Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (4): 154-170.DOI: 10.11686/cyxb2023214
Xian-yang LI1,2(), Hao LIU1, Fei HE1, Xue WANG1, Ming-na LI1, Rui-cai LONG1, Jun-mei KANG1, Qing-chuan YANG1, Lin CHEN1()
Received:
2023-06-26
Revised:
2023-09-13
Online:
2024-04-20
Published:
2024-01-15
Contact:
Lin CHEN
Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa[J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170.
营养成分 Nutrient content | 溶质 Solute | 浓度 Concentration (μmol·L-1) |
---|---|---|
大量元素 Major element | KNO3 | 2500 |
CaCl2·2H2O | 250 | |
MgSO4·7H2O | 1000 | |
KH2PO4 | 500 | |
微量元素 Minor element | H3BO3 | 30 |
MnSO4·H2O | 5 | |
ZnSO4·7H2O | 1 | |
CuSO4·5H2O | 1 | |
Na2MoO4·2H2O | 0.7 | |
铁盐 Ferric salt | FeSO4·7H2O | 100 |
EDTA-Na2 | 100 |
Table 1 1/2 Hoagland nutrient solution formula
营养成分 Nutrient content | 溶质 Solute | 浓度 Concentration (μmol·L-1) |
---|---|---|
大量元素 Major element | KNO3 | 2500 |
CaCl2·2H2O | 250 | |
MgSO4·7H2O | 1000 | |
KH2PO4 | 500 | |
微量元素 Minor element | H3BO3 | 30 |
MnSO4·H2O | 5 | |
ZnSO4·7H2O | 1 | |
CuSO4·5H2O | 1 | |
Na2MoO4·2H2O | 0.7 | |
铁盐 Ferric salt | FeSO4·7H2O | 100 |
EDTA-Na2 | 100 |
基因登录号 Gene ID | 基因名 Gene name | PL (aa) | Mw (kDa) | pI | Sl | 基因登录号 Gene ID | 基因名 Gene name | PL (aa) | Mw (kDa) | pI | Sl |
---|---|---|---|---|---|---|---|---|---|---|---|
MS.gene54277 | MsWRKY1 | 343 | 37.21 | 9.62 | Nucl | MS.gene041042 | MsWRKY100 | 270 | 29.83 | 9.48 | Nucl |
MS.gene49339 | MsWRKY2 | 360 | 40.73 | 9.75 | Nucl | MS.gene066380 | MsWRKY101 | 419 | 45.87 | 7.25 | Nucl |
MS.gene005502 | MsWRKY3 | 327 | 36.59 | 6.16 | Nucl | MS.gene43637 | MsWRKY102 | 360 | 40.10 | 5.65 | Nucl |
MS.gene066268 | MsWRKY4 | 311 | 34.75 | 5.86 | Nucl | MS.gene67236 | MsWRKY103 | 547 | 60.63 | 6.61 | Nucl |
MS.gene016151 | MsWRKY5 | 162 | 18.68 | 5.76 | Nucl | MS.gene63867 | MsWRKY104 | 548 | 59.61 | 8.61 | Nucl |
MS.gene54046 | MsWRKY6 | 343 | 37.22 | 9.62 | Nucl | MS.gene38063 | MsWRKY105 | 386 | 42.86 | 6.25 | Nucl |
MS.gene50585 | MsWRKY7 | 357 | 40.31 | 9.80 | Nucl | MS.gene38065 | MsWRKY106 | 278 | 32.04 | 9.23 | Nucl |
MS.gene07321 | MsWRKY8 | 177 | 19.87 | 9.15 | Nucl | MS.gene72198 | MsWRKY107 | 502 | 55.25 | 7.68 | Nucl |
MS.gene60622 | MsWRKY9 | 311 | 34.73 | 5.86 | Nucl | MS.gene55314 | MsWRKY108 | 434 | 47.53 | 6.71 | Nucl |
MS.gene051544 | MsWRKY10 | 162 | 18.68 | 5.95 | Nucl | MS.gene55386 | MsWRKY109 | 273 | 30.35 | 6.31 | Nucl |
MS.gene86270 | MsWRKY11 | 121 | 13.98 | 9.61 | Cyto | MS.gene066778 | MsWRKY110 | 273 | 30.35 | 6.31 | Nucl |
MS.gene86268 | MsWRKY12 | 343 | 37.19 | 9.62 | Nucl | MS.gene55387 | MsWRKY111 | 164 | 18.34 | 7.11 | Nucl |
MS.gene036149 | MsWRKY13 | 219 | 24.20 | 9.49 | Mito | MS.gene61935 | MsWRKY112 | 360 | 40.03 | 5.73 | Nucl |
MS.gene20870 | MsWRKY14 | 303 | 33.72 | 6.75 | Chlo | MS.gene99711 | MsWRKY113 | 546 | 60.50 | 6.61 | Nucl |
MS.gene49162 | MsWRKY15 | 311 | 34.73 | 5.86 | Nucl | MS.gene81399 | MsWRKY114 | 548 | 59.67 | 8.61 | Nucl |
MS.gene021549 | MsWRKY16 | 343 | 37.19 | 9.62 | Nucl | MS.gene81214 | MsWRKY115 | 386 | 42.98 | 6.51 | Nucl |
MS.gene021548 | MsWRKY17 | 343 | 37.19 | 9.62 | Nucl | MS.gene015188 | MsWRKY116 | 216 | 24.03 | 9.59 | Nucl |
MS.gene39903 | MsWRKY18 | 360 | 40.72 | 9.80 | Nucl | MS.gene85887 | MsWRKY117 | 434 | 47.59 | 6.98 | Nucl |
MS.gene050353 | MsWRKY19 | 177 | 19.87 | 9.15 | Nucl | MS.gene99689 | MsWRKY118 | 348 | 39.07 | 6.83 | Nucl |
MS.gene006220 | MsWRKY20 | 311 | 34.65 | 5.86 | Nucl | MS.gene010021 | MsWRKY119 | 360 | 40.10 | 5.65 | Nucl |
MS.gene00145 | MsWRKY21 | 324 | 35.74 | 8.54 | Nucl | MS.gene009725 | MsWRKY120 | 545 | 60.41 | 6.84 | Nucl |
MS.gene00061 | MsWRKY22 | 386 | 42.82 | 5.95 | Nucl | MS.gene057071 | MsWRKY121 | 309 | 35.24 | 6.64 | Nucl |
MS.gene27204 | MsWRKY23 | 557 | 60.02 | 7.70 | Nucl | MS.gene48076 | MsWRKY122 | 548 | 59.55 | 8.61 | Nucl |
MS.gene002619 | MsWRKY24 | 220 | 24.28 | 5.08 | Nucl | MS.gene38195 | MsWRKY123 | 386 | 42.90 | 6.37 | Nucl |
MS.gene67724 | MsWRKY25 | 324 | 35.70 | 8.53 | Nucl | MS.gene38194 | MsWRKY124 | 278 | 32.00 | 9.18 | Nucl |
MS.gene058334 | MsWRKY26 | 465 | 51.44 | 5.94 | Nucl | MS.gene53106 | MsWRKY125 | 434 | 47.55 | 6.77 | Nucl |
MS.gene002992 | MsWRKY27 | 563 | 60.76 | 7.70 | Nucl | MS.gene53174 | MsWRKY126 | 278 | 31.03 | 7.15 | Nucl |
MS.gene01605 | MsWRKY28 | 220 | 24.28 | 5.08 | Nucl | MS.gene023746 | MsWRKY127 | 359 | 39.97 | 5.65 | Nucl |
MS.gene073173 | MsWRKY29 | 261 | 28.88 | 5.85 | Nucl | MS.gene060237 | MsWRKY128 | 546 | 60.54 | 6.65 | Nucl |
MS.gene55979 | MsWRKY30 | 322 | 35.36 | 8.18 | Nucl | MS.gene020691 | MsWRKY129 | 548 | 59.55 | 8.61 | Nucl |
MS.gene55899 | MsWRKY31 | 477 | 52.71 | 5.98 | Nucl | MS.gene020899 | MsWRKY130 | 386 | 42.98 | 6.51 | Nucl |
MS.gene00786 | MsWRKY32 | 563 | 60.76 | 7.70 | Nucl | MS.gene020902 | MsWRKY131 | 282 | 32.31 | 8.95 | Nucl |
MS.gene03111 | MsWRKY33 | 220 | 24.28 | 5.08 | Nucl | MS.gene050835 | MsWRKY132 | 265 | 29.54 | 6.79 | Nucl |
MS.gene058246 | MsWRKY34 | 378 | 41.69 | 6.35 | Nucl | MS.gene09792 | MsWRKY133 | 396 | 44.46 | 8.25 | Nucl |
MS.gene67885 | MsWRKY35 | 307 | 34.22 | 6.92 | Nucl | MS.gene007479 | MsWRKY134 | 436 | 48.59 | 7.55 | Nucl |
MS.gene02354 | MsWRKY36 | 563 | 60.74 | 7.70 | Nucl | MS.gene024036 | MsWRKY135 | 676 | 74.78 | 6.03 | Nucl |
MS.gene004297 | MsWRKY37 | 220 | 24.28 | 5.08 | Nucl | MS.gene024035 | MsWRKY136 | 724 | 80.37 | 6.44 | Nucl |
MS.gene56264 | MsWRKY38 | 701 | 76.01 | 6.13 | Nucl | MS.gene87798 | MsWRKY137 | 409 | 45.77 | 8.29 | Nucl |
MS.gene064637 | MsWRKY39 | 595 | 64.76 | 6.58 | Nucl | MS.gene99619 | MsWRKY138 | 313 | 35.26 | 5.88 | Nucl |
MS.gene41592 | MsWRKY40 | 511 | 57.09 | 6.29 | Nucl | MS.gene021786 | MsWRKY139 | 483 | 53.14 | 6.58 | Nucl |
MS.gene84141 | MsWRKY41 | 340 | 38.22 | 6.07 | Nucl | MS.gene74774 | MsWRKY140 | 581 | 64.60 | 6.42 | Nucl |
MS.gene049409 | MsWRKY42 | 324 | 36.89 | 5.28 | Nucl | MS.gene024451 | MsWRKY141 | 333 | 38.04 | 6.68 | Nucl |
MS.gene049350 | MsWRKY43 | 243 | 27.80 | 8.31 | Nucl | MS.gene28630 | MsWRKY142 | 411 | 44.60 | 6.42 | Nucl |
MS.gene32785 | MsWRKY44 | 164 | 18.76 | 5.37 | Nucl | MS.gene09793 | MsWRKY143 | 438 | 48.85 | 7.96 | Nucl |
MS.gene014903 | MsWRKY45 | 293 | 32.92 | 8.70 | Nucl | MS.gene050168 | MsWRKY144 | 438 | 48.85 | 7.96 | Nucl |
MS.gene42609 | MsWRKY46 | 293 | 32.92 | 8.70 | Nucl | MS.gene007480 | MsWRKY145 | 437 | 48.72 | 7.96 | Nucl |
MS.gene014722 | MsWRKY47 | 452 | 48.67 | 9.87 | Nucl | MS.gene033472 | MsWRKY146 | 676 | 74.80 | 6.03 | Nucl |
MS.gene009477 | MsWRKY48 | 702 | 76.15 | 6.08 | Nucl | MS.gene033471 | MsWRKY147 | 616 | 68.51 | 6.57 | Nucl |
MS.gene68485 | MsWRKY49 | 519 | 56.93 | 6.42 | Nucl | MS.gene85464 | MsWRKY148 | 269 | 30.01 | 9.33 | Nucl |
MS.gene049457 | MsWRKY50 | 512 | 57.19 | 6.25 | Nucl | MS.gene42866 | MsWRKY149 | 467 | 52.28 | 7.13 | Nucl |
MS.gene81987 | MsWRKY51 | 342 | 38.45 | 6.21 | Nucl | MS.gene46172 | MsWRKY150 | 296 | 33.65 | 5.63 | Nucl |
MS.gene06539 | MsWRKY52 | 324 | 36.89 | 5.28 | Nucl | MS.gene057556 | MsWRKY151 | 523 | 57.23 | 6.75 | Nucl |
MS.gene06469 | MsWRKY53 | 243 | 27.80 | 8.31 | Nucl | MS.gene043270 | MsWRKY152 | 582 | 64.68 | 6.20 | Nucl |
MS.gene63519 | MsWRKY54 | 702 | 76.23 | 6.06 | Nucl | MS.gene050640 | MsWRKY153 | 333 | 37.98 | 6.68 | Nucl |
MS.gene66170 | MsWRKY55 | 595 | 64.77 | 6.58 | Nucl | MS.gene072683 | MsWRKY154 | 295 | 33.20 | 6.66 | Nucl |
MS.gene008580 | MsWRKY56 | 506 | 56.68 | 6.25 | Nucl | MS.gene20234 | MsWRKY155 | 437 | 48.72 | 7.96 | Nucl |
MS.gene06753 | MsWRKY57 | 340 | 38.30 | 6.21 | Nucl | MS.gene51163 | MsWRKY156 | 676 | 74.83 | 5.98 | Nucl |
MS.gene06784 | MsWRKY58 | 324 | 36.92 | 5.28 | Nucl | MS.gene51164 | MsWRKY157 | 617 | 68.59 | 6.44 | Nucl |
MS.gene066523 | MsWRKY59 | 98 | 11.38 | 9.32 | Cyto | MS.gene51229 | MsWRKY158 | 329 | 36.70 | 5.83 | Nucl |
MS.gene066525 | MsWRKY60 | 98 | 11.38 | 9.32 | Cyto | MS.gene42130 | MsWRKY159 | 546 | 61.13 | 6.36 | Nucl |
MS.gene51632 | MsWRKY61 | 704 | 76.41 | 6.10 | Nucl | MS.gene96858 | MsWRKY160 | 283 | 31.98 | 5.77 | Nucl |
MS.gene69700 | MsWRKY62 | 595 | 64.76 | 6.48 | Nucl | MS.gene001947 | MsWRKY161 | 170 | 19.46 | 9.25 | Nucl |
MS.gene38536 | MsWRKY63 | 511 | 57.15 | 6.25 | Nucl | MS.gene45218 | MsWRKY162 | 482 | 53.08 | 6.75 | Nucl |
MS.gene013439 | MsWRKY64 | 324 | 36.89 | 5.28 | Nucl | MS.gene79630 | MsWRKY163 | 583 | 64.79 | 6.20 | Nucl |
MS.gene013373 | MsWRKY65 | 243 | 27.80 | 8.31 | Nucl | MS.gene22803 | MsWRKY164 | 333 | 37.96 | 6.68 | Nucl |
MS.gene37404 | MsWRKY66 | 164 | 18.83 | 5.24 | Nucl | MS.gene072639 | MsWRKY165 | 411 | 44.62 | 6.42 | Nucl |
MS.gene80192 | MsWRKY67 | 293 | 32.90 | 8.70 | Nucl | MS.gene28828 | MsWRKY166 | 288 | 32.43 | 6.39 | Nucl |
MS.gene073017 | MsWRKY68 | 452 | 48.66 | 9.87 | Nucl | MS.gene22477 | MsWRKY167 | 437 | 48.72 | 7.96 | Nucl |
MS.gene06061 | MsWRKY69 | 361 | 41.20 | 5.27 | Nucl | MS.gene52577 | MsWRKY168 | 660 | 73.02 | 6.06 | Nucl |
MS.gene06012 | MsWRKY70 | 274 | 31.17 | 6.71 | Nucl | MS.gene52576 | MsWRKY169 | 711 | 78.81 | 7.13 | Nucl |
MS.gene70298 | MsWRKY71 | 235 | 26.72 | 8.92 | Nucl | MS.gene87017 | MsWRKY170 | 534 | 60.01 | 6.64 | Nucl |
MS.gene27827 | MsWRKY72 | 244 | 27.39 | 8.22 | Nucl | MS.gene055272 | MsWRKY171 | 286 | 32.53 | 5.73 | Nucl |
MS.gene36464 | MsWRKY73 | 349 | 39.33 | 6.39 | Nucl | MS.gene97610 | MsWRKY172 | 388 | 42.53 | 5.91 | Nucl |
MS.gene36419 | MsWRKY74 | 483 | 54.10 | 5.43 | Nucl | MS.gene021671 | MsWRKY173 | 581 | 64.61 | 6.16 | Nucl |
MS.gene006821 | MsWRKY75 | 380 | 41.96 | 8.57 | Nucl | MS.gene012661 | MsWRKY174 | 495 | 53.74 | 4.99 | Nucl |
MS.gene048916 | MsWRKY76 | 361 | 41.20 | 5.27 | Nucl | MS.gene035590 | MsWRKY175 | 518 | 55.99 | 6.90 | Nucl |
MS.gene048869 | MsWRKY77 | 274 | 31.23 | 6.46 | Nucl | MS.gene56844 | MsWRKY176 | 1028 | 111.57 | 9.27 | Nucl |
MS.gene06130 | MsWRKY78 | 291 | 33.57 | 9.24 | Nucl | MS.gene011781 | MsWRKY177 | 337 | 36.70 | 9.74 | Nucl |
MS.gene58154 | MsWRKY79 | 235 | 26.71 | 8.92 | Nucl | MS.gene019695 | MsWRKY178 | 223 | 24.59 | 5.45 | Nucl |
MS.gene028327 | MsWRKY80 | 291 | 32.30 | 8.36 | Nucl | MS.gene055421 | MsWRKY179 | 227 | 25.78 | 8.15 | Chlo |
MS.gene028371 | MsWRKY81 | 491 | 54.96 | 5.37 | Nucl | MS.gene68948 | MsWRKY180 | 494 | 53.67 | 4.99 | Nucl |
MS.gene83143 | MsWRKY82 | 319 | 35.90 | 9.24 | Nucl | MS.gene79844 | MsWRKY181 | 223 | 24.59 | 5.45 | Nucl |
MS.gene82340 | MsWRKY83 | 319 | 35.90 | 9.24 | Nucl | MS.gene99163 | MsWRKY182 | 227 | 25.78 | 8.15 | Chlo |
MS.gene56502 | MsWRKY84 | 384 | 42.11 | 8.38 | Nucl | MS.gene042165 | MsWRKY183 | 495 | 53.74 | 4.99 | Nucl |
MS.gene55786 | MsWRKY85 | 361 | 41.19 | 5.27 | Nucl | MS.gene073340 | MsWRKY184 | 314 | 34.62 | 9.85 | Nucl |
MS.gene55745 | MsWRKY86 | 274 | 31.17 | 6.71 | Nucl | MS.gene061258 | MsWRKY185 | 426 | 46.97 | 5.86 | Nucl |
MS.gene030702 | MsWRKY87 | 235 | 26.68 | 9.05 | Nucl | MS.gene90475 | MsWRKY186 | 337 | 36.70 | 9.74 | Nucl |
MS.gene058840 | MsWRKY88 | 244 | 27.39 | 8.22 | Nucl | MS.gene68851 | MsWRKY187 | 495 | 53.74 | 4.99 | Nucl |
MS.gene023126 | MsWRKY89 | 291 | 32.29 | 8.36 | Nucl | MS.gene012560 | MsWRKY188 | 518 | 55.99 | 6.90 | Nucl |
MS.gene28744 | MsWRKY90 | 483 | 54.11 | 5.36 | Nucl | MS.gene001561 | MsWRKY189 | 518 | 55.99 | 6.90 | Nucl |
MS.gene33668 | MsWRKY91 | 378 | 42.93 | 8.02 | Nucl | MS.gene57898 | MsWRKY190 | 518 | 55.99 | 6.90 | Nucl |
MS.gene069576 | MsWRKY92 | 362 | 41.30 | 5.19 | Nucl | MS.gene012558 | MsWRKY191 | 518 | 55.99 | 6.90 | Nucl |
MS.gene89711 | MsWRKY93 | 274 | 31.23 | 6.46 | Nucl | MS.gene041947 | MsWRKY192 | 337 | 36.70 | 9.74 | Nucl |
MS.gene28166 | MsWRKY94 | 116 | 13.81 | 10.02 | Cyto | MS.gene022631 | MsWRKY193 | 227 | 25.78 | 8.15 | Chlo |
MS.gene023600 | MsWRKY95 | 244 | 27.39 | 8.53 | Nucl | MS.gene40378 | MsWRKY194 | 324 | 34.40 | 9.91 | Nucl |
MS.gene35131 | MsWRKY96 | 347 | 39.08 | 6.35 | Nucl | MS.gene32696 | MsWRKY195 | 293 | 32.89 | 8.65 | Nucl |
MS.gene35081 | MsWRKY97 | 490 | 54.80 | 5.32 | Nucl | MS.gene050416 | MsWRKY196 | 295 | 33.21 | 6.66 | Nucl |
MS.gene068282 | MsWRKY98 | 321 | 36.56 | 8.75 | Nucl | MS.gene07075 | MsWRKY197 | 295 | 33.21 | 6.66 | Nucl |
MS.gene059659 | MsWRKY99 | 216 | 24.03 | 9.59 | Nucl | MS.gene95234 | MsWRKY198 | 188 | 22.22 | 9.56 | Chlo |
Table 2 Basic information analysis of MsWRKY gene family
基因登录号 Gene ID | 基因名 Gene name | PL (aa) | Mw (kDa) | pI | Sl | 基因登录号 Gene ID | 基因名 Gene name | PL (aa) | Mw (kDa) | pI | Sl |
---|---|---|---|---|---|---|---|---|---|---|---|
MS.gene54277 | MsWRKY1 | 343 | 37.21 | 9.62 | Nucl | MS.gene041042 | MsWRKY100 | 270 | 29.83 | 9.48 | Nucl |
MS.gene49339 | MsWRKY2 | 360 | 40.73 | 9.75 | Nucl | MS.gene066380 | MsWRKY101 | 419 | 45.87 | 7.25 | Nucl |
MS.gene005502 | MsWRKY3 | 327 | 36.59 | 6.16 | Nucl | MS.gene43637 | MsWRKY102 | 360 | 40.10 | 5.65 | Nucl |
MS.gene066268 | MsWRKY4 | 311 | 34.75 | 5.86 | Nucl | MS.gene67236 | MsWRKY103 | 547 | 60.63 | 6.61 | Nucl |
MS.gene016151 | MsWRKY5 | 162 | 18.68 | 5.76 | Nucl | MS.gene63867 | MsWRKY104 | 548 | 59.61 | 8.61 | Nucl |
MS.gene54046 | MsWRKY6 | 343 | 37.22 | 9.62 | Nucl | MS.gene38063 | MsWRKY105 | 386 | 42.86 | 6.25 | Nucl |
MS.gene50585 | MsWRKY7 | 357 | 40.31 | 9.80 | Nucl | MS.gene38065 | MsWRKY106 | 278 | 32.04 | 9.23 | Nucl |
MS.gene07321 | MsWRKY8 | 177 | 19.87 | 9.15 | Nucl | MS.gene72198 | MsWRKY107 | 502 | 55.25 | 7.68 | Nucl |
MS.gene60622 | MsWRKY9 | 311 | 34.73 | 5.86 | Nucl | MS.gene55314 | MsWRKY108 | 434 | 47.53 | 6.71 | Nucl |
MS.gene051544 | MsWRKY10 | 162 | 18.68 | 5.95 | Nucl | MS.gene55386 | MsWRKY109 | 273 | 30.35 | 6.31 | Nucl |
MS.gene86270 | MsWRKY11 | 121 | 13.98 | 9.61 | Cyto | MS.gene066778 | MsWRKY110 | 273 | 30.35 | 6.31 | Nucl |
MS.gene86268 | MsWRKY12 | 343 | 37.19 | 9.62 | Nucl | MS.gene55387 | MsWRKY111 | 164 | 18.34 | 7.11 | Nucl |
MS.gene036149 | MsWRKY13 | 219 | 24.20 | 9.49 | Mito | MS.gene61935 | MsWRKY112 | 360 | 40.03 | 5.73 | Nucl |
MS.gene20870 | MsWRKY14 | 303 | 33.72 | 6.75 | Chlo | MS.gene99711 | MsWRKY113 | 546 | 60.50 | 6.61 | Nucl |
MS.gene49162 | MsWRKY15 | 311 | 34.73 | 5.86 | Nucl | MS.gene81399 | MsWRKY114 | 548 | 59.67 | 8.61 | Nucl |
MS.gene021549 | MsWRKY16 | 343 | 37.19 | 9.62 | Nucl | MS.gene81214 | MsWRKY115 | 386 | 42.98 | 6.51 | Nucl |
MS.gene021548 | MsWRKY17 | 343 | 37.19 | 9.62 | Nucl | MS.gene015188 | MsWRKY116 | 216 | 24.03 | 9.59 | Nucl |
MS.gene39903 | MsWRKY18 | 360 | 40.72 | 9.80 | Nucl | MS.gene85887 | MsWRKY117 | 434 | 47.59 | 6.98 | Nucl |
MS.gene050353 | MsWRKY19 | 177 | 19.87 | 9.15 | Nucl | MS.gene99689 | MsWRKY118 | 348 | 39.07 | 6.83 | Nucl |
MS.gene006220 | MsWRKY20 | 311 | 34.65 | 5.86 | Nucl | MS.gene010021 | MsWRKY119 | 360 | 40.10 | 5.65 | Nucl |
MS.gene00145 | MsWRKY21 | 324 | 35.74 | 8.54 | Nucl | MS.gene009725 | MsWRKY120 | 545 | 60.41 | 6.84 | Nucl |
MS.gene00061 | MsWRKY22 | 386 | 42.82 | 5.95 | Nucl | MS.gene057071 | MsWRKY121 | 309 | 35.24 | 6.64 | Nucl |
MS.gene27204 | MsWRKY23 | 557 | 60.02 | 7.70 | Nucl | MS.gene48076 | MsWRKY122 | 548 | 59.55 | 8.61 | Nucl |
MS.gene002619 | MsWRKY24 | 220 | 24.28 | 5.08 | Nucl | MS.gene38195 | MsWRKY123 | 386 | 42.90 | 6.37 | Nucl |
MS.gene67724 | MsWRKY25 | 324 | 35.70 | 8.53 | Nucl | MS.gene38194 | MsWRKY124 | 278 | 32.00 | 9.18 | Nucl |
MS.gene058334 | MsWRKY26 | 465 | 51.44 | 5.94 | Nucl | MS.gene53106 | MsWRKY125 | 434 | 47.55 | 6.77 | Nucl |
MS.gene002992 | MsWRKY27 | 563 | 60.76 | 7.70 | Nucl | MS.gene53174 | MsWRKY126 | 278 | 31.03 | 7.15 | Nucl |
MS.gene01605 | MsWRKY28 | 220 | 24.28 | 5.08 | Nucl | MS.gene023746 | MsWRKY127 | 359 | 39.97 | 5.65 | Nucl |
MS.gene073173 | MsWRKY29 | 261 | 28.88 | 5.85 | Nucl | MS.gene060237 | MsWRKY128 | 546 | 60.54 | 6.65 | Nucl |
MS.gene55979 | MsWRKY30 | 322 | 35.36 | 8.18 | Nucl | MS.gene020691 | MsWRKY129 | 548 | 59.55 | 8.61 | Nucl |
MS.gene55899 | MsWRKY31 | 477 | 52.71 | 5.98 | Nucl | MS.gene020899 | MsWRKY130 | 386 | 42.98 | 6.51 | Nucl |
MS.gene00786 | MsWRKY32 | 563 | 60.76 | 7.70 | Nucl | MS.gene020902 | MsWRKY131 | 282 | 32.31 | 8.95 | Nucl |
MS.gene03111 | MsWRKY33 | 220 | 24.28 | 5.08 | Nucl | MS.gene050835 | MsWRKY132 | 265 | 29.54 | 6.79 | Nucl |
MS.gene058246 | MsWRKY34 | 378 | 41.69 | 6.35 | Nucl | MS.gene09792 | MsWRKY133 | 396 | 44.46 | 8.25 | Nucl |
MS.gene67885 | MsWRKY35 | 307 | 34.22 | 6.92 | Nucl | MS.gene007479 | MsWRKY134 | 436 | 48.59 | 7.55 | Nucl |
MS.gene02354 | MsWRKY36 | 563 | 60.74 | 7.70 | Nucl | MS.gene024036 | MsWRKY135 | 676 | 74.78 | 6.03 | Nucl |
MS.gene004297 | MsWRKY37 | 220 | 24.28 | 5.08 | Nucl | MS.gene024035 | MsWRKY136 | 724 | 80.37 | 6.44 | Nucl |
MS.gene56264 | MsWRKY38 | 701 | 76.01 | 6.13 | Nucl | MS.gene87798 | MsWRKY137 | 409 | 45.77 | 8.29 | Nucl |
MS.gene064637 | MsWRKY39 | 595 | 64.76 | 6.58 | Nucl | MS.gene99619 | MsWRKY138 | 313 | 35.26 | 5.88 | Nucl |
MS.gene41592 | MsWRKY40 | 511 | 57.09 | 6.29 | Nucl | MS.gene021786 | MsWRKY139 | 483 | 53.14 | 6.58 | Nucl |
MS.gene84141 | MsWRKY41 | 340 | 38.22 | 6.07 | Nucl | MS.gene74774 | MsWRKY140 | 581 | 64.60 | 6.42 | Nucl |
MS.gene049409 | MsWRKY42 | 324 | 36.89 | 5.28 | Nucl | MS.gene024451 | MsWRKY141 | 333 | 38.04 | 6.68 | Nucl |
MS.gene049350 | MsWRKY43 | 243 | 27.80 | 8.31 | Nucl | MS.gene28630 | MsWRKY142 | 411 | 44.60 | 6.42 | Nucl |
MS.gene32785 | MsWRKY44 | 164 | 18.76 | 5.37 | Nucl | MS.gene09793 | MsWRKY143 | 438 | 48.85 | 7.96 | Nucl |
MS.gene014903 | MsWRKY45 | 293 | 32.92 | 8.70 | Nucl | MS.gene050168 | MsWRKY144 | 438 | 48.85 | 7.96 | Nucl |
MS.gene42609 | MsWRKY46 | 293 | 32.92 | 8.70 | Nucl | MS.gene007480 | MsWRKY145 | 437 | 48.72 | 7.96 | Nucl |
MS.gene014722 | MsWRKY47 | 452 | 48.67 | 9.87 | Nucl | MS.gene033472 | MsWRKY146 | 676 | 74.80 | 6.03 | Nucl |
MS.gene009477 | MsWRKY48 | 702 | 76.15 | 6.08 | Nucl | MS.gene033471 | MsWRKY147 | 616 | 68.51 | 6.57 | Nucl |
MS.gene68485 | MsWRKY49 | 519 | 56.93 | 6.42 | Nucl | MS.gene85464 | MsWRKY148 | 269 | 30.01 | 9.33 | Nucl |
MS.gene049457 | MsWRKY50 | 512 | 57.19 | 6.25 | Nucl | MS.gene42866 | MsWRKY149 | 467 | 52.28 | 7.13 | Nucl |
MS.gene81987 | MsWRKY51 | 342 | 38.45 | 6.21 | Nucl | MS.gene46172 | MsWRKY150 | 296 | 33.65 | 5.63 | Nucl |
MS.gene06539 | MsWRKY52 | 324 | 36.89 | 5.28 | Nucl | MS.gene057556 | MsWRKY151 | 523 | 57.23 | 6.75 | Nucl |
MS.gene06469 | MsWRKY53 | 243 | 27.80 | 8.31 | Nucl | MS.gene043270 | MsWRKY152 | 582 | 64.68 | 6.20 | Nucl |
MS.gene63519 | MsWRKY54 | 702 | 76.23 | 6.06 | Nucl | MS.gene050640 | MsWRKY153 | 333 | 37.98 | 6.68 | Nucl |
MS.gene66170 | MsWRKY55 | 595 | 64.77 | 6.58 | Nucl | MS.gene072683 | MsWRKY154 | 295 | 33.20 | 6.66 | Nucl |
MS.gene008580 | MsWRKY56 | 506 | 56.68 | 6.25 | Nucl | MS.gene20234 | MsWRKY155 | 437 | 48.72 | 7.96 | Nucl |
MS.gene06753 | MsWRKY57 | 340 | 38.30 | 6.21 | Nucl | MS.gene51163 | MsWRKY156 | 676 | 74.83 | 5.98 | Nucl |
MS.gene06784 | MsWRKY58 | 324 | 36.92 | 5.28 | Nucl | MS.gene51164 | MsWRKY157 | 617 | 68.59 | 6.44 | Nucl |
MS.gene066523 | MsWRKY59 | 98 | 11.38 | 9.32 | Cyto | MS.gene51229 | MsWRKY158 | 329 | 36.70 | 5.83 | Nucl |
MS.gene066525 | MsWRKY60 | 98 | 11.38 | 9.32 | Cyto | MS.gene42130 | MsWRKY159 | 546 | 61.13 | 6.36 | Nucl |
MS.gene51632 | MsWRKY61 | 704 | 76.41 | 6.10 | Nucl | MS.gene96858 | MsWRKY160 | 283 | 31.98 | 5.77 | Nucl |
MS.gene69700 | MsWRKY62 | 595 | 64.76 | 6.48 | Nucl | MS.gene001947 | MsWRKY161 | 170 | 19.46 | 9.25 | Nucl |
MS.gene38536 | MsWRKY63 | 511 | 57.15 | 6.25 | Nucl | MS.gene45218 | MsWRKY162 | 482 | 53.08 | 6.75 | Nucl |
MS.gene013439 | MsWRKY64 | 324 | 36.89 | 5.28 | Nucl | MS.gene79630 | MsWRKY163 | 583 | 64.79 | 6.20 | Nucl |
MS.gene013373 | MsWRKY65 | 243 | 27.80 | 8.31 | Nucl | MS.gene22803 | MsWRKY164 | 333 | 37.96 | 6.68 | Nucl |
MS.gene37404 | MsWRKY66 | 164 | 18.83 | 5.24 | Nucl | MS.gene072639 | MsWRKY165 | 411 | 44.62 | 6.42 | Nucl |
MS.gene80192 | MsWRKY67 | 293 | 32.90 | 8.70 | Nucl | MS.gene28828 | MsWRKY166 | 288 | 32.43 | 6.39 | Nucl |
MS.gene073017 | MsWRKY68 | 452 | 48.66 | 9.87 | Nucl | MS.gene22477 | MsWRKY167 | 437 | 48.72 | 7.96 | Nucl |
MS.gene06061 | MsWRKY69 | 361 | 41.20 | 5.27 | Nucl | MS.gene52577 | MsWRKY168 | 660 | 73.02 | 6.06 | Nucl |
MS.gene06012 | MsWRKY70 | 274 | 31.17 | 6.71 | Nucl | MS.gene52576 | MsWRKY169 | 711 | 78.81 | 7.13 | Nucl |
MS.gene70298 | MsWRKY71 | 235 | 26.72 | 8.92 | Nucl | MS.gene87017 | MsWRKY170 | 534 | 60.01 | 6.64 | Nucl |
MS.gene27827 | MsWRKY72 | 244 | 27.39 | 8.22 | Nucl | MS.gene055272 | MsWRKY171 | 286 | 32.53 | 5.73 | Nucl |
MS.gene36464 | MsWRKY73 | 349 | 39.33 | 6.39 | Nucl | MS.gene97610 | MsWRKY172 | 388 | 42.53 | 5.91 | Nucl |
MS.gene36419 | MsWRKY74 | 483 | 54.10 | 5.43 | Nucl | MS.gene021671 | MsWRKY173 | 581 | 64.61 | 6.16 | Nucl |
MS.gene006821 | MsWRKY75 | 380 | 41.96 | 8.57 | Nucl | MS.gene012661 | MsWRKY174 | 495 | 53.74 | 4.99 | Nucl |
MS.gene048916 | MsWRKY76 | 361 | 41.20 | 5.27 | Nucl | MS.gene035590 | MsWRKY175 | 518 | 55.99 | 6.90 | Nucl |
MS.gene048869 | MsWRKY77 | 274 | 31.23 | 6.46 | Nucl | MS.gene56844 | MsWRKY176 | 1028 | 111.57 | 9.27 | Nucl |
MS.gene06130 | MsWRKY78 | 291 | 33.57 | 9.24 | Nucl | MS.gene011781 | MsWRKY177 | 337 | 36.70 | 9.74 | Nucl |
MS.gene58154 | MsWRKY79 | 235 | 26.71 | 8.92 | Nucl | MS.gene019695 | MsWRKY178 | 223 | 24.59 | 5.45 | Nucl |
MS.gene028327 | MsWRKY80 | 291 | 32.30 | 8.36 | Nucl | MS.gene055421 | MsWRKY179 | 227 | 25.78 | 8.15 | Chlo |
MS.gene028371 | MsWRKY81 | 491 | 54.96 | 5.37 | Nucl | MS.gene68948 | MsWRKY180 | 494 | 53.67 | 4.99 | Nucl |
MS.gene83143 | MsWRKY82 | 319 | 35.90 | 9.24 | Nucl | MS.gene79844 | MsWRKY181 | 223 | 24.59 | 5.45 | Nucl |
MS.gene82340 | MsWRKY83 | 319 | 35.90 | 9.24 | Nucl | MS.gene99163 | MsWRKY182 | 227 | 25.78 | 8.15 | Chlo |
MS.gene56502 | MsWRKY84 | 384 | 42.11 | 8.38 | Nucl | MS.gene042165 | MsWRKY183 | 495 | 53.74 | 4.99 | Nucl |
MS.gene55786 | MsWRKY85 | 361 | 41.19 | 5.27 | Nucl | MS.gene073340 | MsWRKY184 | 314 | 34.62 | 9.85 | Nucl |
MS.gene55745 | MsWRKY86 | 274 | 31.17 | 6.71 | Nucl | MS.gene061258 | MsWRKY185 | 426 | 46.97 | 5.86 | Nucl |
MS.gene030702 | MsWRKY87 | 235 | 26.68 | 9.05 | Nucl | MS.gene90475 | MsWRKY186 | 337 | 36.70 | 9.74 | Nucl |
MS.gene058840 | MsWRKY88 | 244 | 27.39 | 8.22 | Nucl | MS.gene68851 | MsWRKY187 | 495 | 53.74 | 4.99 | Nucl |
MS.gene023126 | MsWRKY89 | 291 | 32.29 | 8.36 | Nucl | MS.gene012560 | MsWRKY188 | 518 | 55.99 | 6.90 | Nucl |
MS.gene28744 | MsWRKY90 | 483 | 54.11 | 5.36 | Nucl | MS.gene001561 | MsWRKY189 | 518 | 55.99 | 6.90 | Nucl |
MS.gene33668 | MsWRKY91 | 378 | 42.93 | 8.02 | Nucl | MS.gene57898 | MsWRKY190 | 518 | 55.99 | 6.90 | Nucl |
MS.gene069576 | MsWRKY92 | 362 | 41.30 | 5.19 | Nucl | MS.gene012558 | MsWRKY191 | 518 | 55.99 | 6.90 | Nucl |
MS.gene89711 | MsWRKY93 | 274 | 31.23 | 6.46 | Nucl | MS.gene041947 | MsWRKY192 | 337 | 36.70 | 9.74 | Nucl |
MS.gene28166 | MsWRKY94 | 116 | 13.81 | 10.02 | Cyto | MS.gene022631 | MsWRKY193 | 227 | 25.78 | 8.15 | Chlo |
MS.gene023600 | MsWRKY95 | 244 | 27.39 | 8.53 | Nucl | MS.gene40378 | MsWRKY194 | 324 | 34.40 | 9.91 | Nucl |
MS.gene35131 | MsWRKY96 | 347 | 39.08 | 6.35 | Nucl | MS.gene32696 | MsWRKY195 | 293 | 32.89 | 8.65 | Nucl |
MS.gene35081 | MsWRKY97 | 490 | 54.80 | 5.32 | Nucl | MS.gene050416 | MsWRKY196 | 295 | 33.21 | 6.66 | Nucl |
MS.gene068282 | MsWRKY98 | 321 | 36.56 | 8.75 | Nucl | MS.gene07075 | MsWRKY197 | 295 | 33.21 | 6.66 | Nucl |
MS.gene059659 | MsWRKY99 | 216 | 24.03 | 9.59 | Nucl | MS.gene95234 | MsWRKY198 | 188 | 22.22 | 9.56 | Chlo |
1 | Singh K, Foley R C, Oñate-Sánchez L. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 2002, 5(5): 430-436. |
2 | Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000, 5(5): 199-206. |
3 | Rushton P J, Somssich I E, Ringler P, et al. WRKY transcription factors. Trends in Plant Science, 2010, 15(5): 247-258. |
4 | Agarwal P, Reddy M P, Chikara J. WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Molecular Biology Reports, 2011, 38(6): 3883-3896. |
5 | Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato. Molecular & General Genetics, 1994, 244(6): 563-571. |
6 | Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007, 10(4): 366-371. |
7 | Gupta S, Mishra V K, Kumari S, et al. Deciphering genome-wide WRKY gene family of Triticum aestivum L. and their functional role in response to abiotic stress. Genes Genomics, 2019, 41(1): 79-94. |
8 | Ross C A, Liu Y, Shen Q J. The WRKY gene family in rice (Oryza sativa). Journal of Integrative Plant Biology, 2007, 49(6): 827-842. |
9 | Hu W J, Ren Q Y, Chen Y L, et al. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. BMC Plant Biology, 2021, 21(1): 427. |
10 | Ding Z J, Yan J Y, Li G X, et al. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. The Plant Journal, 2014, 79(5): 810-823. |
11 | Zhou C L, Lin Q B, Lan J, et al. WRKY transcription factor OsWRKY29 represses seed dormancy in rice by weakening abscisic acid response. Frontiers in Plant Science, 2020, 11: 691. |
12 | Prát T, Hajný J, Grunewald W, et al. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genetics, 2018, 14(1): e1007177. |
13 | Hu Z, Wang R, Zheng M, et al. TaWRKY51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (Triticum aestivum L.). The Plant Journal, 2018, 96(2): 372-388. |
14 | Li W, Wang H P, Yu D Q. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Molecular Plant, 2016, 9(11): 1492-1503. |
15 | Yang Y, Chi Y, Wang Z, et al. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development. Journal of Experimental Botany, 2016, 67(15): 4727-4742. |
16 | Song Y, Chen L G, Zhang L P, et al. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. Journal of Biosciences, 2010, 35(3): 459-471. |
17 | Wang Y J, Jiang L, Chen J Q, et al. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS One, 2018, 13(2): e0192382. |
18 | Wang R Y, Wen W W, Zhao E H, et al. Cloning and salt-tolerance analysis of MsWRKY11 in alfalfa. Acta Prataculturae Sinica, 2021, 30(11): 157-169. |
王如月, 文武武, 赵恩华, 等. 紫花苜蓿MsWRKY11基因的克隆及其耐盐功能分析. 草业学报, 2021, 30(11): 157-169. | |
19 | Ma L, Li X, Zhang J J, et al. MsWRKY33 increases alfalfa (Medicago sativa L.) salt stress tolerance through altering the ROS scavenger via activating MsERF5 transcription. Plant, Cell & Environment, 2023, [2023. 10. 01]. https://doi.org/10.1111/pce.14703. |
20 | Li P L, Song A P, Gao C Y, et al. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic Chrysanthemum and Arabidopsis plants. Plant Cell Reports, 2015, 34(8): 1365-1378. |
21 | Liu X, Song Y, Xing F, et al. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma, 2016, 253(5): 1265-1281. |
22 | Song Y S, Li J L, Sui Y, et al. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Plant Molecular Biology, 2020, 102(6): 603-614. |
23 | Dong W, Wu P X, Yang N, et al. Cloning and expression analysis of WRKY transcription factor involved in salinity stress in alfalfa. Plant Physiology Journal, 2018, 54(9): 1481-1489. |
董蔚, 邬培祥, 杨宁, 等. 紫花苜蓿盐胁迫响应WRKY转录因子的克隆及表达特征分析. 植物生理学报, 2018, 54(9): 1481-1489. | |
24 | Hassan S, Lethin J, Blomberg R, et al. In silico based screening of WRKY genes for identifying functional genes regulated by WRKY under salt stress. Computational Biology and Chemistry, 2019, 83: 107131. |
25 | Zhou S, Zheng W J, Liu B H, et al. Characterizing the role of TaWRKY13 in salt tolerance. International Journal of Molecular Sciences, 2019, 20(22): 5712. |
26 | Sahebi M, Hanafi M M, Rafii M Y, et al. Improvement of drought tolerance in rice (Oryza sativa L.): genetics, genomic tools, and the WRKY gene family. Biomed Research International, 2018, DOI: 10.1155/2018/3158474. |
27 | Lim C, Kang K, Shim Y, et al. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. Plant Physiology, 2022, 188(4): 1900-1916. |
28 | Wen W W, Wang R Y, Su L T, et al. MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L.). Environmental and Experimental Botany, 2021, 184: 104374. |
29 | Gao H M, Wang Y F, Xu P, et al. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in Plant Science, 2018, 9: 997. |
30 | Niu C F, Wei W, Zhou Q Y, et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant, Cell & Environment, 2012, 35(6): 1156-1170. |
31 | Wei W, Liang D W, Bian X H, et al. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean. The Plant Journal, 2019, 100(2): 384-398. |
32 | Ren X Z, Chen Z Z, Liu Y, et al. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal, 2010, 63(3): 417-429. |
33 | Fu Q T, Yu D Q. Expression profiles of AtWRKY25, AtWRKY26 and AtWRKY33 under abiotic stresses. Hereditas, 2010, 32(8): 848-856. |
付乾堂, 余迪求. 拟南芥AtWRKY25、AtWRKY26和AtWRKY33在非生物胁迫条件下的表达分析. 遗传, 2010, 32(8): 848-856. | |
34 | He G H, Xu J Y, Wang Y X, et al. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biology, 2016, 16(1): 116. |
35 | Zou C S, Jiang W B, Yu D Q. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. Journal of Experimental Botany, 2010, 61(14): 3901-3914. |
36 | Wang X, Ma Y X, Li J. Nutritional constituents and main biological characteristics of alfalfa. Pratacultural Science, 2003, 20(10): 39-41. |
王鑫, 马永祥, 李娟. 紫花苜蓿营养成分及主要生物学特性. 草业科学, 2003, 20(10): 39-41. | |
37 | Chen H T, Zeng Y, Yang Y Z, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11(1): 2494. |
38 | He F, Wei C X, Zhang Y X, et al. Genome-wide association analysis coupled with transcriptome analysis reveals candidate genes related to salt stress in alfalfa (Medicago sativa L.). Frontiers in Plant Science, 2022, 12: 826584. |
39 | Mao P, Jin X Y, Bao Q Y, et al.WRKY transcription factors in Medicago sativa L.: genome-wide identification and expression analysis under abiotic stress. DNA and Cell Biology, 2020, 39(12): 2212-2225. |
40 | Chen C J, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
41 | Wang Y P, Tang H B, Debarry J D,et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7): e49. |
42 | Xu G X, Guo C C, Shan H Y, et al. Divergence of duplicate genes in exon-intron structure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4): 1187-1192. |
43 | Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327. |
44 | O'Rourke J A, Fu F, Bucciarelli B, et al. The Medicago sativa gene index 1.2: A web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics, 2015, 16(1): 502. |
45 | Dong X M, Deng H, Ma W X, et al. Genome-wide identification of the MADS-box transcription factor family in autotetraploid cultivated alfalfa (Medicago sativa L.) and expression analysis under abiotic stress. BMC Genomics, 2021, 22(1): 603. |
46 | Song H, Nan Z B. Genome-wide identification and analysis of WRKY transcription factors in Medicago truncatula. Hereditas, 2014, 36(2): 152-168. |
宋辉, 南志标. 蒺藜苜蓿全基因组中WRKY转录因子的鉴定与分析. 遗传, 2014, 36(2): 152-168. | |
47 | Bencke-Malato M, Cabreira C, Wiebke-Strohm B, et al. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection. BMC Plant Biology, 2014, 14: 236. |
48 | Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155. |
49 | Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 2004, 4: 10. |
50 | Parisod C, Alix K, Just J, et al. Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytologist, 2010, 186(1): 37-45. |
51 | Li M M, Zhang X Q, Zhang T X, et al. Genome-wide analysis of the WRKY genes and their important roles during cold stress in white clover. PeerJ, 2023, 11: e15610. |
52 | He F, Zhang L X, Zhao G Q, et al. Genome-wide identification and expression analysis of the NAC gene family in alfalfa revealed its potential roles in response to multiple abiotic stresses. International Journal of Molecular Sciences, 2022, 23(17): 10015. |
[1] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
[2] | Yan LI, Fu-long MA, Lu HAN, Hai-zhen WANG. Productivity and adaptability of ‘WL’ alfalfa varieties with different fall dormancy in the extremely arid region of Southern Xinjiang [J]. Acta Prataculturae Sinica, 2024, 33(3): 139-149. |
[3] | Xue WANG, Xiao-jing LIU, Jing WANG, Yong WU, Chang-chun TONG. Root and carbon-nitrogen metabolism characteristics of alfalfa-oat mixed stands under continuous intercropping [J]. Acta Prataculturae Sinica, 2024, 33(3): 85-96. |
[4] | Ying TANG, Xiao-jing LIU, Ya-jiao ZHAO, Lin DONG. Characteristics and driving factors of lactic acid bacteria communities in silage made from alfalfa in different regions of Gansu Province [J]. Acta Prataculturae Sinica, 2024, 33(2): 112-124. |
[5] | Kong-qin WEI, Jun-wei ZHAO, Qian-bing ZHANG. Effects of phosphorus application on soil respiration rate and active organic carbon components of alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(2): 80-92. |
[6] | Shuo HAN, Xiao-wen HAN, Yi-feng HU, Zhong-yi CHEN, Yong-xing ZHU, Jun-liang YIN. Genome-wide identification and expression analysis of the SOD gene family in Alternanthera philoxeroides [J]. Acta Prataculturae Sinica, 2024, 33(1): 102-116. |
[7] | Jian-ling ZHOU, Qiao-lan LIANG, Lie-xin WEI, Qi-yu ZHOU, Long TIAN, Ying-e CHEN, Cun-ying WANG, Guo-yin ZHANG. Detection of AMV pathogen of alfalfa virus diseases with different symptom types and its host ranges [J]. Acta Prataculturae Sinica, 2024, 33(1): 126-137. |
[8] | Xin-miao ZHANG, Guo-qiang WU, Ming WEI. The role of MAPK in plant response to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(1): 182-197. |
[9] | Xuan-shuai LIU, Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG. Dry matter yield and spatial distribution characteristics of phosphorus in alfalfa under bacterial-phosphorus coupling [J]. Acta Prataculturae Sinica, 2023, 32(9): 104-115. |
[10] | Rui XU, Zheng WANG, Yi-ming WANG, Lian-tai SU, Li GAO, Peng ZHOU, Yuan AN. Effect of alfalfa on the yield and sucrose metabolism of rice in an alfalfa-rice rotation system [J]. Acta Prataculturae Sinica, 2023, 32(8): 129-140. |
[11] | Bao-qiang WANG, Wen-jing MA, Xian WANG, Xiao-lin ZHU, Ying ZHAO, Xiao-hong WEI. Nitric oxide regulation of secondary metabolite accumulation in Medicago sativa seedlings under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 141-151. |
[12] | Xian-fei SHI, Yu GAO, Xu-sheng HUANG, Ya-li ZHOU, Gui-ping CAI, Xin-ru LI, Run-zhi LI, Jin-ai XUE. Functional characterization of Cyperus esculentus CeWRKY transcription factors in response to abiotic stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 186-201. |
[13] | Wen-qing LING, Lei ZHANG, Jue LI, Qi-xian FENG, Yan LI, Yi ZHOU, Yi-jia LIU, Fu-lin YANG, Jing ZHOU. Effects of Lentilactobacillus buchneri combined with different sugars on nutrient composition, fermentation quality, rumen degradation rate, and aerobic stability of alfalfa silage [J]. Acta Prataculturae Sinica, 2023, 32(7): 122-134. |
[14] | Shao-peng WANG, Jia LIU, Jun HONG, Ji-zhen LIN, Yi ZHANG, Kun SHI, Zan WANG. Cloning and function analysis of MsPPR1 in alfalfa under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(7): 49-60. |
[15] | Xiao-xia AN, Ying-ying ZHANG, Chun-hui MA, Man LI, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi on alfalfa yield and phosphorus use efficiency [J]. Acta Prataculturae Sinica, 2023, 32(6): 71-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||