Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (10): 159-170.DOI: 10.11686/cyxb2024016
Pei-shan HUANG(), Mei-qi ZANG, Wei-ling ZHANG, Jun-jian CHEN, Li-xuan LIU, Qing ZHANG()
Received:
2024-01-11
Revised:
2024-02-29
Online:
2024-10-20
Published:
2024-07-15
Contact:
Qing ZHANG
Pei-shan HUANG, Mei-qi ZANG, Wei-ling ZHANG, Jun-jian CHEN, Li-xuan LIU, Qing ZHANG. Optimization of extraction process of Neolamarckia cadamba leaf polyphenols and its effect on Stylosanthes guianensis silage[J]. Acta Prataculturae Sinica, 2024, 33(10): 159-170.
因素Factors | 水平Levels | ||
---|---|---|---|
-1 | 0 | 1 | |
A甲醇浓度Methanol concentration (%) | 60 | 70 | 80 |
B液料比Liquid-solid ratio (mL·g-1) | 20 | 30 | 40 |
C提取时间Extraction time (min) | 30 | 40 | 50 |
D超声功率Ultrasonic power (W) | 200 | 250 | 300 |
Table 1 The levels of factors employed of Box-Behnken design
因素Factors | 水平Levels | ||
---|---|---|---|
-1 | 0 | 1 | |
A甲醇浓度Methanol concentration (%) | 60 | 70 | 80 |
B液料比Liquid-solid ratio (mL·g-1) | 20 | 30 | 40 |
C提取时间Extraction time (min) | 30 | 40 | 50 |
D超声功率Ultrasonic power (W) | 200 | 250 | 300 |
编号 No. | 影响因素Factors | NCLP含量Content of NCLP (mg GAE·g-1 DM) | 编号 No. | 影响因素Factors | NCLP含量Content of NCLP (mg GAE·g-1 DM) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | ||||
1 | 0 | 1 | -1 | 0 | 106.06 | 13 | 1 | -1 | 0 | 0 | 105.95 |
2 | 0 | 1 | 0 | -1 | 99.85 | 14 | 0 | -1 | 0 | -1 | 106.29 |
3 | -1 | 0 | -1 | 0 | 113.42 | 15 | 0 | -1 | -1 | 0 | 124.40 |
4 | 0 | 0 | -1 | 1 | 122.90 | 16 | 0 | 0 | 0 | 0 | 135.05 |
5 | 0 | 0 | -1 | -1 | 110.83 | 17 | 0 | 0 | 0 | 0 | 134.92 |
6 | 0 | 0 | 0 | 0 | 138.67 | 18 | 1 | 1 | 0 | 0 | 103.99 |
7 | 1 | 0 | 0 | -1 | 104.45 | 19 | 1 | 0 | -1 | 0 | 120.23 |
8 | 0 | 0 | 0 | 0 | 137.90 | 20 | 0 | 0 | 1 | 1 | 117.21 |
9 | -1 | 0 | 0 | 1 | 101.87 | 21 | 0 | 0 | 0 | 0 | 135.89 |
10 | 0 | 0 | 1 | -1 | 109.62 | 22 | -1 | 1 | 0 | 0 | 104.34 |
11 | 1 | 0 | 0 | 1 | 114.63 | 23 | 0 | -1 | 0 | 1 | 95.43 |
12 | -1 | 0 | 0 | -1 | 101.66 | 24 | 0 | 1 | 0 | 1 | 106.76 |
Table 2 Experimental design and results of the Box-Behnken trials
编号 No. | 影响因素Factors | NCLP含量Content of NCLP (mg GAE·g-1 DM) | 编号 No. | 影响因素Factors | NCLP含量Content of NCLP (mg GAE·g-1 DM) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | ||||
1 | 0 | 1 | -1 | 0 | 106.06 | 13 | 1 | -1 | 0 | 0 | 105.95 |
2 | 0 | 1 | 0 | -1 | 99.85 | 14 | 0 | -1 | 0 | -1 | 106.29 |
3 | -1 | 0 | -1 | 0 | 113.42 | 15 | 0 | -1 | -1 | 0 | 124.40 |
4 | 0 | 0 | -1 | 1 | 122.90 | 16 | 0 | 0 | 0 | 0 | 135.05 |
5 | 0 | 0 | -1 | -1 | 110.83 | 17 | 0 | 0 | 0 | 0 | 134.92 |
6 | 0 | 0 | 0 | 0 | 138.67 | 18 | 1 | 1 | 0 | 0 | 103.99 |
7 | 1 | 0 | 0 | -1 | 104.45 | 19 | 1 | 0 | -1 | 0 | 120.23 |
8 | 0 | 0 | 0 | 0 | 137.90 | 20 | 0 | 0 | 1 | 1 | 117.21 |
9 | -1 | 0 | 0 | 1 | 101.87 | 21 | 0 | 0 | 0 | 0 | 135.89 |
10 | 0 | 0 | 1 | -1 | 109.62 | 22 | -1 | 1 | 0 | 0 | 104.34 |
11 | 1 | 0 | 0 | 1 | 114.63 | 23 | 0 | -1 | 0 | 1 | 95.43 |
12 | -1 | 0 | 0 | -1 | 101.66 | 24 | 0 | 1 | 0 | 1 | 106.76 |
来源Source | 平方和Sum of squares | 自由度Degree of freedom | 均方Mean square | F值F-value | P值P-value |
---|---|---|---|---|---|
A | 45.63 | 1 | 45.63 | 3.67 | 0.0761 |
B | 17.98 | 1 | 17.98 | 1.45 | 0.2491 |
C | 121.41 | 1 | 121.41 | 9.76 | 0.0075 |
D | 56.77 | 1 | 56.77 | 4.57 | 0.0508 |
AB | 37.52 | 1 | 37.52 | 3.02 | 0.1043 |
AC | 75.00 | 1 | 75.00 | 6.03 | 0.0277 |
AD | 24.85 | 1 | 24.85 | 2.00 | 0.1793 |
BC | 363.86 | 1 | 363.86 | 29.26 | <0.0001 |
BD | 78.94 | 1 | 78.94 | 6.35 | 0.0245 |
CD | 5.02 | 1 | 5.02 | 0.40 | 0.5355 |
A2 | 1775.52 | 1 | 1775.52 | 142.79 | <0.0001 |
B2 | 2165.36 | 1 | 2165.36 | 174.14 | <0.0001 |
C2 | 295.84 | 1 | 295.84 | 23.79 | 0.0002 |
D2 | 1460.37 | 1 | 1460.37 | 117.45 | <0.0001 |
模型Model | 4763.16 | 14 | 340.23 | 27.36 | <0.0001 |
残差Residual | 174.08 | 14 | 12.43 | ||
失拟项Lack of fit | 162.44 | 10 | 16.24 | 5.58 | 0.0560 |
纯误差Pure error | 11.64 | 4 | 2.91 |
Table 3 Analysis of variance (ANOVA) for the quadratic model of NCLP
来源Source | 平方和Sum of squares | 自由度Degree of freedom | 均方Mean square | F值F-value | P值P-value |
---|---|---|---|---|---|
A | 45.63 | 1 | 45.63 | 3.67 | 0.0761 |
B | 17.98 | 1 | 17.98 | 1.45 | 0.2491 |
C | 121.41 | 1 | 121.41 | 9.76 | 0.0075 |
D | 56.77 | 1 | 56.77 | 4.57 | 0.0508 |
AB | 37.52 | 1 | 37.52 | 3.02 | 0.1043 |
AC | 75.00 | 1 | 75.00 | 6.03 | 0.0277 |
AD | 24.85 | 1 | 24.85 | 2.00 | 0.1793 |
BC | 363.86 | 1 | 363.86 | 29.26 | <0.0001 |
BD | 78.94 | 1 | 78.94 | 6.35 | 0.0245 |
CD | 5.02 | 1 | 5.02 | 0.40 | 0.5355 |
A2 | 1775.52 | 1 | 1775.52 | 142.79 | <0.0001 |
B2 | 2165.36 | 1 | 2165.36 | 174.14 | <0.0001 |
C2 | 295.84 | 1 | 295.84 | 23.79 | 0.0002 |
D2 | 1460.37 | 1 | 1460.37 | 117.45 | <0.0001 |
模型Model | 4763.16 | 14 | 340.23 | 27.36 | <0.0001 |
残差Residual | 174.08 | 14 | 12.43 | ||
失拟项Lack of fit | 162.44 | 10 | 16.24 | 5.58 | 0.0560 |
纯误差Pure error | 11.64 | 4 | 2.91 |
项目 Item | 柱花草 S. guianensis |
---|---|
干物质Dry matter (% FM) | 32.23±0.30 |
粗蛋白Crude protein (% DM) | 10.74±0.45 |
中性洗涤纤维Neutral detergent fiber (% DM) | 62.38±0.17 |
酸性洗涤纤维Acid detergent fiber (% DM) | 47.01±1.12 |
可溶性碳水化合物Water-soluble carbohydrates (% DM) | 1.79±0.06 |
乳酸菌Lactic acid bacteria (lg cfu·g-1 FM) | 4.52±0.26 |
大肠杆菌Coliform (lg cfu·g-1 FM) | 4.80±0.10 |
酵母菌Yeasts (lg cfu·g-1 FM) | 3.32±0.11 |
霉菌Molds (lg cfu·g-1 FM) | 2.98±0.05 |
Table 4 The characteristics of silage materials
项目 Item | 柱花草 S. guianensis |
---|---|
干物质Dry matter (% FM) | 32.23±0.30 |
粗蛋白Crude protein (% DM) | 10.74±0.45 |
中性洗涤纤维Neutral detergent fiber (% DM) | 62.38±0.17 |
酸性洗涤纤维Acid detergent fiber (% DM) | 47.01±1.12 |
可溶性碳水化合物Water-soluble carbohydrates (% DM) | 1.79±0.06 |
乳酸菌Lactic acid bacteria (lg cfu·g-1 FM) | 4.52±0.26 |
大肠杆菌Coliform (lg cfu·g-1 FM) | 4.80±0.10 |
酵母菌Yeasts (lg cfu·g-1 FM) | 3.32±0.11 |
霉菌Molds (lg cfu·g-1 FM) | 2.98±0.05 |
项目 Items | 处理Treatments | 标准误 SEM | P值 P-value | ||
---|---|---|---|---|---|
CK | NCLP1 | NCLP2 | |||
干物质Dry matter (% FM) | 32.32 | 32.77 | 33.11 | 0.19 | 0.26 |
干物质损失率Dry matter loss rate (%) | 1.97a | 1.73b | 1.65c | 0.05 | <0.01 |
pH | 5.09a | 4.71b | 4.58c | 0.08 | <0.01 |
乳酸菌Lactic acid bacteria (lg cfu·g-1 FM) | 8.25b | 8.57a | 8.59a | 0.07 | <0.01 |
大肠杆菌Coliform (lg cfu·g-1 FM) | 2.10 | <2.00 | <2.00 | - | - |
霉菌Molds (lg cfu·g-1 FM) | <2.00 | <2.00 | <2.00 | - | - |
酵母菌Yeasts (lg cfu·g-1 FM) | <2.00 | <2.00 | <2.00 | - | - |
乳酸Lactic acid (% DM) | 1.21b | 2.20a | 2.23a | 0.17 | <0.01 |
乙酸Acetic acid (% DM) | 1.67c | 3.01b | 4.06a | 0.35 | <0.01 |
丙酸Propionic acid (% DM) | ND | ND | ND | - | - |
丁酸Butyric acid (% DM) | ND | ND | ND | - | - |
Table 5 The effect of N. cadamba leaves’ polyphenolson the fermentation quality and microbial population of S. guianensis silage
项目 Items | 处理Treatments | 标准误 SEM | P值 P-value | ||
---|---|---|---|---|---|
CK | NCLP1 | NCLP2 | |||
干物质Dry matter (% FM) | 32.32 | 32.77 | 33.11 | 0.19 | 0.26 |
干物质损失率Dry matter loss rate (%) | 1.97a | 1.73b | 1.65c | 0.05 | <0.01 |
pH | 5.09a | 4.71b | 4.58c | 0.08 | <0.01 |
乳酸菌Lactic acid bacteria (lg cfu·g-1 FM) | 8.25b | 8.57a | 8.59a | 0.07 | <0.01 |
大肠杆菌Coliform (lg cfu·g-1 FM) | 2.10 | <2.00 | <2.00 | - | - |
霉菌Molds (lg cfu·g-1 FM) | <2.00 | <2.00 | <2.00 | - | - |
酵母菌Yeasts (lg cfu·g-1 FM) | <2.00 | <2.00 | <2.00 | - | - |
乳酸Lactic acid (% DM) | 1.21b | 2.20a | 2.23a | 0.17 | <0.01 |
乙酸Acetic acid (% DM) | 1.67c | 3.01b | 4.06a | 0.35 | <0.01 |
丙酸Propionic acid (% DM) | ND | ND | ND | - | - |
丁酸Butyric acid (% DM) | ND | ND | ND | - | - |
项目 Items | 处理Treatments | 标准误 SEM | P值 P-value | ||
---|---|---|---|---|---|
CK | NCLP1 | NCLP2 | |||
粗蛋白Crude protein (% DM) | 9.92 | 9.92 | 9.70 | 0.12 | 0.72 |
真蛋白True protein (% DM) | 6.46b | 6.80ab | 7.29a | 0.14 | 0.02 |
非蛋白氮Non-protein nitrogen (% DM) | 3.47 | 3.13 | 2.41 | 0.22 | 0.14 |
氨态氮NH3-N (% TN) | 8.27a | 4.52b | 4.12b | 0.70 | <0.01 |
中性洗涤纤维Neutral detergent fiber (% DM) | 63.64a | 62.00ab | 59.98b | 0.66 | 0.04 |
酸性洗涤纤维Acid detergent fiber (% DM) | 49.05a | 47.22ab | 46.51b | 0.47 | 0.04 |
Table 6 The effect of N. cadamba leaves’ polyphenols on the protein fraction and fiber content of S. guianensis silage
项目 Items | 处理Treatments | 标准误 SEM | P值 P-value | ||
---|---|---|---|---|---|
CK | NCLP1 | NCLP2 | |||
粗蛋白Crude protein (% DM) | 9.92 | 9.92 | 9.70 | 0.12 | 0.72 |
真蛋白True protein (% DM) | 6.46b | 6.80ab | 7.29a | 0.14 | 0.02 |
非蛋白氮Non-protein nitrogen (% DM) | 3.47 | 3.13 | 2.41 | 0.22 | 0.14 |
氨态氮NH3-N (% TN) | 8.27a | 4.52b | 4.12b | 0.70 | <0.01 |
中性洗涤纤维Neutral detergent fiber (% DM) | 63.64a | 62.00ab | 59.98b | 0.66 | 0.04 |
酸性洗涤纤维Acid detergent fiber (% DM) | 49.05a | 47.22ab | 46.51b | 0.47 | 0.04 |
1 | Zhao X, Ouyang K, Gan S, et al. Biochemical and molecular changes associated with heteroxylan biosynthesis in Neolamarckia cadamba (Rubiaceae) during xylogenesis. Frontiers in Plant Science, 2014, 5(11): 602-616. |
2 | Pandey A, Negi P S. Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Natural Product Research, 2018, 32(10): 1189-1192. |
3 | Wang Y, Wang X K, Zhou W, et al. Effects of moisture content and additive on silage quality of Neolamarckia cadamba leaves. Journal of South China Agricultural University, 2018, 39(4): 80-86. |
王益, 王学凯, 周玮, 等. 含水量及添加剂对黄梁木叶青贮品质的影响. 华南农业大学学报, 2018, 39(4): 80-86. | |
4 | Chandel M, Sharma U, Kumar N, et al. Antioxidant activity and identification of bioactive compounds from leaves of Anthocephalus cadamba by ultra-performance liquid chromatography/electrospray ionization quadrupole time of flight mass spectrometry. Asian Pacific Journal of Tropical Medicine, 2012, 5(12): 977-985. |
5 | Khandelwal V, Bhatia A K, Goel A. Antimicrobial and antioxidant efficacy of aqueous extract of Anthocephalus cadamba leaves. Journal of Pure & Applied Microbiology, 2016, 10(1): 209-216. |
6 | Zhou W, Wei W Q, Li M, et al. Review on green extraction technology of plant polyphenols. Farm Products Processing, 2023(7): 74-77. |
周婉, 魏婉倩, 李猛, 等. 植物多酚绿色提取技术研究进展. 农产品加工, 2023(7): 74-77. | |
7 | Tian F L, Huang W J, Wang Z, et al. Research progress on the extraction of plant polyphenols. Food & Machinery, 2020, 36(9): 211-216. |
田富林, 黄文晶, 王展, 等. 植物多酚提取研究进展. 食品与机械, 2020, 36(9): 211-216. | |
8 | Dai Y L, Shen W Z, Liao S T, et al. Optimization of ultrasonic-assisted extraction process of mulberry polyphenols using response surface methodology. Chinese Journal of Tropical Crops, 2016, 37(8): 1588-1594. |
代燕丽, 沈维治, 廖森泰, 等. 响应面法优化超声波辅助提取桑叶多酚工艺. 热带作物学报, 2016, 37(8): 1588-1594. | |
9 | Ning Z X, Zhu L B, Zhu D, et al. Optimization of ultrasonic-assisted extraction of blackcurrant polyphenols by response surface methodology and its antioxidant activity. Science and Technology of Food Industry, 2022, 43(22): 221-228. |
宁志雪, 朱立斌, 朱丹, 等. 响应面法优化超声波辅助提取黑加仑多酚工艺及其抗氧化活性分析. 食品工业科技, 2022, 43(22): 221-228. | |
10 | Liu G D, Bai C J, He H X, et al. The selection and utilization of Stylosanthes guianensis cv. Reyan No.5. Acta Agrestia Sinica, 2001, 9(1): 1-7. |
刘国道, 白昌军, 何华玄, 等. 热研5号柱花草选育研究. 草地学报, 2001, 9(1): 1-7. | |
11 | Denek N, Can A, Avci M, et al. The effect of molasses-based pre-fermented juice on the fermentation quality of first-cut lucerne silage. Grass and Forage Science, 2011, 66(2): 243-250. |
12 | Julkunen-Tiitto R. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 1985, 33(2): 213-217. |
13 | Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75. |
14 | Wang Y, Wang C, Zhou W, et al. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of Moringa oleifera leaf silage. Frontiers in Microbiology, 2018, 9(8): 1817-1825. |
15 | Wang C, Wang Y, Zhou W, et al. Effects of Lactobacillus plantarum (LP) and moisture on feed quality and tannin content of Moringa oleifera leaf silage. Acta Prataculturae Sinica, 2019, 28(6): 109-118. |
王成, 王益, 周玮, 等. 植物乳杆菌和含水量对辣木叶青贮品质和单宁含量的影响. 草业学报, 2019, 28(6): 109-118. | |
16 | Ma S M, Jiao T, Shi S L, et al. Effects of mixed lactic acid bacteria preparation on silage quality of different green corns. Acta Agrestia Sinica, 2022, 30(6): 1558-1568. |
马淑敏, 焦婷, 师尚礼, 等. 混合型乳酸菌制剂对不同品种青饲玉米青贮品质的影响. 草地学报, 2022, 30(6): 1558-1568. | |
17 | Li L, Zhao X F, Zhao G. Effects of ensilaging on the protein components in ensilaged forage. Chinese Journal of Grassland, 2010, 32(6): 110-112. |
李玲, 赵秀芬, 赵钢. 青贮处理对饲料蛋白质组分的影响. 中国草地学报, 2010, 32(6): 110-112. | |
18 | Licitra G, Hernandez T M, Van Soest P J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 1996, 57(4): 347-358. |
19 | Mcdonald P, Henderson A R. Determination of water-soluble carbohydrates in grass. Journal of the Science of Food and Agriculture, 1964, 15(6): 395-398. |
20 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
21 | Chen J F, Lin X, Chen Z W. Optimization of ultrasonic-assisted extraction of cucumber polyphenol by response surface methodology and its tyrosinaseinhibitory activities. China Cucurbits and Vegetables, 2021, 34(12): 16-22. |
陈建福, 林洵, 陈仲巍. 响应面法优化超声辅助提取黄瓜多酚工艺及其对酪氨酸酶的抑制作用. 中国瓜菜, 2021, 34(12): 16-22. | |
22 | Xu J, Tang R, Ji S C, et al. Research of the extraction processing of tea polyphenols. Food Research and Development, 2016, 37(5): 86-90, 91. |
徐婕, 汤韧, 吉树臣, 等. 酶法辅助提取茶多酚的工艺研究. 食品研究与开发, 2016, 37(5): 86-90, 91. | |
23 | Vilkhu K, Mawson R, Simons L, et al. Applications and opportunities for ultrasound assisted extraction in the food industry — A review. Innovative Food Science & Emerging Technologies, 2008, 9(2): 161-169. |
24 | Xing M, Fei P, Shi E C, et al. Optimization of extraction and antioxidant activity of polyphenols from Eucommia ulmoides male flower by response surface methodology. Food Science and Technology, 2021, 46(7): 201-207, 214. |
邢敏, 费鹏, 史恩聪, 等. 响应面法优化杜仲雄花多酚提取工艺及其抗氧化活性. 食品科技, 2021, 46(7): 201-207, 214. | |
25 | Liu Q, Zhang J, Shi S, et al. The effects of wilting and storage temperatures on the fermentation quality and aerobic stability of stylo silage. Animal Science Journal, 2011, 82(4): 549-553. |
26 | Dong C, Liu P, Wang X, et al. Effects of phenyllactic acid on fermentation parameters, nitrogen fractions and bacterial community of high-moisture stylo silage. Fermentation, 2023, 9(6): 572-587. |
27 | Li X Q, Fan Y, Tian J, et al. Research progress on silage in southern China. Chinese Journal of Grassland, 2022, 44(6): 106-114. |
李鑫琴, 樊杨, 田静, 等. 中国南方青贮饲料研究进展. 中国草地学报, 2022, 44(6): 106-114. | |
28 | Wang C, He L, Xing Y, et al. Effects of mixing Neolamarckia cadamba leaves on fermentation quality, microbial community of high moisture alfalfa and stylo silage. Microbial Biotechnology, 2019, 12(5): 869-878. |
29 | Gao H J, Liu Z D, Sun R. Effects of additives, water content and storage time on alfalfa silage. China Feed, 2020(13): 35-39. |
高海娟, 刘泽东, 孙蕊. 添加剂、含水量及贮藏时间对苜蓿青贮的影响. 中国饲料, 2020(13): 35-39. | |
30 | Guyader J, Baron V, Beauchemin K. Corn forage yield and quality for silage in short growing season areas of the Canadian prairies. Agronomy, 2018, 8(9): 164. |
31 | Kung L, Stough E C, Mcdonell E E, et al. The effect of wide swathing on wilting times and nutritive value of alfalfa haylage. Journal of Dairy Science, 2010, 93(4): 1770-1773. |
32 | Cai Y, Benno Y, Ogawa M, et al. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Applied and Environmental Microbiology, 1998, 64(8): 2982-2987. |
33 | Borreani G, Tabacco E, Schmidt R J, et al. Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 2018, 101(5): 3952-3979. |
34 | Zheng M Y, Wu S, Guo X, et al. Effects of Lactobacillus and cellulase on the silage quality of Amomum villosum leaves. Acta Agrestia Sinica, 2021, 29(5): 1113-1117. |
郑明扬, 吴硕, 郭香, 等. 添加乳酸菌和纤维素酶对砂仁叶青贮品质的影响. 草地学报, 2021, 29(5): 1113-1117. | |
35 | Zhang Y L. Factors influencing the quality of silage. China Dairy, 2002(5): 14-16. |
张英来. 影响青贮饲料质量的因素. 中国乳业, 2002(5): 14-16. | |
36 | Guo X S, Ding W R, Yu Z. The evaluation system of fermentation quality of ensiled forage and its improvement. Chinese Journal of Grassland, 2008, 30(4): 100-106. |
郭旭生, 丁武蓉, 玉柱. 青贮饲料发酵品质评定体系及其新进展. 中国草地学报, 2008, 30(4): 100-106. | |
37 | Ji H Q, Meng L N, Yu M, et al. Quality evaluation of silages. Modern Journal of Animal Husbandry and Veterinary Medicine, 2021(6): 92-96. |
冀红芹, 孟令楠, 于明, 等. 青贮饲料的质量评价. 现代畜牧兽医, 2021(6): 92-96. | |
38 | Tian J, Cao C X, Huang L Y, et al. Screening low-nutrient-tolerant lactic acid bacteria and their effects on the fermentation quality of silages from poor materials. Acta Prataculturae Sinica, 2023, 32(9): 222-230. |
田静, 曹彩霞, 黄莉莹, 等. 耐低营养乳酸菌筛选及对难青贮牧草发酵品质的影响. 草业学报, 2023, 32(9): 222-230. | |
39 | He L, Lv H, Xing Y, et al. The nutrients in Moringa oleifera leaf contribute to the improvement of stylo and alfalfa silage: Fermentation, nutrition and bacterial community. Bioresource Technology, 2020, 301(4): 122733. |
40 | Guo X, Chen D K, Chen N, et al. Effect of moisture content and additives on the fermentation quality of Neolamarckia cadamba leaf silage. Acta Prataculturae Sinica, 2021, 30(8): 199-205. |
郭香, 陈德奎, 陈娜, 等. 含水量和添加剂对黄梁木叶青贮发酵品质的影响. 草业学报, 2021, 30(8): 199-205. | |
41 | Ohshima M, Mcdonald P. A review of the changes in nitrogenous compounds of herbage during ensilage. Journal of the Science of Food and Agriculture, 1978, 29(6): 497-505. |
42 | Li X, Tian J, Zhang Q, et al. Effects of mixing red clover with alfalfa at different ratios on dynamics of proteolysis and protease activities during ensiling. Journal of Dairy Science, 2018, 101(10): 8954-8964. |
43 | Li Z X, Dong C X, Liu P, et al. Synergy of Moringa oleifera leaves and Neolamarckia cadamba leaves on silage fermentation and proteolysis activity. Feed Industry, 2023, 44(18): 9-16. |
李紫欣, 董晨曦, 刘萍, 等. 辣木叶与黄梁木叶混贮的组合效应: 发酵参数和蛋白质水解. 饲料工业, 2023, 44(18): 9-16. | |
44 | Huang X D, Liang J B, Tan H Y, et al. Molecular weight and protein binding affinity of Leucaena condensed tannins and their effects on in vitro fermentation parameters. Animal Feed Science and Technology, 2010, 159(3): 81-87. |
45 | Wang L, Gao R, Zhuo X L, et al. Membership function analysis for concentrate-to-forage ratio and ensiling time in total mixed ration fermentation. Pratacultural Science, 2023, 40(10): 2711-2720. |
王磊, 高润, 卓兴良, 等. 发酵全混合日粮精粗比及贮藏时间的隶属函数分析. 草业科学, 2023, 40(10): 2711-2720. |
[1] | Jian-zhen GE, Wen-hui FU, Lu ZHANG, Bao-jun LIN, Shuai ZHAO, Ma-ga-weng BAI, Jian-cun KOU. Degradation of carbendazim in orchard white clover silage and its effect on the microbial fermentative community [J]. Acta Prataculturae Sinica, 2022, 31(7): 64-75. |
[2] | Shi-yu ZOU, Si-kui CHEN, Qi-yuan TANG, Dong CHEN, Yuan-wei CHEN, Pan DENG, Xu-lai HUANG, Fu-qiang LI. Effects of silage additives on quality and in vitro rumen fermentation characteristics of first season ratoon rice whole silage [J]. Acta Prataculturae Sinica, 2021, 30(7): 122-132. |
[3] | Jie YUAN, Ran-ran MA, Wen-jie ZHANG, Neng-xiang XU, Ran-ran ZHAO, Hong-ru GU, Cheng-long DING. Screening of superior lactic acid bacteria from natural Lolium multiflorum silage and their effects on silage quality [J]. Acta Prataculturae Sinica, 2021, 30(11): 132-143. |
[4] | YU Hao-ran, GE Gen-tu, WANG Zhi-jun, JIA Yu-shan, LIAN Zhi, JIA Peng-fei. Effects of formic acid additives and ensiling time on the quality of alfalfa silage [J]. Acta Prataculturae Sinica, 2020, 29(3): 89-95. |
[5] | REN Yu-xin, DAI Han-ling, TIAN Xin-hui, DU Wen-hua. Effects of different additives and cutting dates on nutritional and silage fermentation quality of Triticale silage in an alpine pastoral area of Gansu Province [J]. Acta Prataculturae Sinica, 2020, 29(3): 197-206. |
[6] | LI Ying-zheng, YAN Xu, WU Zi-zhou, YANG Chun-yan, LI Xiao-feng, HE Ru-yu, ZHANG Ping, EBENEZER Kofi Sam, ZHOU Yang, ZHANG Lei, RONG Ting-zhao, HE Jian-mei, TANG Qi-lin. Forage maize type and growth stage effects on biomass yield and silage quality [J]. Acta Prataculturae Sinica, 2019, 28(7): 82-91. |
[7] | LI Shun, MU Lin, ZENG Ning-bo, CHEN Dong, ZHANG Zhi-fei, YE Zhi-gang. Effects of additives on the quality of mixed silage of amaranth and soybean meal [J]. Acta Prataculturae Sinica, 2019, 28(12): 205-210. |
[8] | WANG Jian-fu, LEI Zhao-min, CHENG Shu-ru, JIAO Ting, LI Jie, WU Jian-ping. Effects of lactic acid bacteria preparation and bran on corn stover silage quality [J]. Acta Prataculturae Sinica, 2018, 27(4): 162-169. |
[9] | WANG Mu-chuan, YANG Yu-xi, YU Yi-dong, YU Zhu. Interactions between additives and ensiling density on quality of Medicago sativa silage [J]. Acta Prataculturae Sinica, 2018, 27(2): 156-162. |
[10] | KUANG Xiao, JI Jing, LIANG Wen?xue, CUI Guo?wen, JI Guo?xu, CUI Xin, LIU Jian,HU Guo?fu. Effects of mixed sowing ratio and mowing period of Medicago sativa and Bromus inermis on silage quality in cold regions of north China [J]. Acta Prataculturae Sinica, 2018, 27(12): 187-198. |
[11] | LEI Zhao-Min, WANG Jian-Fu, WU Jian-Ping, HE Yi-Qun, WU Run, JIANG Hui, WAN Xue-Rui. Effect of 5 strains of Lactic acid bacteria with antibacterial activity on the corn silage quality [J]. Acta Prataculturae Sinica, 2017, 26(11): 77-84. |
[12] | TAO Lian, FENG Wen-Xiao, WANG Yu-Rong, DIAO Qi-Yu. Effects of microecological agents on the fermentation quality, nutrition composition and in situ ruminal degradability of corn stalk silage [J]. Acta Prataculturae Sinica, 2016, 25(9): 152-160. |
[13] | LI Zhen-Zhen, BAI Chun-Sheng, YU Yi-Dong, YU Zhu. Effects of cutting stage and additives on the fermentation quality and CNCPS protein fractions of alfalfa silage [J]. Acta Prataculturae Sinica, 2016, 25(11): 167-172. |
[14] | REN Hai-Wei, DOU Jun-Wei, ZHAO Tuo, LI Xue-Yan, LI Zhi-Zhong, LI Jin-Ping, SUN Wen-Bin, HUANG Juan-Juan. Effects of additives on the mixed silage quality of corn stover and asparagus lettuce leaves [J]. Acta Prataculturae Sinica, 2016, 25(10): 142-152. |
[15] | LIU Hui, BU Deng-Pan, LV Zhong-Wang, LI Fa-Di, LIU Shi-Jie, ZHANG Kai-Zhan, WANG Jia-Qi. Effects of wilting and additives on fermentation quality of alfalfa (Medicago sativa) silage [J]. Acta Prataculturae Sinica, 2015, 24(5): 126-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||