[1] Shimizu M, Goto M, Hanai M, et al. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco[J]. Plant Physiology, 2008, 147(4): 1976-1983. [2] Arlen P A, Falconer R, Cherukumilli S, et al. Field production and functional evaluation of chloroplast-derived interferon-alpha2b[J]. Plant Biotechnology Journal, 2007, 5(4): 511-525. [3] Arlen P A, Singleton M, Adamovicz J J, et al. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts[J]. Infection and Immunity, 2008, 76(8): 3640-3650. [4] Chebolu S, Daniell H. Stable expression of Gal/GalNac lectin of Entamoeba histolytica in transgenic chloroplasts and immunogenicity in mice towards vaccine development for amoebiasis[J]. Plant Biotechnology Journal, 2007, 5(2): 230-239. [5] Shao H B, Hed M, Qian K X, et al. The expression of classical swine fever virus structural protein E2 gene in tobacco chloroplasts for applying chloroplasts as bioreactors[J]. Comptes Rendus Biologies, 2008, 331(3): 179-184. [6] 王婷婷, 徐国荣, 张举仁, 等. 细胞工程技术选育的草地早熟禾新种质的耐热性分析[J]. 草业学报, 2009,18(2):60-65. [7] Abid M, Palms B, Deryke R, et al. Transformation of chicory and expression of the bacterial uidA and nptⅡ genes in the transgenic regenerants[J]. Journal of Experimental Botany, 1995, 46(284): 337-346. [8] Piéron S, Watillon B. Expression of a chimeric GUS gene construct as a tool to study nodule morphogenesis in chicory leaves[J]. Plant Cell, Tissue and Organ Culture, 2001, 66(3): 159-165. [9] 宋书锋, 曹凤, 杨培志, 等. 普那菊苣高效再生体系建立和遗传转化研究[J]. 分子植物育种, 2006, 4(4): 565-570. [10] Williams F M K, Davey M R, Power J B, et al. Chicory (Cichorium intybus L.) expression the lol1 gene exhibits inhibition of ice recrystallisation[A]. In: van Hintum T J L, Lebeda A, Pink D, et al. Proceedings of the Eucarpia Meeting on Leafy Vegetables Breeding and Genetics, 2003[C], Noordwijkerhout, The Netherlands, 2003. 137-142. [11] Lim H T, Park E J, Lee J Y, et al. High plant regeneration and ectopic expression of OsMADS1 gene in root chicory (Cichorium intybus L. var. sativus)[J]. Plant Biotechnology Journal, 2003, 5(4): 215-219. [12] 程林梅, 曹秋芬, 高洪文, 等. 菊苣再生体系建立及转AFL2基因的研究[J]. 草地学报, 2004, 12(3): 119-203. [13] 程林梅, 孙毅, 王亦学, 等. 菊苣农杆菌介导转化受体系统的研究[J]. 草业学报, 2008, 17(1): 130-134. [14] 赵宇玮, 王英娟, 步怀宇, 等. AtNHX1基因对菊苣的转化和耐盐性研究[J]. 草业学报, 2009, 18(3): 103-109. [15] 龚小松, 阎隆飞. 高等植物质体DNA提取方法改进[J]. 科学通报, 1991, 36(6): 467-469. [16] Chakrabarti S K, Lutzk A, Lertwiriyawong B, et al. Expression of th cry9Aa2 B. T. gene in tobacco chloroplasts confers resistance to potato tuber mot[J]. Transgenic Research, 2006, 15(4): 481-488. [17] Sikdar S R, Serino G, Chaudhuri S, et al. Plastid transformation in Arabidopsis thaliana[J]. Plant Cell Report, 1998, 18(1): 20-24. [18] Lee S M, Kang K, Chung H, et al. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny[J]. Moleculars and Cells, 2006, 21(3): 401-410. [19] Hou B K, Zhou Y H, Wan L H, et al. Chloroplast transformation in oilseed rape[J]. Transgenic Research, 2003, 12(1): 111-114. [20] Nguyen T T, Nugent G, Cardi T, et al. Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L.)[J]. Plant Science, 2005, 168(6): 1495-1500. [21] Kumar S, Dhingra A, Daniell H. Stable transformtion of the cotton plastid genome and maternal inheritance of transgenes[J]. Plant Molecular Biology, 2004, 56(2): 203-216. [22] Zubkot M K, Zubkot E I, van Zuilen K, et al. Stable transformation of petunia plastids[J]. Transgenic Research, 2004, 13(6): 523-530. [23] Dufourmantel N, Tissot G, Goutorbe F, et al. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensts/cry1Ab protoxin[J]. Plant Molecular Biology, 2005, 58(5): 659-668. [24] Ruhlman T, Ahangari R, Devine A, et al. Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts-oral administration protects against development of insulitis in non-obese diabetic mice[J]. Plant Biotechnology, 2007, 5(4): 495-510. [25] Kumar S, Dhingra A, Daniell H. Plastid-expressed bataine aldehyde dehydrogenase gene in carrot cultured cells roots, and leaves confers enhanced salt tolerance[J]. Plant Physiology, 2004, 136(1): 2843-2854. [26] Wurbs D, Ruf S, Bock R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome[J]. The Plant Journal, 2007, 49(26): 276-288. [27] Liu C W, Lin C C, Chen J J, et al. Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment[J]. Plant Cell Report, 2007, 26(10): 1733-1744. [28] Okumura S, Sawada M, Park Y W, et al. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts[J]. Transgenic Research, 2006, 15(5): 637-646. [29] Svab Z, Hajdukiewicz P, Maliga P. Stable transformation of plastids in higher plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(21): 8526-8530. [30] Corneille S, Lutz K, Svab Z, et al. Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system[J]. Plant Journal, 2001, 27(2): 171-178. [31] Svab Z, Maliga P. High-frequency plastid transfomation in tobacco by selection for chimeric aadA gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(3): 913-917. [32] Carrer H, Hockenberry T N, Svab Z, et al. Kannamycin resistance as a selectable marker for plastid transformation in tobacco[J]. Molecular and General Genetics, 1993, 241(1-2): 49-56. [33] Iamtham S, Day A. Removal of antibiotic resistance genes from transgenic tobacco plastids[J]. Nature Biotechnology, 2000, 18(11): 1172-1176. [34] Hajdukiewicz P T, Gilbertson L, Staub J M. Multiple pathways for Cre/lox-mediated recombination in plastids[J]. Plant Journal, 2001, 27(2): 161-170. [35] 王玉祥, 张博, 王涛. 盐胁迫对苜蓿叶绿素、甜菜碱含量和细胞膜透性的影响[J]. 草业科学, 2009, 26(3): 53-56. [36] Daniell H, Wiebe P O, Millan A F S. Antibiotic free chloroplast genetic engineering-an environmentally friendly approach[J]. Trends in Plant Science, 2001, 6(6): 237-239. [37] Jia G X, Zhu Z Q, Chang F Q, et al. Transformation of tomato with the BADH gene from Atriplex improves salt tolerance[J]. Plant Cell Report, 2002, 21(2): 141-146. [38] 司怀军, 张宁, 王蒂. 转甜菜碱醛脱氢酶基因提高烟草抗旱及耐盐性[J]. 作物学报, 2007, 33(8): 1335-1339. [39] 徐冰, 韩烈保, 姚娜, 等. 草地早熟禾转CMO-BADH双基因和转CMO基因耐盐性分析[J]. 草地学报, 2008, 16(4): 353-358 |