Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (3): 107-117.DOI: 10.11686/cyxb2022104
Yuan WANG(), Jing WANG, Shu-xia LI()
Received:
2022-03-02
Revised:
2022-05-18
Online:
2023-03-20
Published:
2022-12-30
Contact:
Shu-xia LI
Yuan WANG, Jing WANG, Shu-xia LI. Cloning of MsBBX24 from alfalfa (Medicago sativa) and determination of its role in salt tolerance[J]. Acta Prataculturae Sinica, 2023, 32(3): 107-117.
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 用途 Application |
---|---|---|
MsBBX24-F | ATGAAAATACAGTGTGATGT | 基因克隆 Gene cloning |
MsBBX24-R | TTAGCCGAAATCTGGCACCA | 基因克隆 Gene cloning |
cMsBBX24-F | TCGAGCTCAAGCTTCGAATTCATGAAAATACAGTGTGATGTGTG | 载体构建 Vector construction |
cMsBBX24-R | GTACCGTCGACTGCAGAATTCGCCGAAATCTGGCACC | 载体构建 Vector construction |
qMsBBX24-F | GCATCCTCTTGGGCTGTTGA | 荧光定量Real-time quatitative PCR (qRT-PCR) |
qMsBBX24-R | TCTGGCACCATGAAGTGCTC | 荧光定量Real-time quatitative PCR (qRT-PCR) |
MsActin-F | TTTGAGACTTTCAATGTGCCCGCC | 内参基因 Reference gene |
MsActin-R | TAGCATGTGGGAGTGCATAACCCT | 内参基因 Reference gene |
AtActin-F | GCCATCCAAGCTGTTCTCTC | 内参基因 Reference gene |
AtActin-R | GCTCGTAGTCAACAGCAACAA | 内参基因 Reference gene |
Table 1 Primers used in this experiment
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 用途 Application |
---|---|---|
MsBBX24-F | ATGAAAATACAGTGTGATGT | 基因克隆 Gene cloning |
MsBBX24-R | TTAGCCGAAATCTGGCACCA | 基因克隆 Gene cloning |
cMsBBX24-F | TCGAGCTCAAGCTTCGAATTCATGAAAATACAGTGTGATGTGTG | 载体构建 Vector construction |
cMsBBX24-R | GTACCGTCGACTGCAGAATTCGCCGAAATCTGGCACC | 载体构建 Vector construction |
qMsBBX24-F | GCATCCTCTTGGGCTGTTGA | 荧光定量Real-time quatitative PCR (qRT-PCR) |
qMsBBX24-R | TCTGGCACCATGAAGTGCTC | 荧光定量Real-time quatitative PCR (qRT-PCR) |
MsActin-F | TTTGAGACTTTCAATGTGCCCGCC | 内参基因 Reference gene |
MsActin-R | TAGCATGTGGGAGTGCATAACCCT | 内参基因 Reference gene |
AtActin-F | GCCATCCAAGCTGTTCTCTC | 内参基因 Reference gene |
AtActin-R | GCTCGTAGTCAACAGCAACAA | 内参基因 Reference gene |
1 | Wu X M, Guo P, Chi H W, et al. Diversity analysis of phenotypic traits and quality characteristics of alfalfa (Medicago sativa) introducted from abroad germplasm resources. Journal of Plant Genetic Resources, 2018, 19(1): 103-111. |
吴欣明, 郭璞, 池惠武, 等. 国外紫花苜蓿种质资源表型性状与品质多样性分析. 植物遗传资源学报, 2018, 19(1): 103-111. | |
2 | Cui M M, Ma L, Zhang J J, et al. Gene expression and salt-tolerance analysis of MsDWF4 gene from alfalfa. Scientia Agricultura Sinica, 2020, 53(18): 3650-3664. |
崔苗苗, 马琳, 张锦锦, 等. 紫花苜蓿MsDWF4的表达特性及耐盐性效应. 中国农业科学, 2020, 53(18): 3650-3664. | |
3 | Khanna R, Kronmiller B, Maszle D R, et al. The Arabidopsis B-box zinc finger family. The Plant Cell, 2009, 21(11): 3416-3420. |
4 | Xiong C, Luo D, Lin A, et al. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1, and is targeted for 26S proteasome-mediated degradation. New Phytologist, 2019, 221(1): 279-294. |
5 | Xu D, Jiang Y, Li J, et al. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proceedings of the National Academy of Sciences, 2016, 113(27): 7655-7660. |
6 | Gangappa S N, Botto J F. The BBX family of plant transcription factors. Trends in Plant Science, 2014, 19(7): 460-470. |
7 | Song Z, Bian Y, Liu J, et al. B-box proteins: Pivotal players in light-mediated development in plants. Journal of Integrative Plant Biology, 2020, 62(9): 1293-1309. |
8 | Feng Z, Li M, Li Y, et al. Comprehensive identification and expression analysis of B-Box genes in cotton. BMC Genomics, 2021, 22(1): 1-16. |
9 | Yin L L, Xin B L, Chen X L, et al. Genome-wide identification expression patterns of BBX family members in Glycine max. Journal of Northwest A & F University (Natural Science Edition), 2022, 6(5): 1-11. |
殷丽丽, 邢宝龙, 陈晓亮, 等. 大豆BBX基因家族的鉴定及表达. 西北农林科技大学学报(自然科学版), 2022, 6(5): 1-11. | |
10 | Xu Y, Zhao X, Aiwaili P, et al. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. The Plant Journal, 2020, 103(5): 1783-1795. |
11 | Ye Y J, Li J M, Cao H L, et al. Identification and expression analysis of the CsBBX gene family in tea plants. Chinese Journal of Applied and Environmental Biology, 2020, 26(6): 1508-1516. |
叶一隽, 李佳敏, 曹红利, 等. 茶树CsBBX基因家族的鉴定与表达. 应用与环境生物学报, 2020, 26(6): 1508-1516. | |
12 | Zhang Z H, Tang J M, Zhang C Y, et al. Genome-wide identification, evolution and expression analysis of MaBBX gene family in banana. Chinese Journal of Applied and Environmental Biology, 2020, 11(63): 1-15. |
张梓浩, 唐佳美, 张春渝, 等. 香蕉MaBBX基因家族的鉴定、进化及表达. 应用与环境生物学报, 2020, 11(63): 1-15. | |
13 | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. |
14 | Bent A. Arabidopsis thaliana floral dip transformation method. Methods in Molecular Biology, 2006, 343: 87-103. |
15 | Dahro B, Wang F, Peng T, et al. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biology, 2016, 16(1): 1-18. |
16 | Puckette M C, Weng H, Mahalingam R. Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiology and Biochemistry, 2007, 45(1): 70-79. |
17 | Li H S. Principles and techniques of plant physiology and biochemistry experiments. Beijing: Higher Education Press, 2000: 131-137, 258-260. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 131-137, 258-260. | |
18 | Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology, 2001, 42(11): 1265-1273. |
19 | Zhao L, Liu F, Xu W, et al. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnology Journal, 2009, 7(6): 550-561. |
20 | Polle A, Otter T, Seifert F. Apoplastic peroxidases and lignification in needles of norway spruce (Picea abies L.). Plant Physiology, 1994, 106(1): 53-60. |
21 | Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314. |
22 | Yang X H, Jiang W J, Wei M, et al. Review on plant response and resistance mechanism to salt stress. Journal of Shandong Agricultural University (Natural Science Edition), 2006(2): 302-305, 308. |
杨晓慧, 蒋卫杰, 魏珉, 等. 植物对盐胁迫的反应及其抗盐机理研究进展. 山东农业大学学报(自然科学版), 2006(2): 302-305, 308. | |
23 | Dou J Q, Cheng L J, Xu F H, et al. Cloning and expression analysis of a B-box-type protein gene BlCOL13 in Betula luminifera. Acta Horticulturae Sinica, 2015, 42(7): 1367-1377. |
窦锦青, 程龙军, 徐凤华, 等. 光皮桦BBX类基因BlCOL13的克隆与表达分析. 园艺学报, 2015, 42(7): 1367-1377. | |
24 | Liu X. Investigation on B-box protein (BBX) family in apple and MdBBX10 in response to abiotic stress. Tai’an: Shandong Agricultural University, 2018. |
刘欣. 苹果B-box(BBX)家族和MdBBX10响应非生物胁迫的研究. 泰安: 山东农业大学, 2018. | |
25 | Yang N, Cong Q, Wang X R, et al. Identification of EgrBBX gene family and its expression analysis under abiotic stress in Eucalyptus grandis. Journal of Agricultural Biotechnology, 2020, 28(4): 658-671. |
杨宁, 从青, 王晓荣, 等. 巨桉EgrBBX基因家族鉴定及其在非生物逆境处理下的表达分析. 农业生物技术学报, 2020, 28(4): 658-671. | |
26 | Jia X L, Chen G, Nan G X. Influences of three stress treatments on electric conductivity and malondialdehyde content on Salix linearistipularis seedlings. Heilongjiang Science, 2017, 8(24): 13-14, 19. |
贾晓龙, 陈鸽, 南桂仙. 三种非生物胁迫对蒙古柳幼苗电导率和丙二醛含量的影响. 黑龙江科学, 2017, 8(24): 13-14, 19. | |
27 | Mishra S, Kumar S, Saha B, et al. Crosstalk between salt, drought, and cold stress in plants: Toward genetic engineering for stress tolerance//Abiotic stress response in plants. New York: Spring-Verlag New York Inc., 2016: 57-88. |
28 | Jia H L, Wang X M, Gao T, et al. Characterization of the salt tolerance of transgenic Arabidopsis thaliana overexpression of MsLEA4-4 from Medicago sativa. Acta Agrestia Sinica, 2020, 28(3): 597-605. |
贾会丽, 王学敏, 高涛, 等. 转MsLEA4-4基因拟南芥株系的耐盐性分析. 草地学报, 2020, 28(3): 597-605. | |
29 | Ghasemi M, Arzani K, Yadollahi A, et al. Estimate of leaf chlorophyll and nitrogen content in asian pear (Pyrus serotina Rehd.) by CCM-200. Notulae Scientia Biologicae, 2011, 3(1): 91-94. |
30 | Mao X H. Genetic engineering improvement of salt tolerance in Medicago sativa L. Ji’nan: Shandong University, 2009. |
毛秀红. 苜蓿耐盐的基因工程改良研究. 济南: 山东大学, 2009. | |
31 | Zhang L Q, Zhang F Y, Hasi A. Reasearch progress on alfalfa salt tolerance. Acta Prataculturae Sinica, 2012, 21(6): 296-305. |
张立全, 张凤英, 哈斯阿古拉. 紫花苜蓿耐盐性研究进展. 草业学报, 2012, 21(6): 296-305. | |
32 | Yang Q C, Sun Y, Kang J M. Research on the advancement of salt tolerant gene in alfalfa. Acta Agrestia Sinica, 2005, 13(3): 253-256. |
杨青川, 孙彦, 康俊梅. 紫花苜蓿耐盐相关基因克隆研究进展. 草地学报, 2005, 13(3): 253-256. | |
33 | Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55(1): 373-399. |
34 | Yan L P, Xia Y, Liang H M, et al. Transconduct BADH gene into alfalfa and salt tolerance analysis of transgenic generation//Proceedings of the 15th symposium on forage production by the feed production committee of the Chinese Herbal Society. Changzhou: Chinese Grass Society, 2009: 269-276. |
燕丽萍, 夏阳, 梁慧敏, 等. 紫花苜蓿转BADH基因及其后代耐盐性分析//中国草学会饲料生产委员会第15次饲草生产学术研讨会论文集. 常州: 中国草学会, 2009: 269-276. | |
35 | Liu X, Li R, Dai Y Q, et al. A B-box zinc finger protein, MdBBX10, enhanced salt and drought stresses tolerance in Arabidopsis. Plant Molecular Biology, 2019, 99(4/5): 437-447. |
[1] | Fu LIU, Cheng CHEN, Kai-xuan ZHANG, Mei-liang ZHOU, Xin-quan ZHANG. Cloning and identification of drought tolerance function of the LjbHLH34 gene in Lotus japonicus [J]. Acta Prataculturae Sinica, 2023, 32(1): 178-191. |
[2] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[3] | Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels [J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128. |
[4] | Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck [J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138. |
[5] | Min-hua YIN, Yan-lin MA, Yan-xia KANG, Qiong JIA, Guang-ping QI, Jing-hai WANG. Effects of nitrogen application on alfalfa yield and quality in China-A Meta-analysis [J]. Acta Prataculturae Sinica, 2022, 31(9): 36-49. |
[6] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[7] | Jian-tao ZHAO, Ya-fei YUE, Qian-bing ZHANG, Chun-hui MA. Relationship between cold resistance of alfalfa, degree of fall-dormancy and snow cover thickness in Northern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 24-34. |
[8] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
[9] | Xue-meng WANG, Xin HE, Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis [J]. Acta Prataculturae Sinica, 2022, 31(7): 197-208. |
[10] | Huan ZHANG, Yi-xiao MU, Gui-jie ZHANG. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage [J]. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
[11] | Hong-ren SUN, Xian-guo WANG, Yao-jun BU, Nan QIAO, Bo REN. Preliminary study of a sufficiency index of soil N and recommended N fertilizer application rates for alfalfa in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2022, 31(4): 32-42. |
[12] | Li-min GAO, Chun CHEN, Yi-xin SHEN. Effects of nitrogen and phosphorus fertilizer rates on forage dry matter yield and regrowth of alfalfa in seasonal cultivation systems [J]. Acta Prataculturae Sinica, 2022, 31(4): 43-52. |
[13] | Cheng-ming OU, Mei-qi ZHAO, Ming SUN, Pei-sheng MAO. Effects of ascorbic acid and salicylic acid pelleting on germination characteristics in alfalfa seeds under NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 93-101. |
[14] | Chang-chun TONG, Xiao-jing LIU, Yong WU, Ya-jiao ZHAO, Jing WANG. Regulation of endogenous isoflavones on alfalfa nodulation and nitrogen fixation and nitrogen use efficiency [J]. Acta Prataculturae Sinica, 2022, 31(3): 124-135. |
[15] | Yu-huan WU, Zi-kui WANG, Ya-nan LIU, Qian-hu MA. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping [J]. Acta Prataculturae Sinica, 2022, 31(3): 144-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||