Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (12): 183-194.DOI: 10.11686/cyxb2025047
Yu-wan WANG1,2(
), Ling-yun LIU3, Yi-di GUO3, Xi-feng FAN3, Yue-sen YUE3, Na MU3, Guo-zeng XIAO1,2(
), Ke TENG3(
)
Received:2025-02-18
Revised:2025-04-15
Online:2025-12-20
Published:2025-10-20
Contact:
Guo-zeng XIAO,Ke TENG
Yu-wan WANG, Ling-yun LIU, Yi-di GUO, Xi-feng FAN, Yue-sen YUE, Na MU, Guo-zeng XIAO, Ke TENG. Efficient transformation of Pennisetum alopecuroides using pollen transfected by DNA-coated magnetic nanoparticles[J]. Acta Prataculturae Sinica, 2025, 34(12): 183-194.
| [1] | Wu J Y, Teng W J, Wang Q H. Basic botanic characters, adaptabilities and applying in landscape architecture of Pennisetum alopecuroides. Chinese Landscape Architecture, 2005, 21(12): 57-59. |
| 武菊英, 滕文军, 王庆海. 狼尾草的生物学特性及在园林中的应用. 中国园林, 2005, 21(12): 57-59. | |
| [2] | Hou X C, Teng K, Guo Q, et al. Research advances in forage Pennisetum resource. Chinese Bulletin of Botany, 2022, 57(6): 814-825. |
| 侯新村, 滕珂, 郭强, 等. 狼尾草属牧草研究进展. 植物学报, 2022, 57(6): 814-825. | |
| [3] | Tang J, Zhou H L, Wang W Q, et al. Advances in breeding and molecular biology research of Pennisetum. Chinese Journal of Tropical Crops, 2018, 39(11): 2313-2320. |
| 唐军, 周汉林, 王文强, 等. 狼尾草属牧草育种及分子生物学研究进展. 热带作物学报, 2018, 39(11): 2313-2320. | |
| [4] | Liu Z P, Liu W X, Yang Q C, et al. Progress and existing problems of forage breeding in China. Bulletin of National Natural Science Foundation of China, 2023, 37(4): 528-536. |
| 刘志鹏, 刘文献, 杨青川, 等. 我国牧草育种进展及存在问题. 中国科学基金, 2023, 37(4): 528-536. | |
| [5] | Shahnam A D, Mahin P. Agrobacterium tumefaciens-mediated plant transformation: A review. Molecular Biotechnology, 2024, 66(7): 1563-1580. |
| [6] | Zou Z, Lu C M. An overview of plant factors influencing Agrobacterium-mediated transformation. Biotechnology Bulletin, 2008(1): 1-9. |
| 邹智, 卢长明. 影响农杆菌介导遗传转化的植物因子研究进展. 生物技术通报, 2008(1): 1-9. | |
| [7] | Yang S K, Lai K, Low L Y, et al. Transgenic plants: Gene constructs, vector and transformation method. Rijeka: Intech Open, 2018. |
| [8] | Wang M, Sun R, Zhang B, et al. Pollen tube pathway-mediated cotton transformation. Methods in Molecular Biology, 2019, 1902: 67-73. |
| [9] | Maram G, Maretha M O, Anika M, et al. Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue. Molecular Breeding, 2002, 10(4): 243-252. |
| [10] | Wang P Q, Duan C R, Wang B C, et al. Tissue culture with different organs of Pennisetum pureum. Journal of Chongqing University (Natural Science Edition), 2005, 28(6): 118-120. |
| 王凭青, 段传人, 王伯初, 等. 杂交狼尾草不同外植体材料组织培养实验. 重庆大学学报(自然科学版), 2005, 28(6): 118-120. | |
| [11] | Mu T, Zhang X Y, Wang J G, et al. The optimization of Pennisetum agrobacterium-mediated transformation system and obtaining of transgenic plants. Crops, 2013(1): 45-48. |
| 牟彤, 张晓莹, 王金刚, 等. 狼尾草农杆菌转化体系的优化和转基因植株的获得. 作物杂志, 2013(1): 45-48. | |
| [12] | Ozyigit I I, Kuaybe Y K. Particle bombardment technology and its applications in plants. Molecular Biology Reports, 2020, 47(12): 9831-9847. |
| [13] | Rahman S U, Khan M O, Ullah R, et al. Agrobacterium-mediated transformation for the development of transgenic crops; present and future prospects. Molecular Biotechnology, 2024, 66(8): 1836-1852. |
| [14] | Su W, Xu M, Radani Y, et al. Technological development and application of plant genetic transformation. International Journal of Molecular Sciences, 2023, 24(13): 10646. |
| [15] | Wu K, Xu C, Li T, et al. Application of nanotechnology in plant genetic engineering. International Journal of Molecular Sciences, 2023, 24(19): 14836. |
| [16] | Chang F P, Kuang L Y, Huang C A, et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. Journal of Materials Chemistry B, 2013, 1(39): 5279-5287. |
| [17] | Susana M O, Valenstein J S, Lin V S Y, et al. Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Advanced Functional Materials, 2012, 22(17): 3576-3582. |
| [18] | Mykhaylyk O, Antequera Y S, Vlaskou D, et al. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nature Protocols, 2007, 2(10): 2391-2411. |
| [19] | Wang Z, Zhang Z B, Zheng D Y, et al. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. Journal of Integrative Plant Biology, 2022, 64(6): 1145-1156. |
| [20] | Zhao X, Meng Z G, Wang Y, et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants, 2017, 3(12): 956-964. |
| [21] | Zhang M F, Ma X, Jin G, et al. A modified method for transient transformation via pollen magnetofection in Lilium germplasm. International Journal of Molecular Sciences, 2023, 24(20): 15304. |
| [22] | Xu Y, Liu L, Jia M, et al. Transcriptomic and physiological analysis provide new insight into seed shattering mechanism in Pennisetum alopecuroides ‘Liqiu’. Theoretical and Applied Genetics, 2024, 137(7): 157. |
| [23] | Teng K, Guo Q, Liu L, et al. Chromosome-level reference genome assembly provides insights into the evolution of Pennisetum alopecuroides. Frontiers in Plant Science, 2023, 14(8): 1195479. |
| [24] | Kievit F M, Stephen Z R, Veiseh O, et al. Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. ACS Nano, 2012, 6(3): 2591-2601. |
| [25] | Park C W, Choi J Y, Son Y J, et al. Magnetofected pollen gene delivery system could generate genetically modified Cucumis sativus. Horticulture Research, 2024, 11(8): 179. |
| [26] | Zhang Y L, Zhang Q X, Xie S L. Pollen morphology of 8 species in Lilium from Qinba Mountain areas. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(1): 144-146. |
| 张延龙, 张启翔, 谢松林. 秦巴山及其毗邻地区8种野生百合孢粉学研究. 西北农业学报, 2010, 19(1): 144-146. | |
| [27] | Xu W J, Zhang C, Wu Y, et al. The pollen morphological characteristics from five closely related medicinal plants of the genus Ligusticum. Journal of Northeast Forestry University, 2024, 52(11): 56-63. |
| 徐皖菁, 张超, 吴宇, 等. 5种藁本属近缘药用植物花粉的形态特征. 东北林业大学学报, 2024, 52(11): 56-63. | |
| [28] | Furness C A, Rudall P J. Pollen aperture evolution: A crucial factor for eudicot success? Trends in Plant Science, 2004, 9(3): 154-158. |
| [29] | Vejlupkova Z, Warman C, Sharma R, et al. No evidence for transient transformation via pollen magnetofection in several monocot species. Nature Plants, 2020, 6(11): 1323-1324. |
| [30] | Wang J X, Chen L B. Changes of vigor and respiratory rate of three kinds of grasses pollen stored under different gas conditions. Plant Physiology Communications, 2001, 37(2): 113-116. |
| 王金祥, 陈良碧. 不同气体下贮藏的3种禾本科植物花粉活力和呼吸速率变化. 植物生理学通讯, 2001, 37(2): 113-116. | |
| [31] | Li Y M, Chen L B. Vigor change of several grasses pollen stored in different temperature and humidity conditions. Plant Physiology Communications, 1998, 34(1): 35-37. |
| 李要民, 陈良碧. 不同温湿条件下贮藏的3种禾本科植物花粉活力变化. 植物生理学通讯, 1998, 34(1): 35-37. | |
| [32] | Lu Y M. Progress of magnetic nanoparticles as gene vector. Letters in Biotechnology, 2013, 24(5): 736-740. |
| 卢艳敏. 磁性纳米颗粒作为载体在基因转染中的研究进展. 生物技术通讯, 2013, 24(5): 736-740. | |
| [33] | Peng Z A, Li D D, Xia A Y, et al. Study on magnetic nanoparticle loading plasmid DNA. Journal of South China Agricultural University, 2020, 41(1): 78-82. |
| 彭子艾, 李丹丹, 夏澳运, 等. 磁性纳米颗粒负载质粒DNA的研究. 华南农业大学学报, 2020, 41(1): 78-82. | |
| [34] | Hou X X, Zhang H, Zhang D S. Research progress of magnetic nanoparticles as gene vector. Journal of Medical Postgraduates, 2013, 26(2): 186-189. |
| 侯欣欣, 张皓, 张东生. 磁性纳米颗粒作为基因载体的研究进展. 医学研究生学报, 2013, 26(2): 186-189. | |
| [35] | Stephanie R, Hagen B, Helga R W, et al. Human serum albumin-polyethylenimine nanoparticles for gene delivery. Journal of Controlled Release, 2003, 92(1/2): 199-208. |
| [36] | He X, Wang K, Tan W, et al. Bioconjugated nanoparticles for DNA protection from cleavage. Journal of the American Chemical Society, 2003, 125(24): 7168-7169. |
| [37] | Sun H, Zhang J Y, Luo L J, et al. Development of transgenic hairy root induction and protoplast preparation systems for Stylosanthes leiocarpa. Acta Agrestia Sinica, 2024, 32(5): 1583-1591. |
| 孙昊, 张建禹, 罗丽娟, 等. 光果柱花草转基因毛状根及其原生质体制备体系的建立. 草地学报, 2024, 32(5): 1583-1591. | |
| [38] | Qin A G, Luo X F. Transformation of transcription factor DREB1C gene into the fast-growing black locust mediated with Agrobacterium tumefaciens. Journal of Beijing Forestry University, 2007, 29(6): 29-34. |
| 秦爱光, 罗晓芳. 农杆菌介导转录因子DREB1C基因转化速生型刺槐的研究. 北京林业大学学报, 2007, 29(6): 29-34. | |
| [39] | Elzen P J, Townsend J, Lee K Y, et al. A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Molecular Biology, 1985, 5(5): 299-302. |
| [40] | Oung H, Lin K, Wu T, et al. Hygromycin B-induced cell death is partly mediated by reactive oxygen species in rice (Oryza sativa L.). Plant Molecular Biology, 2015, 89(6): 577-588. |
| [41] | Ge X, Xu J, Yang Z, et al. Efficient genotype-independent cotton genetic transformation and genome editing. Journal of Integrative Plant Biology, 2023, 65(4): 907-917. |
| [42] | Nguyen T T, Hai-Vy V N, Hieu T V. Prokaryotic expression of chimeric GFP-hFc protein as a potential immune-based tool. Molecular Biology Research Communications, 2021, 10(3): 105-108. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||