[1] Bowman J L, Smith D R, Meyerowitz E M. Genetic interaction among floral homeotic genes of Arabidopsis thaliana[J]. Development, 1991, 112: 1-20. [2] Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development[J]. Nature, 1991, 353: 31-37. [3] Meyerowitz E M, Bowman J L, Brockman L L, et al. A genetic and molecular model for flower development in Arabidopsis thaliana[J]. Development, 1991, 112(Suppl.1): 157-167. [4] Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes[J]. Cell, 1994, 78: 203-209. [5] Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into Xoral organs[J]. Nature, 2001, 409: 525-529. [6] Theissen G. Development of Xoral organ identity: stories from the MADS house[J]. Current Opinion in Plant Biology, 2001, 4: 75-85. [7] Zahn L M, Kong H, Leebens-Mack J H, et al. The evolution of the SEPALLATA subfamily of MADS- box genes: a preangiosperm origin with multiple duplications throughout angiosperm history[J]. Genetics, 2005, 169: 2209-2223. [8] Soltis D E, Ma H, Frohlich M W, et al. The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression[J]. Trends in Plant Science, 2007, 12(8): 358-367. [9] Ma H, Yanofsky M F, Meyerowitz E M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcrip tion factor genes[J]. Genes and Development, 1991, 5: 484-495. [10] Prasad K, Zhang X, Tobon E, et al. The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development[J]. The Plant Journal, 2010, 62(2): 203-214. [11] Jang S, Marchal V, Panigrahi K C, et al. The Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring aphot operiodic flowering response[J]. The EMBO Journal, 2008, 27(8): 1277-1288. [12] Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Molecular Phylogenetics and Evolution, 2003, 29: 464-489. [13] de Bodt S, Raes J, van de Peer Y, et al. And then there were many: MADS genes genomic[J]. Trends in Plant Science, 2003, 8: 475-410. [14] Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development[J]. Biological Chemistry, 1997, 378: 1079-1101. [15] Paolacci A R, Tanzarella O A, Porceddu E, et al. Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat (Triticum aestivum L.)[J]. Molecular Genetics and Genomics, 2007, 278: 689-708. [16] Zhao T, Ni Z F, Dai Y, et al. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.)[J]. Molecular Genetics and Genomics, 2006, 276: 334-350. [17] Arora R, Agarwal P, Ray S, et al. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress[J]. BMC Genomics, 2007, 8: 242. [18] Preston J C, Kellogg E A. Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-Like genes in grasses (Poaceae)[J]. Genetics, 2006, 174: 421-437. [19] 袁春光. 青藏高原野生优质牧草: 垂穗披碱草[J]. 草业与畜牧, 2005, (10): 62. [20] 周永红, 郑有良, 杨俊良, 等. 10种披碱草属植物的RAPD分析及其系统学意义[J]. 植物分类学报, 1999, 37(5): 425-432. [21] 严学兵, 周禾, 郭玉霞, 等. 披碱草属植物形态多样性及其主成分分析[J]. 草地学报, 2005, 13(2): 27-32. [22] 谢国平, 呼天明, 王佺珍, 等. 施N量和收获时间对西藏野生垂穗披碱草种子产量影响研究[J]. 草业学报, 2010, 19(2): 89-96. [23] 张妙青, 王彦荣, 张吉宇, 等. 垂穗披碱草种质资源繁殖相关特性遗传多样性研究[J]. 草业学报, 2011, 20(3): 182-191. [24] 赵忠, 何毅, 贾生福, 等. 肃北县草原资源调查[J]. 草业科学, 2010, 27(11): 53-65. [25] 杨松, 李春杰, 柴青, 等. 披碱草内生真菌对三种草坪草种子与种苗的化感效应[J]. 草业学报, 2010, 19(4): 33-40. [26] 张建波. 川西北高原野生垂穗披碱草遗传多样性研究[D]. 成都: 四川农业大学, 2007: 1-17. [27] 王力娜, 范术丽, 宋美珍, 等. 植物MADS-box基因的研究进展[J]. 生物技术通报, 2010, (8): 12-19. [28] Verelst W, Twell D, de Folter S, et al. MADS-complexes regulate transcriptome dynamics during pollen maturation[J]. Genome Biology, 2007, 8: 249. [29] Mandel M A, Yanofsky M F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1[J]. Plant Cell, 1995, 7: 1763-1771. |