Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (5): 138-146.DOI: 10.11686/cyxb2022237
Chao-nan LI1(), Lei WANG1(), Ji-qiang ZHOU2, Chang-xing ZHAO1, Xiao-rong XIE3, Jin-rong LIU1()
Received:
2022-05-26
Revised:
2022-07-02
Online:
2023-05-20
Published:
2023-03-20
Contact:
Jin-rong LIU
Chao-nan LI, Lei WANG, Ji-qiang ZHOU, Chang-xing ZHAO, Xiao-rong XIE, Jin-rong LIU. Effect of microplastics on the growth and physiological characteristics of alfalfa (Medicago sativa)[J]. Acta Prataculturae Sinica, 2023, 32(5): 138-146.
处理 Treatment | 浓度 Dose | 根长 Root length (cm) | 根系平均直径 Mean root diameter (cm) | 根系总表面积 Total root surface area (cm2) | 根系总体积 Total root volume (cm3) | 根尖数 Root tip number |
---|---|---|---|---|---|---|
CK | 0 | 1879.00±37.00ab | 1.31±0.06a | 713.20±12.70ab | 25.68±2.98a | 8778.33±1018.03ab |
mPLA | M1 | 1855.14±65.22abc | 0.96±0.05bc | 558.77±19.59c | 13.47±1.10bcd | 8607.00±159.69ab |
M2 | 2000.96±59.24ab | 1.00±0.04bc | 629.46±35.53abc | 15.79±1.41bc | 8654.33±775.82ab | |
M3 | 1923.91±307.79ab | 0.98±0.09bc | 591.09±104.66bc | 14.66±3.13bcd | 11059.33±2524.42a | |
M4 | 1616.32±127.25bcd | 0.94±0.04bc | 474.17±25.24cd | 11.11±0.58cd | 6829.00±493.84b | |
M5 | 1230.26±164.34d | 1.02±0.04bc | 393.16±54.96d | 10.03±1.55d | 6265.00±640.43b | |
mLDPE | M1 | 2259.86±243.13a | 1.28±0.02a | 761.44±34.72a | 23.70±1.13a | 8263.00±1024.47ab |
M2 | 1861.32±144.56abc | 1.27±0.05a | 541.68±25.88c | 17.08±0.27b | 8143.67±730.86ab | |
M3 | 1231.82±98.19d | 1.30±0.12a | 495.23±16.19cd | 16.13±1.81bc | 6023.00±406.59b | |
M4 | 1424.29±46.72cd | 1.12±0.04ab | 499.75±23.04cd | 13.99±1.12bcd | 6844.33±112.19b | |
M5 | 1370.77±113.76d | 0.90±0.07c | 628.22±42.09abc | 14.05±1.18bcd | 8552.67±1326.05ab |
Table 1 Effect of microplastics on root morphology of alfalfa
处理 Treatment | 浓度 Dose | 根长 Root length (cm) | 根系平均直径 Mean root diameter (cm) | 根系总表面积 Total root surface area (cm2) | 根系总体积 Total root volume (cm3) | 根尖数 Root tip number |
---|---|---|---|---|---|---|
CK | 0 | 1879.00±37.00ab | 1.31±0.06a | 713.20±12.70ab | 25.68±2.98a | 8778.33±1018.03ab |
mPLA | M1 | 1855.14±65.22abc | 0.96±0.05bc | 558.77±19.59c | 13.47±1.10bcd | 8607.00±159.69ab |
M2 | 2000.96±59.24ab | 1.00±0.04bc | 629.46±35.53abc | 15.79±1.41bc | 8654.33±775.82ab | |
M3 | 1923.91±307.79ab | 0.98±0.09bc | 591.09±104.66bc | 14.66±3.13bcd | 11059.33±2524.42a | |
M4 | 1616.32±127.25bcd | 0.94±0.04bc | 474.17±25.24cd | 11.11±0.58cd | 6829.00±493.84b | |
M5 | 1230.26±164.34d | 1.02±0.04bc | 393.16±54.96d | 10.03±1.55d | 6265.00±640.43b | |
mLDPE | M1 | 2259.86±243.13a | 1.28±0.02a | 761.44±34.72a | 23.70±1.13a | 8263.00±1024.47ab |
M2 | 1861.32±144.56abc | 1.27±0.05a | 541.68±25.88c | 17.08±0.27b | 8143.67±730.86ab | |
M3 | 1231.82±98.19d | 1.30±0.12a | 495.23±16.19cd | 16.13±1.81bc | 6023.00±406.59b | |
M4 | 1424.29±46.72cd | 1.12±0.04ab | 499.75±23.04cd | 13.99±1.12bcd | 6844.33±112.19b | |
M5 | 1370.77±113.76d | 0.90±0.07c | 628.22±42.09abc | 14.05±1.18bcd | 8552.67±1326.05ab |
1 | Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic? Science, 2004, 304(5672): 838. |
2 | Isobe A, Uchiyama-Matsumoto K, Uchida K, et al. Microplastics in the Southern Ocean. Marine Pollution Bulletin, 2017, 114(1): 623-626. |
3 | Law K L, Thompson R C. Oceans. Microplastics in the seas. Science, 2014, 345(6193): 144-145. |
4 | Gigault J, Halle A, Baudrimont M, et al. Current opinion: What is a nanoplastic? Environmental Pollution, 2018, 235: 1030-1034. |
5 | Zhang Z, Cui Q, Chen L, et al. A critical review of microplastics in the soil-plant system: Distribution, uptake, phytotoxicity and prevention. Journal of Hazardous Materials, 2022, DOI: 10.1016/j.jhazmat.2021.127750. |
6 | Liang S, Han B, Niu Z P, et al. Source, migration and ecotoxicological effects of micro-plastics in freshwater. Environmental Engineering, 2021, 39(12): 1-9. |
梁帅, 韩冰, 牛泽普, 等. 淡水中微塑料的来源、迁移途径及生态毒理效应综述. 环境工程, 2021, 39(12): 1-9. | |
7 | Xu X B, Sun M X, Zhang L X, et al. Research progress and prospect of soil microplastic pollution. Journal of Agricultural Resources and Environment, 2021, 38(1): 1-9. |
徐湘博, 孙明星, 张林秀, 等. 土壤微塑料污染研究进展与展望. 农业资源与环境学报, 2021, 38(1): 1-9. | |
8 | Corradini F, Meza P, Eguiluz R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 2019, 671: 411-420. |
9 | Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science & Technology, 2016, 50(11): 5774-5780. |
10 | Scheurer M, Bigalke M. Microplastics in Swiss floodplain soils. Environmental Science & Technology, 2018, 52(6): 3591-3598. |
11 | Zhu Y E, Wen H X, Li T H X, et al. Distribution and sources of microplastics in farmland soil along the Fenhe River. Environmental Science, 2021, 42(8): 3894-3903. |
朱宇恩, 文瀚萱, 李唐慧娴, 等. 汾河沿岸农田土壤微塑料分布特征及成因解析. 环境科学, 2021, 42(8): 3894-3903. | |
12 | Meng Q. Study on the occurrence characteristics in Hetao area and the adsorption properties of glyphosate onto microplastics. Baotou: Inner Mongolia University of Science & Technology, 2020. |
孟青. 河套灌区土壤中微塑料的赋存特征及其对草甘膦的吸附性能研究. 包头: 内蒙古科技大学, 2020. | |
13 | Ren X W, Tang J C, Yu C, et al. Advances in research on the ecological effects of microplastic pollution on soil ecosystems. Journal of Agro-Environment Science, 2018, 37(6): 1045-1058. |
任欣伟, 唐景春, 于宸, 等. 土壤微塑料污染及生态效应研究进展. 农业环境科学学报, 2018, 37(6): 1045-1058. | |
14 | Xu X H, Hu H N, Chen Y. Study on the effect of polyethylene microplastics on soybean growth. Soil and Fertilizer Sciences in China, 2021(6): 262-268. |
许学慧, 胡海娜, 陈颖. 聚乙烯微塑料对大豆生长的影响. 中国土壤与肥料, 2021(6): 262-268. | |
15 | Boots B, Russell C W, Green D S. Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 2019, 53(19): 11496-11506. |
16 | Li H, Liu L. Short-term effects of polyethene and polypropylene microplastics on soil phosphorus and nitrogen availability. Chemosphere, 2021, 291(P2): 132984. |
17 | Feng X Y, Sun Y H, Zhang S W, et al. Ecological effects of microplastics on soil-plant systems. Acta Pedologica Sinica, 2021, 58(2): 299-313. |
冯雪莹, 孙玉焕, 张书武, 等. 微塑料对土壤-植物系统的生态效应. 土壤学报, 2021, 58(2): 299-313. | |
18 | Lian J P, Shen M M, Liu W T. Effects of microplastics on wheat seed germination and seedling growth. Journal of Agro-Environment Science, 2019, 38(4): 737-745. |
连加攀, 沈玫玫, 刘维涛. 微塑料对小麦种子发芽及幼苗生长的影响. 农业环境科学学报, 2019, 38(4): 737-745. | |
19 | Machado A A D, Lau C W, Kloas W, et al. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 2019, 53(10): 6044-6052. |
20 | Li L Z, Zhou Q, Yin N, et al. Uptake and accumulation of microplastics in an edible plant.Chinese Science Bulletin, 2019, 64(9): 928-934. |
李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料. 科学通报, 2019, 64(9): 928-934. | |
21 | Wang X, Ma Y X, Li J. Nutritional components and main biological characteristics of alfalfa. Pratacultural Science, 2003(10): 39-41. |
王鑫, 马永祥, 李娟. 紫花苜蓿营养成分及主要生物学特性. 草业科学, 2003(10): 39-41. | |
22 | Hu B F, Huang H L, Ji Y Z, et al. Evaluation of the optimum concentration of chlorophyll extract for determination of chlorophyll content by spectrophotometry. Pratacultural Scicnce, 2018, 35(8): 1965-1974. |
胡秉芬, 黄华梨, 季元祖, 等. 分光光度法测定叶绿素含量的提取液的适宜浓度. 草业科学, 2018, 35(8): 1965-1974. | |
23 | Gao J F. Experimental guidance for plant physiology. Beijing: Higher Education Press, 2006. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
24 | Zhang S, Yang X, Gertsen H, et al. A simple method for the extraction and identification of light density microplastics from soil. Science of the Total Environment, 2018, 616/617: 1056-1065. |
25 | Asli S, Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 2009, 32(5): 577-584. |
26 | Urbina M A, Correa F, Aburto F, et al. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Science of the Total Environment, 2020, DOI: 10.1016/j.scitotenv.2020.140216. |
27 | Schwab F, Zhai G, Kern M, et al. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-Critical review. Nanotoxicology, 2016, 10(3): 257-278. |
28 | Shan N, Habibul Z, Hojahmat M, et al. Effects of microplastics on ryegrass (Lolium perenne L.) uptake and accumulation of ciprofloxacin. Research of Environmental Sciences, 2020, 33(12): 2906-2912. |
单宁, 祖木热提·艾比布, 米丽班·霍加艾合买提, 等. 微塑料对黑麦草吸收和累积水体中环丙沙星的影响. 环境科学研究, 2020, 33(12): 2906-2912. | |
29 | Li R J, Li L Z, Zhang Y C, et al. Uptake and accumulation of microplastics in a cereal plant wheat. Chinese Science Bulletin, 2020, 65(20): 2120-2127. |
李瑞杰, 李连祯, 张云超, 等. 禾本科作物小麦能吸收和积累聚苯乙烯塑料微球. 科学通报, 2020, 65(20): 2120-2127. | |
30 | Bosker T, Bouwman L J, Brun N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere, 2019, 226: 774-781. |
31 | Wang R Y, Yuan S L, Wen W W, et al. Effects of phosphorus on root growth and photosynthetic physiology of alfalfa seedlings under aluminum stress. Acta Prataculturae Sinica, 2021, 30(10): 53-62. |
王如月, 袁世力, 文武武, 等. 磷对铝胁迫紫花苜蓿幼苗根系生长和生理特征的影响. 草业学报, 2021, 30(10): 53-62. | |
32 | Lian Y H, Liu W T, Shi R Y, et al. Impact of polyethylene and polylactic acid microplastics on growth, physio-biochemistry and metabolism in soybean (Glycine max). China Environmental Science, 2022, 42(6): 2894-2903. |
廉宇航, 刘维涛, 史瑞滢, 等. 聚乙烯和聚乳酸微塑料对大豆生长和生理生化及代谢的影响. 中国环境科学, 2022, 42(6): 2894-2903. | |
33 | Wang C W, Liu Y, Song Z G, et al. Effects of microplastics and DBP on photosynthesis and nutritional quality of lettuce. Journal of Agro-Environment Science, 2021, 40(3): 508-516. |
王成伟, 刘禹, 宋正国, 等. 微塑料对DBP胁迫下生菜光合作用及品质的影响. 农业环境科学学报, 2021, 40(3): 508-516. | |
34 | Li Z X, Li R J, Li Q F, et al. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere, 2020, 255: 127041. |
35 | Niu J F, Feng Z Z, Zhang W W, et al. Non-stomatal limitation to photosynthesis in Cinnamomum camphora seedings exposed to elevated O3. PLoS One, 2017, 9(6): e98572. |
36 | Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(1): 317-345. |
37 | Zhang C, Jian M F, Chen Y M, et al. Effects of polystyrene microplastics (PS-MPs) on the growth, physiology, and biochemical characteristics of Hydrilla verticillata. Chinese Journal of Applied Ecology, 2021, 32(1): 317-325. |
张晨, 简敏菲, 陈宇蒙, 等. 聚苯乙烯微塑料对黑藻生长及生理生化特征的影响. 应用生态学报, 2021, 32(1): 317-325. | |
38 | Gill S S, Gill N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. |
39 | Jolanda E J W, Herman M M C. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiologia Plantarum, 1996, 96(3): 506-512. |
40 | Wojtaszek P. Oxidative burst: An early plant response to pathogen infection. Biochemical Journal, 1997, 322(Pt 3): 681-692. |
41 | Zhang Q, Zhao M, Meng F, et al. Effect of polystyrene microplastics on rice seed germination and antioxidant enzyme activity. Toxics, 2021, 9(8): 179. |
42 | An J, Liu H Y, Zheng Y, et al. Effects of soil microplastics residue on soybean seedlings growth and the physiological and biochemical characteristics. Journal of Sichuan Agricultural University, 2021, 39(1): 41-46. |
安菁, 刘欢语, 郑艳, 等. 土壤微塑料残留对大豆幼苗生长及生理生化特征的影响. 四川农业大学学报, 2021, 39(1): 41-46. | |
43 | Liu L, Hong T T, Hu Q N, et al. Effects of the combination of microplastics and lead pollution on growth and oxidative responses of rice seedlings’ roots. Journal of Agro-Environment Science, 2021, 40(12): 2623-2633. |
刘玲, 洪婷婷, 胡倩男, 等. 微塑料与铅复合污染对水稻幼苗根系生长和氧化应激的影响. 农业环境科学学报, 2021, 40(12): 2623-2633. |
[1] | Jia-cheng ZHENG, Jie YU, Fan LI, Xiao-yi HUANG, Jie-qin LI, Hai-zhou CHEN, Xin WANG, Qiu-wen ZHAN, Zhao-shi XU. Functional characterization of the role of SbER10_X1 in regulating photosynthesis and biomass of sorghum forage [J]. Acta Prataculturae Sinica, 2023, 32(4): 91-100. |
[2] | Zheng TIAN, Zheng-yu YANG, Zhong-jie LU, Ben LUO, Mao ZHANG, Rui DONG. Acid-aluminum adaptability and tolerance evaluation of 44 alfalfa cultivars [J]. Acta Prataculturae Sinica, 2023, 32(3): 142-151. |
[3] | Xiao-jin ZHOU, Hai-xia HUANG, Jun-xia ZHANG, Bu-dong MA, Gang LU, Jian-wei QI, Ting ZHANG, Zhu ZHU. Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings [J]. Acta Prataculturae Sinica, 2023, 32(2): 75-83. |
[4] | Xiao-long WANG, Zhao YANG, Yong-cai LAI, Hong LI, Peng ZHONG, Yan-xia XU, Hua CHAI, Sha-sha LI, Yue WU, Min-chao SONG, Jing-ming ZHOU. Effect of root traits of Medicago sativa lines with fall dormancy on overwintering [J]. Acta Prataculturae Sinica, 2023, 32(1): 144-153. |
[5] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[6] | Xing WANG, Wei HUANG, Shu-yan YU, Xiao-yun LI, Xue-qin GAO, Bing-zhe FU. Effect of water and fertilizer coupling on seed yield and composition of alfalfa grown with underground drip irrigation in Ningxia [J]. Acta Prataculturae Sinica, 2022, 31(9): 76-85. |
[7] | Man-you LI, Dong-ning LI, Bin WANG, Xiao-yun LI, Xiao-tian SHEN, Li-juan CAO, Wang NI, Teng-fei WANG, Jian LAN. The effect of mixed sowing and sowing rate of different alfalfa varieties on the yield and quality of forage [J]. Acta Prataculturae Sinica, 2022, 31(5): 61-75. |
[8] | Yue-yang ZHANG, Fang LI, Wei-wei LIANG, Yan-zhong LI. Disease resistance evaluation of 32 alfalfa varieties in Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(2): 133-146. |
[9] | Yan-liang SUN, Kong-qin WEI, Xuan-shuai LIU, Jun-wei ZHAO, Sheng-yi LI, Chun-hui MA, Qian-bing ZHANG. Diurnal changes in photosynthesis and photosynthetic product partitioning in alfalfa in response to phosphorus application [J]. Acta Prataculturae Sinica, 2022, 31(12): 85-94. |
[10] | Yun-hua HAN, Su-juan MI, Xiao-qi SHI, Tian-hang ZHONG. Promotional effects of nanoparticles on plants [J]. Acta Prataculturae Sinica, 2022, 31(11): 204-213. |
[11] | Qiang LI, Shan CONG, Cheng-zhen ZHAO, Ying-xin HUANG, Dao-wei ZHOU. The influences of reseeding date and mowing prior to reseeding on establishment of alfalfa in Leymus chinensis meadows [J]. Acta Prataculturae Sinica, 2022, 31(11): 94-104. |
[12] | Zi-li LI, Shang-li SHI, Yun A, Hui-hui ZHANG, Xiao-long LI. Identification and physiological study of variation in reproductive fertility in clonal lines of Medicago sativa cultivar ‘Qingshui’ [J]. Acta Prataculturae Sinica, 2022, 31(10): 135-144. |
[13] | Tao ZHOU, Le MU, Kai-qi SU, Jun-yu ZHANG, Hui-min YANG. Effects of intercropping ratio and regulated deficit irrigation on flag leaf traits of spring wheat at the grain filling stage in spring wheat-alfalfa intercropping [J]. Acta Prataculturae Sinica, 2022, 31(10): 145-153. |
[14] | Lin CHEN, Gao-lu CHEN, Nai-ping SONG, Xue-bin LI, Hong-yun WAN, Wen-qiang HE. Response of photosynthetic characteristics and water use efficiency of Artemisia scoparia to rainfall changes in Eastern Ningxia desert steppe [J]. Acta Prataculturae Sinica, 2022, 31(10): 87-98. |
[15] | Rui-zhi XU, Xiao-juan WU, Hui-min YANG. Effect of topdressing after cutting on alfalfa growth and production [J]. Acta Prataculturae Sinica, 2022, 31(1): 195-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||