 | AUR62029580-RA | Chr08:27816081-27826652 | 222 | 1 | NG |
CqWRKY48 | AUR62003648-RA | Chr09:4713878-4717289 | 244 | 1 | Ⅱ-c |
CqWRKY49 | AUR62003924-RA | Chr09:7798854-7801974 | 290 | 1 | Ⅱ-d |
CqWRKY50 | AUR62024642-RA | Chr09:11682383-11691897 | 424 | 1 | Ⅱ-e |
CqWRKY51 | AUR62024618-RA | Chr09:11982778-11983536 | 146 | 1 | Ⅱ-c |
CqWRKY52 | AUR62032241-RA | Chr09:13313236-13317450 | 349 | 1 | NG |
CqWRKY53 | AUR62023484-RA | Chr10:2033001-2036555 | 371 | 1 | Ⅲ |
CqWRKY54 | AUR62022617-RA | Chr10:4697680-4699188 | 283 | 1 | Ⅱ-e |
CqWRKY55 | AUR62022621-RA | Chr10:4717142-4718114 | 212 | 1 | Ⅱ-c |
CqWRKY56 | AUR62013751-RA | Chr10:13605433-13612166 | 129 | 1 | NG |
CqWRKY57 | AUR62038804-RA | Chr10:34116524-34117756 | 231 | 1 | Ⅱ-d |
CqWRKY58 | AUR62020945-RA | Chr11:1752595-1762500 | 1162 | 1 | Ⅲ |
CqWRKY59 | AUR62039260-RA | Chr11:74163714-74165384 | 388 | 1 | Ⅱ-c |
CqWRKY60 | AUR62000311-RA | Chr12:3584311-3588565 | 706 | 2 | Ⅰ |
CqWRKY61 | AUR62001049-RA | Chr12:13518617-13520608 | 333 | 1 | Ⅱ-d |
CqWRKY62 | AUR62020401-RA | Chr12:55639586-55644905 | 481 | 1 | Ⅱ-a |
CqWRKY63 | AUR62020314-RA | Chr12:56890585-56891458 | 129 | 1 | Ⅲ |
CqWRKY64 | AUR62020288-RA | Chr12:57347810-57348994 | 253 | 1 | Ⅱ-d |
CqWRKY65 | AUR62007485-RA | Chr13:589572-591021 | 286 | 1 | Ⅱ-d |
CqWRKY66 | AUR62010821-RA | Chr13:7153914-7155613 | 361 | 1 | Ⅲ |
CqWRKY67 | AUR62010755-RA | Chr13:8078579-8080104 | 297 | 1 | Ⅱ-e |
CqWRKY68 | AUR62007938-RA | Chr14:2701764-2706207 | 224 | 1 | Ⅱ-c |
CqWRKY69 | AUR62037832-RA | Chr14:45048099-45055461 | 1058 | 2 | Ⅰ |
CqWRKY70 | AUR62005736-RA | Chr14:56112914-56116278 | 422 | 1 | Ⅱ-a |
CqWRKY71 | AUR62005858-RA | Chr14:58268244-58273300 | 487 | 2 | Ⅰ |
CqWRKY72 | AUR62026996-RA | Chr15:268971-270747 | 296 | 1 | Ⅱ-b |
CqWRKY73 | AUR62017958-RA | Chr15:21074268-21077689 | 242 | 1 | Ⅱ-c |
CqWRKY74 | AUR62024046-RA | Chr15:26625857-26629365 | 245 | 1 | NG |
CqWRKY75 | AUR62015063-RA | Chr15:57542216-57547401 | 500 | 2 | Ⅰ |
CqWRKY76 | AUR62008370-RA | Chr16:3731574-3745535 | 675 | 1 | Ⅱ-a |
CqWRKY77 | AUR62038863-RA | Chr16:13862997-13866799 | 589 | 1 | Ⅱ-a |
CqWRKY78 | AUR62038851-RA | Chr16:14451516-14451878 | 120 | 1 | NG |
CqWRKY79 | AUR62019754-RA | Chr16:70647711-70649134 | 296 | 1 | Ⅱ-e |
CqWRKY80 | AUR62019820-RA | Chr16:71712382-71714094 | 361 | 1 | Ⅲ |
CqWRKY81 | AUR62039941-RA | Chr16:78777309-78778496 | 276 | 1 | Ⅱ-d |
CqWRKY82 | AUR62026343-RA | Chr17:57960771-57963505 | 446 | 2 | Ⅰ |
CqWRKY83 | AUR62029778-RA | Chr17:60158005-60160227 | 323 | 1 | Ⅲ |
CqWRKY84 | AUR62030836-RA | Chr17:83307838-83309577 | 289 | 1 | Ⅱ-b |
CqWRKY85 | AUR62040434-RA | Chr18:4550853-4554429 | 230 | 1 | NG |
CqWRKY86 | AUR62009710-RA | Chr18:27460868-27463405 | 492 | 2 | Ⅰ |
CqWRKY87 | AUR62021101-RA | Chr00:34656729-34658003 | 356 | 1 | Ⅱ-e |
CqWRKY88 | AUR62038238-RA | Chr00:134168426-134171808 | 338 | 1 | Ⅱ-d |
CqWRKY89 | AUR62017520-RA | Chr00:135537911-135543127 | 500 | 2 | Ⅰ |
CqWRKY90 | AUR62044535-RA | Chr00:163451415-163456457 | 138 | 1 | NG |
1 | Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa. Nature, 2017, 542(7641): 307-312. |
2 | Abugoch J L E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Advances in Food and Nutrition Research, 2009, 58: 1-31. |
3 | Lin M Y, Han P P, Li Y Y, et al. Quinoa secondary metabolites and their biological activities or functions. Molecules, 2019, 24(13): 2512-2559. |
4 | Vega-Galvez A, Miranda M, Vergara J, et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 2010, 90(15): 2541-2547. |
5 | Hinojosa L, Gonzalez J A, Barrios-Masias F H, et al. Quinoa abiotic stress responses: A review. Plants, 2018, 7(4): 1-32. |
6 | Ulker B, Somssich I E. WRKY transcription factors: From DNA binding towards biological function. Current Opinion in Plant Biology, 2004, 7(5): 491-498. |
7 | Rushton P J, Somssich I E, Ringler P, et al. WRKY transcription factors. Trends Plant Science, 2010, 15(5): 247-258. |
8 | Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends Plant Science, 2000, 5(5): 199-206. |
9 | Rinerson C I, Rabara R C, Tripathi P, et al. The evolution of WRKY transcription factors. BMC Plant Biology, 2015, 15(1): 1-18. |
10 | Wani S H, Anand S, Singh B, et al. WRKY transcription factors and plant defense responses: Latest discoveries and future prospects. Plant Cell Reports, 2021, 40(7): 1071-1085. |
11 | Phukan U J, Jeena G S, Shukla R K. WRKY transcription factors: Molecular regulation and stress responses in plants. Frontiers in Plant Science, 2016, 7: 760-774. |
12 | Jiang J J, Ma S H, Ye N H, et al. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 2017, 59(2): 86-101. |
13 | Wang C T, Ru J N, Liu Y W, et al. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Science, 2018, 19(10): 3046-3061. |
14 | Shi W Y, Du Y T, Ma J, et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. International Journal of Molecular Science, 2018, 19(12): 4087-4107. |
15 | Gao Y F, Liu J K, Yang F M, et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiologia Plantarum, 2020, 168(1): 98-117. |
16 | Li X R, Tang Y, Zhou C J, et al. A wheat WRKY transcription factor TaWRKY46 enhances tolerance to osmotic stress in transgenic Arabidopsis plants. International Journal of Molecular Science, 2020, 21(4): 1321-1336. |
17 | Zhang D L. Identification and analysis of quinoa MADS-box gene family and study on agrobacterium-mediated root transformation. Yantai: Yantai University, 2021. |
张东亮. 藜麦MADS-box基因家族的鉴定与分析及发根农杆菌介导的根转化研究. 烟台: 烟台大学, 2021. | |
18 | He L H, Liu S F, Qiao Y, et al. Genome-wide prediction and analysis of quinoa (Chenopodium quinoa) miRNAs and their corresponding target genes. Journal of Shanxi Agricultural University (Natural Science Edition), 2021, 41(1): 1-10. |
贺立恒, 刘世芳, 乔宇, 等. 藜麦miRNA及其调控靶基因的全基因组预测与分析. 山西农业大学学报(自然科学版), 2021, 41(1): 1-10. | |
19 | Mistry J, Finn R D, Eddy S R, et al. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 2013, 41(12): e121. |
20 | Mistry J, Chuguransky S, Williams L, et al. Pfam: The protein families database in 2021. Nucleic Acids Research, 2021, 49(D1): 412-419. |
21 | Blum M, Chang H Y, Chuguransky S, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, 2021, 49(D1): 344-354. |
22 | Katoh K, Misawa K, Kuma K, et al. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 2002, 30(14): 3059-3066. |
23 | Nguyen L T, Schmidt H A, Haeseler A V, et al. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 2015, 32(1): 268-274. |
24 | Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 2017, 14(6): 587-589. |
25 | Wang Y P, Tang H B, Debarry J D, et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7): e49. |
26 | Krzywinski M, Schein J, Birol I, et al. Circos: An information aesthetic for comparative genomics. Genome Research, 2009, 19: 1639-1645. |
27 | Jaillon O, Aury J M, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449(7161): 463-467. |
28 | Wang T J, Huang S Z, Zhang A, et al. JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. New Phytologist, 2021, 230(2): 567-584. |
29 | Pandey S P, Roccaro M, Schön M, et al. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant Journal, 2010, 64(6): 912-923. |
30 | Chen H, Lai Z, Shi J, et al. Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology, 2010, 10: 281-296. |
31 | Aken O V, Zhang B T, Law S, et al. AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiology, 2013, 162(1): 254-271. |
32 | Li W, Wang H P, Yu D Q. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Molecular Plant, 2016, 9(11): 1492-1503. |
33 | Li W, Tian Z X, Yu D Q. WRKY13 acts in stem development in Arabidopsis thaliana. Plant Science, 2015, 236: 205-213. |
34 | Sheng Y B, Yan X X, Huang Y, et al. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell and Environment, 2019, 2(3): 891-903. |
35 | Zhang Q, Cai W, Ji T T, et al. WRKY13 enhances cadmium tolerance by promoting D-CYSTEINE DESULFHYDRASE and hydrogen sulfide production. Plant Physiology, 2020, 183(1): 345-357. |
[1] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[2] | Shi-ping SU, Xiao-e LIU, Jie XI. Physiological response of Viola tricolor to NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(8): 90-98. |
[3] | Jiao-yang TIAN, Qiu-xia WANG, Shu-wen ZHENG, Wen-xian LIU. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(7): 111-121. |
[4] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[5] | Wen-hui XIE, Li-juan HUANG, Li-li ZHAO, Lei-ting WANG, Wen-wu ZHAO. Effects of calcium salt stress on seed germination and seedling physiological characteristics of three Pueraria lobata germplasm lines [J]. Acta Prataculturae Sinica, 2022, 31(7): 220-233. |
[6] | Yi-ting JIN, Wen-hui LIU, Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period [J]. Acta Prataculturae Sinica, 2022, 31(6): 112-126. |
[7] | Shi-ping SU, Yi LI, Xiao-e LIU, Pei-fang CHONG, Li-shan SHAN, You-li HOU. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica [J]. Acta Prataculturae Sinica, 2022, 31(6): 127-138. |
[8] | Xing-yun YANG, Dan-dan QIAO, Ya-jie ZHANG, Shao-qing WANG, Jun-cai REN, Ming-yang LI, Ming-hao QU, Pan-pan SHANG, Cheng YANG, Lin-kai HUANG, Bing ZENG. A differential gene expression analysis of miRNA in Dactylis glomerata in response to flooding stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 150-162. |
[9] | Xiao-fan SUN, Yi-long ZHANG, Pei-ying LI, Zong-jiu SUN. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 69-78. |
[10] | Ya-nan LIU, Ren-jie YU, Yan-li GAO, Jun-mei KANG, Qing-chuan YANG, Zhi-hai WU, Zhen WANG. Expression pattern and biological functions of an annexin encoding gene MtANN2 in Medicago truncatula under salt stress [J]. Acta Prataculturae Sinica, 2022, 31(5): 124-134. |
[11] | Qing ZHANG, Jing XING, Jia-ming YAO, Ting-chao YIN, Xin-ru HUANG, Yue HE, Jing ZHANG, Bin XU. The role of a cytokinin signaling pathway type-B ARR transcription factor, LpARR10, in cadmium tolerance of perennial ryegrass [J]. Acta Prataculturae Sinica, 2022, 31(5): 135-143. |
[12] | Juan-juan ZHAO, Da-lu CHE, Wei-ting GUO, Wei-tao ZHANG, Lian-chao LIU, Li-chen ZHAO, Yu-hong GAO, Xin-sheng SUN, Xue-mei LI, Yuan WANG. Effect of a Chinese medicine formula on the performance and physiological and blood biochemical parameters of hybrid Small-Tail Han sheep under heat stress [J]. Acta Prataculturae Sinica, 2022, 31(5): 178-189. |
[13] | Hong-jian WEI, Jie DING, Ju-ming ZHANG, Wen YANG, Yong-qi WANG, Tian-zeng LIU. Changes in soil fungal community structure under bermudagrass turf in response to traffic stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 102-112. |
[14] | Cheng-ming OU, Mei-qi ZHAO, Ming SUN, Pei-sheng MAO. Effects of ascorbic acid and salicylic acid pelleting on germination characteristics in alfalfa seeds under NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 93-101. |
[15] | Chun-jie LI, Ming-xiao LANG, Zhen-jiang CHEN, Tai-xiang CHEN, Jing LIU, Yuan-yuan JIN, Xue-kai WEI. Effects of Epichloë endophytic fungi on the germination of grass seeds [J]. Acta Prataculturae Sinica, 2022, 31(3): 192-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||