Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (5): 103-120.DOI: 10.11686/cyxb2020295
Previous Articles Next Articles
Xiao-qiang ZHAO1(), Yuan ZHONG1(), Wen-qi ZHOU2
Received:
2020-06-29
Revised:
2020-08-31
Online:
2021-05-20
Published:
2021-04-16
Contact:
Yuan ZHONG
Xiao-qiang ZHAO, Yuan ZHONG, Wen-qi ZHOU. QTL mapping and candidate gene analysis of leaf area in maize (Zea mays) under different watering environments[J]. Acta Prataculturae Sinica, 2021, 30(5): 103-120.
时期Stage | 环境 Environment | 双亲Parents | F1杂交种 F1 Hybrid (HLT) | F2∶3群体F2∶3 Population (POPLT,H2=59.76%~64.96%) | |||||
---|---|---|---|---|---|---|---|---|---|
廊黄 Langhuang | TS141 | 均值 Mean | 变幅 Range | 变异系数 CV (%) | 偏度 Skewness | 峰度 Kurtosis | |||
V18 | E1 | 301.84±16.84C | 642.41±26.20B | 912.05±36.13A | 510.92±49.92 | 291.79~869.50 | 9.77 | -0.624 | -0.147 |
E2 | 285.20±20.17C | 463.53±21.72B | 668.23±31.11A | 455.85±46.04 | 257.14~826.57 | 10.10 | 0.370 | 0.245 | |
E3 | 319.29±20.33C | 667.80±24.29B | 964.37±32.28A | 547.90±46.85 | 328.50~895.18 | 8.55 | 0.462 | 0.103 | |
E4 | 289.95±18.16C | 480.04±22.75B | 763.19±30.40A | 449.26±49.17 | 260.02~831.84 | 10.95 | 0.911 | -0.069 | |
R1 | E1 | 510.06±30.42C | 937.51±40.46AB | 1191.58±41.62A | 611.86±65.30 | 340.30~1024.12 | 10.67 | 0.273 | 0.515 |
E2 | 437.83±34.70B | 540.78±43.22AB | 852.82±39.68A | 519.92±69.49 | 309.62~971.75 | 13.37 | 0.519 | -0.722 | |
E3 | 537.52±39.95C | 1014.05±42.13B | 1389.28±48.94A | 658.65±62.64 | 373.85~1159.13 | 9.51 | 0.070 | 0.116 | |
E4 | 479.83±40.12c | 601.03±43.77b | 952.71±45.05a | 541.16±68.81 | 359.81~989.07 | 12.72 | -0.114 | 0.531 | |
时期Stage | 环境 Environment | 双亲Parents | F1杂交种 F1 Hybrid (HCT) | F2∶3群体F2∶3 Population (POPCT, H2=64.06%~59.53%) | |||||
昌7-2 Chang7-2 | TS141 | 均值 Mean | 变幅 Range | 变异系数CV (%) | 偏度Skewness | 峰度Kurtosis | |||
V18 | E5 | 321.20±20.17C | 639.20±28.93B | 900.68±41.00A | 475.80±50.13 | 289.03~846.22 | 10.54 | 0.417 | 0.505 |
E6 | 300.59±23.10c | 491.12±29.56b | 697.30±38.86a | 430.78±48.80 | 248.49~812.16 | 11.33 | 0.084 | 0.622 | |
E7 | 326.42±24.52C | 687.88±25.11B | 930.63±45.25A | 527.41±53.96 | 319.75~864.51 | 10.23 | -0.336 | -0.916 | |
E8 | 296.96±26.39C | 519.23±24.15AB | 711.21±40.18A | 452.80±47.24 | 250.58~830.77 | 10.43 | 0.614 | -0.110 | |
R1 | E5 | 538.37±37.25B | 1015.16±46.02A | 1197.20±47.61A | 585.84±68.90 | 337.95~977.32 | 11.76 | 0.622 | 0.494 |
E6 | 436.80±39.11c | 643.80±41.05b | 908.57±41.19a | 507.44±63.25 | 315.48~969.04 | 12.46 | -0.191 | -1.002 | |
E7 | 552.29±32.48B | 1029.93±42.23A | 1013.00±45.37A | 631.42±69.74 | 394.12~1194.79 | 11.04 | -0.438 | 0.389 | |
E8 | 457.52±36.49c | 671.95±47.80b | 856.19±37.42a | 530.20±68.06 | 347.88~1018.21 | 12.84 | -0.714 | -0.116 |
Table 1 Performance of leaf area (LA) for corresponding leaves in parents, F1 hybrids, and F2∶3 populations
时期Stage | 环境 Environment | 双亲Parents | F1杂交种 F1 Hybrid (HLT) | F2∶3群体F2∶3 Population (POPLT,H2=59.76%~64.96%) | |||||
---|---|---|---|---|---|---|---|---|---|
廊黄 Langhuang | TS141 | 均值 Mean | 变幅 Range | 变异系数 CV (%) | 偏度 Skewness | 峰度 Kurtosis | |||
V18 | E1 | 301.84±16.84C | 642.41±26.20B | 912.05±36.13A | 510.92±49.92 | 291.79~869.50 | 9.77 | -0.624 | -0.147 |
E2 | 285.20±20.17C | 463.53±21.72B | 668.23±31.11A | 455.85±46.04 | 257.14~826.57 | 10.10 | 0.370 | 0.245 | |
E3 | 319.29±20.33C | 667.80±24.29B | 964.37±32.28A | 547.90±46.85 | 328.50~895.18 | 8.55 | 0.462 | 0.103 | |
E4 | 289.95±18.16C | 480.04±22.75B | 763.19±30.40A | 449.26±49.17 | 260.02~831.84 | 10.95 | 0.911 | -0.069 | |
R1 | E1 | 510.06±30.42C | 937.51±40.46AB | 1191.58±41.62A | 611.86±65.30 | 340.30~1024.12 | 10.67 | 0.273 | 0.515 |
E2 | 437.83±34.70B | 540.78±43.22AB | 852.82±39.68A | 519.92±69.49 | 309.62~971.75 | 13.37 | 0.519 | -0.722 | |
E3 | 537.52±39.95C | 1014.05±42.13B | 1389.28±48.94A | 658.65±62.64 | 373.85~1159.13 | 9.51 | 0.070 | 0.116 | |
E4 | 479.83±40.12c | 601.03±43.77b | 952.71±45.05a | 541.16±68.81 | 359.81~989.07 | 12.72 | -0.114 | 0.531 | |
时期Stage | 环境 Environment | 双亲Parents | F1杂交种 F1 Hybrid (HCT) | F2∶3群体F2∶3 Population (POPCT, H2=64.06%~59.53%) | |||||
昌7-2 Chang7-2 | TS141 | 均值 Mean | 变幅 Range | 变异系数CV (%) | 偏度Skewness | 峰度Kurtosis | |||
V18 | E5 | 321.20±20.17C | 639.20±28.93B | 900.68±41.00A | 475.80±50.13 | 289.03~846.22 | 10.54 | 0.417 | 0.505 |
E6 | 300.59±23.10c | 491.12±29.56b | 697.30±38.86a | 430.78±48.80 | 248.49~812.16 | 11.33 | 0.084 | 0.622 | |
E7 | 326.42±24.52C | 687.88±25.11B | 930.63±45.25A | 527.41±53.96 | 319.75~864.51 | 10.23 | -0.336 | -0.916 | |
E8 | 296.96±26.39C | 519.23±24.15AB | 711.21±40.18A | 452.80±47.24 | 250.58~830.77 | 10.43 | 0.614 | -0.110 | |
R1 | E5 | 538.37±37.25B | 1015.16±46.02A | 1197.20±47.61A | 585.84±68.90 | 337.95~977.32 | 11.76 | 0.622 | 0.494 |
E6 | 436.80±39.11c | 643.80±41.05b | 908.57±41.19a | 507.44±63.25 | 315.48~969.04 | 12.46 | -0.191 | -1.002 | |
E7 | 552.29±32.48B | 1029.93±42.23A | 1013.00±45.37A | 631.42±69.74 | 394.12~1194.79 | 11.04 | -0.438 | 0.389 | |
E8 | 457.52±36.49c | 671.95±47.80b | 856.19±37.42a | 530.20±68.06 | 347.88~1018.21 | 12.84 | -0.714 | -0.116 |
群体 Population (QTL) | 染色体 Chromosome | 时期 Stage | 环境 Environment | QTL 位置 QTL position | LOD | 遗传效应 Genetic effect | 基因方式 Gene action | 贡献率 Contribution rate (R2 , %) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
图距Graph distance (cM) | 区间 Interval | 加性 Additive | 显性 Dominance | |d/a| | 类型 Type | |||||||
POPLT | ||||||||||||
qLA-Ch.1-1 | 1 | V18 | E2 | 109.6 | mmc0041~phi308707 | 5.47 | 1.58 | 1.62 | 1.03 | D | 8.11 | |
qLA-Ch.1-1 | 1 | V18 | E3 | 109.6 | mmc0041~phi308707 | 5.90 | -1.51 | 0.93 | 0.62 | PD | 9.79 | |
qLA-Ch.1-1 | 1 | R1 | E1 | 109.1 | mmc0041~phi308707 | 3.93 | 1.18 | -1.20 | 1.02 | D | 7.00 | |
qLA-Ch.1-1 | 1 | R1 | E2 | 109.1 | mmc0041~phi308707 | 4.11 | 1.30 | -1.24 | 0.95 | D | 7.13 | |
qLA-Ch.1-1 | 1 | R1 | E4 | 109.6 | mmc0041~phi308707 | 6.95 | 1.97 | -2.00 | 1.02 | D | 10.40 | |
qLA-Ch.2-1 | 2 | V18 | E3 | 44.7 | bnlg1909~bnlg1613 | 3.89 | -2.16 | 2.95 | 1.37 | OD | 5.60 | |
qLA-Ch.4-1 | 4 | V18 | E2 | 180.6 | umc2041~umc2287 | 3.03 | 0.27 | 0.12 | 0.44 | PD | 3.43 | |
qLA-Ch.4-1 | 4 | R1 | E2 | 180.6 | umc2041~umc2287 | 4.55 | 0.99 | -0.47 | 0.47 | PD | 6.12 | |
qLA-Ch.8-1 | 8 | V18 | E1 | 45.1 | bnlg1863~umc2075 | 4.00 | 1.19 | -1.25 | 1.05 | D | 6.94 | |
qLA-Ch.8-1 | 8 | V18 | E2 | 46.0 | bnlg1863~umc2075 | 4.32 | 1.49 | 1.61 | 1.08 | D | 7.22 | |
qLA-Ch.8-1 | 8 | R1 | E1 | 45.2 | bnlg1863~umc2075 | 3.75 | 1.22 | 1.14 | 0.93 | D | 7.38 | |
qLA-Ch.8-1 | 8 | R1 | E2 | 46.0 | bnlg1863~umc2075 | 4.49 | 1.37 | 1.51 | 1.10 | D | 8.41 | |
qLA-Ch.10-1 | 10 | V18 | E3 | 47.2 | bnlg1655~umc1345 | 3.84 | -1.28 | -1.15 | 0.89 | D | 7.51 | |
qLA-Ch.10-1 | 10 | R1 | E3 | 47.2 | bnlg1655~umc1345 | 6.10 | -1.71 | -1.77 | 1.04 | D | 11.84 | |
POPCT | ||||||||||||
qLA-Ch.1-1 | 1 | V18 | E6 | 156.1 | mmc0041~phi308707 | 3.98 | -1.96 | -2.03 | 1.03 | D | 6.05 | |
qLA-Ch.1-1 | 1 | R1 | E6 | 156.1 | mmc0041~phi308707 | 5.00 | -1.89 | 2.10 | 1.11 | D | 6.89 | |
qLA-Ch.1-1 | 1 | R1 | E8 | 156.1 | mmc0041~phi308707 | 4.13 | -2.14 | -2.18 | 1.02 | D | 6.21 | |
qLA-Ch.6-1 | 6 | V18 | E7 | 90.4 | umc2040~bnlg1174a | 3.95 | -2.00 | -2.22 | 1.11 | D | 6.02 | |
qLA-Ch.6-1 | 6 | V18 | E8 | 90.4 | umc2040~bnlg1174a | 4.49 | 2.28 | 2.13 | 0.93 | D | 6.49 | |
qLA-Ch.6-1 | 6 | R1 | E6 | 90.4 | umc2040~bnlg1174a | 7.28 | -1.80 | -1.71 | 0.95 | D | 9.33 | |
qLA-Ch.6-1 | 6 | R1 | E8 | 90.4 | umc2040~bnlg1174a | 8.00 | -2.82 | -2.49 | 0.88 | D | 11.94 |
Table 2 QTLs for leaf area were detected in F2∶3 populations by single environment mapping with CIM
群体 Population (QTL) | 染色体 Chromosome | 时期 Stage | 环境 Environment | QTL 位置 QTL position | LOD | 遗传效应 Genetic effect | 基因方式 Gene action | 贡献率 Contribution rate (R2 , %) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
图距Graph distance (cM) | 区间 Interval | 加性 Additive | 显性 Dominance | |d/a| | 类型 Type | |||||||
POPLT | ||||||||||||
qLA-Ch.1-1 | 1 | V18 | E2 | 109.6 | mmc0041~phi308707 | 5.47 | 1.58 | 1.62 | 1.03 | D | 8.11 | |
qLA-Ch.1-1 | 1 | V18 | E3 | 109.6 | mmc0041~phi308707 | 5.90 | -1.51 | 0.93 | 0.62 | PD | 9.79 | |
qLA-Ch.1-1 | 1 | R1 | E1 | 109.1 | mmc0041~phi308707 | 3.93 | 1.18 | -1.20 | 1.02 | D | 7.00 | |
qLA-Ch.1-1 | 1 | R1 | E2 | 109.1 | mmc0041~phi308707 | 4.11 | 1.30 | -1.24 | 0.95 | D | 7.13 | |
qLA-Ch.1-1 | 1 | R1 | E4 | 109.6 | mmc0041~phi308707 | 6.95 | 1.97 | -2.00 | 1.02 | D | 10.40 | |
qLA-Ch.2-1 | 2 | V18 | E3 | 44.7 | bnlg1909~bnlg1613 | 3.89 | -2.16 | 2.95 | 1.37 | OD | 5.60 | |
qLA-Ch.4-1 | 4 | V18 | E2 | 180.6 | umc2041~umc2287 | 3.03 | 0.27 | 0.12 | 0.44 | PD | 3.43 | |
qLA-Ch.4-1 | 4 | R1 | E2 | 180.6 | umc2041~umc2287 | 4.55 | 0.99 | -0.47 | 0.47 | PD | 6.12 | |
qLA-Ch.8-1 | 8 | V18 | E1 | 45.1 | bnlg1863~umc2075 | 4.00 | 1.19 | -1.25 | 1.05 | D | 6.94 | |
qLA-Ch.8-1 | 8 | V18 | E2 | 46.0 | bnlg1863~umc2075 | 4.32 | 1.49 | 1.61 | 1.08 | D | 7.22 | |
qLA-Ch.8-1 | 8 | R1 | E1 | 45.2 | bnlg1863~umc2075 | 3.75 | 1.22 | 1.14 | 0.93 | D | 7.38 | |
qLA-Ch.8-1 | 8 | R1 | E2 | 46.0 | bnlg1863~umc2075 | 4.49 | 1.37 | 1.51 | 1.10 | D | 8.41 | |
qLA-Ch.10-1 | 10 | V18 | E3 | 47.2 | bnlg1655~umc1345 | 3.84 | -1.28 | -1.15 | 0.89 | D | 7.51 | |
qLA-Ch.10-1 | 10 | R1 | E3 | 47.2 | bnlg1655~umc1345 | 6.10 | -1.71 | -1.77 | 1.04 | D | 11.84 | |
POPCT | ||||||||||||
qLA-Ch.1-1 | 1 | V18 | E6 | 156.1 | mmc0041~phi308707 | 3.98 | -1.96 | -2.03 | 1.03 | D | 6.05 | |
qLA-Ch.1-1 | 1 | R1 | E6 | 156.1 | mmc0041~phi308707 | 5.00 | -1.89 | 2.10 | 1.11 | D | 6.89 | |
qLA-Ch.1-1 | 1 | R1 | E8 | 156.1 | mmc0041~phi308707 | 4.13 | -2.14 | -2.18 | 1.02 | D | 6.21 | |
qLA-Ch.6-1 | 6 | V18 | E7 | 90.4 | umc2040~bnlg1174a | 3.95 | -2.00 | -2.22 | 1.11 | D | 6.02 | |
qLA-Ch.6-1 | 6 | V18 | E8 | 90.4 | umc2040~bnlg1174a | 4.49 | 2.28 | 2.13 | 0.93 | D | 6.49 | |
qLA-Ch.6-1 | 6 | R1 | E6 | 90.4 | umc2040~bnlg1174a | 7.28 | -1.80 | -1.71 | 0.95 | D | 9.33 | |
qLA-Ch.6-1 | 6 | R1 | E8 | 90.4 | umc2040~bnlg1174a | 8.00 | -2.82 | -2.49 | 0.88 | D | 11.94 |
群体 Population | 染色体 Chromosome | 时期 Stage | QTL位置QTL position | A | AE1/AE5 | AE2/AE6 | AE3/AE7 | AE4/AE8 | h2 (A) (%) | h2 (AE) (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
图距 Graph distance (cM) | 区间距离 Interval distance (Mb) | 区间 Interval | ||||||||||
POPLT | ||||||||||||
qLA-Ch.1-1 | 1 | V18 | 109.3 | 17.51 | mmc0041~phi308707 | 0.99 | - | - | - | - | 6.58 | - |
qLA-Ch.1-1 | 1 | R1 | 109.5 | 17.51 | mmc0041~phi308707 | 0.63 | - | - | - | - | 4.84 | - |
qLA-J2-1 | 2 | R1 | 77.8 | 14.79 | bnlg1233~bnlg1520 | -1.90 | - | 0.66 | - | - | 9.20 | 4.52 |
qLA-Ch.8-1 | 8 | V18 | 46.0 | 0.39 | bnlg1863~umc2075 | 1.03 | - | - | - | - | 6.68 | - |
qLA-Ch.8-1 | 8 | R1 | 45.8 | 0.39 | bnlg1863~umc2075 | 0.78 | - | - | - | - | 5.04 | - |
POPCT | ||||||||||||
qLA-Ch.1-1 | 1 | V18 | 156.0 | 17.51 | mmc0041~phi308707 | -0.70 | - | - | - | - | 4.89 | - |
qLA-Ch.1-1 | 1 | R1 | 156.1 | 17.51 | mmc0041~phi308707 | -0.84 | - | - | - | - | 5.02 | - |
qLA-J2-1 | 2 | R1 | 116.8 | 14.79 | bnlg1233~bnlg1520 | -1.43 | - | - | - | - | 6.00 | - |
qLA-Ch.6-1 | 6 | V18 | 90.4 | 11.12 | umc2040~bnlg1174a | -0.66 | - | - | - | - | 4.82 | - |
qLA-Ch.6-1 | 6 | R1 | 90.4 | 11.12 | umc2040~bnlg1174a | -0.91 | - | - | - | - | 5.09 | - |
Table 3 Joint QTLs and QTL×E for leaf area were detected in F2∶3 populations under multiple environments by MCIM
群体 Population | 染色体 Chromosome | 时期 Stage | QTL位置QTL position | A | AE1/AE5 | AE2/AE6 | AE3/AE7 | AE4/AE8 | h2 (A) (%) | h2 (AE) (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
图距 Graph distance (cM) | 区间距离 Interval distance (Mb) | 区间 Interval | ||||||||||
POPLT | ||||||||||||
qLA-Ch.1-1 | 1 | V18 | 109.3 | 17.51 | mmc0041~phi308707 | 0.99 | - | - | - | - | 6.58 | - |
qLA-Ch.1-1 | 1 | R1 | 109.5 | 17.51 | mmc0041~phi308707 | 0.63 | - | - | - | - | 4.84 | - |
qLA-J2-1 | 2 | R1 | 77.8 | 14.79 | bnlg1233~bnlg1520 | -1.90 | - | 0.66 | - | - | 9.20 | 4.52 |
qLA-Ch.8-1 | 8 | V18 | 46.0 | 0.39 | bnlg1863~umc2075 | 1.03 | - | - | - | - | 6.68 | - |
qLA-Ch.8-1 | 8 | R1 | 45.8 | 0.39 | bnlg1863~umc2075 | 0.78 | - | - | - | - | 5.04 | - |
POPCT | ||||||||||||
qLA-Ch.1-1 | 1 | V18 | 156.0 | 17.51 | mmc0041~phi308707 | -0.70 | - | - | - | - | 4.89 | - |
qLA-Ch.1-1 | 1 | R1 | 156.1 | 17.51 | mmc0041~phi308707 | -0.84 | - | - | - | - | 5.02 | - |
qLA-J2-1 | 2 | R1 | 116.8 | 14.79 | bnlg1233~bnlg1520 | -1.43 | - | - | - | - | 6.00 | - |
qLA-Ch.6-1 | 6 | V18 | 90.4 | 11.12 | umc2040~bnlg1174a | -0.66 | - | - | - | - | 4.82 | - |
qLA-Ch.6-1 | 6 | R1 | 90.4 | 11.12 | umc2040~bnlg1174a | -0.91 | - | - | - | - | 5.09 | - |
sQTLs区间 sQTLs interval | 基因数量Number of gene | 基因 ID Gene ID | 分子功能 Molecular function | 生物进程 Biological process | 细胞组分 Cell component |
---|---|---|---|---|---|
mmc0041~ phi308707 | 146 | GRMZM2G014392 | 氧化还原酶活性Oxidoreductase activity | 脱落酸生物合成/氧化还原过程Abscisic acid biosynthetic process/oxidation-reduction process | 叶绿体/质体/叶绿体基质Chloroplast/plastid/chloroplast stroma |
GRMZM2G073725 | 分子内转移酶/UDP-阿糖吡喃糖酶活性Intramolecular transferase activity/UDP-arabinopyranose mutase activity | 纤维素生物合成过程/细胞壁组织/植物细胞壁组织或生物发生Cellulose biosynthetic process/cell wall organization/plant-type cell wall organization or biogenesis | 组织或生物发生/高尔基体/胞间连丝Cellulose biosynthetic process/plant-type cell wall organization or biogenesis/golgi apparatus/plasmodesma | ||
GRMZM2G017087 | DNA/RNA/蛋白结合DNA/RNA/protein binding | 转录调节/DNA模板/胞间质转运Regulation of transcription/DNA-templated/plasmodesmata-mediated intercellular transport | 细胞质/胞间连丝/微管细胞骨架Cytoplasm/plasmodesma/microtubule cytoskeleton | ||
bnlg1233~ bnlg1520 | 104 | GRMZM2G140667 | 过氧化物酶活性Peroxidase activity | 氧化应激反应/细胞氧化解毒Response to oxidative stress/cellular oxidant detoxification | 叶绿体/类囊体Chloroplast/thylakoid |
GRMZM2G005990 | 二氢叶酸还原酶活性/戊二酸合酶活性Dihydrofolate reductase activity/hymidylate synthase activity | dTMP生物合成/单碳代谢dTMP biosynthetic process/one-carbon metabolic process | - | ||
umc2041~ umc22870 | 139 | GRMZM2G094497 | ATP结合ATP binding | ATP水解耦合质子转运/质子转运/ATP代谢过程ATP hydrolysis coupled proton transport/proton transport/ATP metabolic process | 质子运输V型ATP酶/V1结构域Proton-transporting V-type ATPase/V1domain |
GRMZM2G074122 | 催化活性/苯醇丙酮酸羧化酶活性Catalytic activity/hosphoenolpyruvate carboxylase activity | 三羧酸循环/碳固定Tricarboxylic acid cycle/carbon fixation | - | ||
GRMZM2G162434 | DNA结合DNA binding | - | - | ||
GRMZM2G116079 | 金属离子结合 Metalion binding | - | - | ||
umc2040~ bnlg1174a | 24 | GRMZM2G039113 | - | - | 细胞质/细胞骨架Cytoplsm/cytoskeleton |
umc2040~ bnlg1174a | 2 | GRMZM2G119169 | 核糖体结构组成Structural constituent of ribosome | 翻译Translation | 核糖体/核糖体大亚基/细胞内核糖体蛋白复合体Ribosome/large ribosomal subunit/intracellular ribonucleoprotein complex |
umc2040~ bnlg1174a | 48 | GRMZM2G163437 | ATP结合/葡萄糖-1-1磷酸腺苷转移酶活性ATP binding/glucose-1-phosphate adenylytransferase activity | 核糖体生物合成/淀粉生物合成Glycogen biosynthetic process/starch biosynthetic process | 叶绿体/质体Chloroplast/plastid |
Table 4 Candidate genes were detected and corresponding function were analyzed in sQTLs intervals for leaf area
sQTLs区间 sQTLs interval | 基因数量Number of gene | 基因 ID Gene ID | 分子功能 Molecular function | 生物进程 Biological process | 细胞组分 Cell component |
---|---|---|---|---|---|
mmc0041~ phi308707 | 146 | GRMZM2G014392 | 氧化还原酶活性Oxidoreductase activity | 脱落酸生物合成/氧化还原过程Abscisic acid biosynthetic process/oxidation-reduction process | 叶绿体/质体/叶绿体基质Chloroplast/plastid/chloroplast stroma |
GRMZM2G073725 | 分子内转移酶/UDP-阿糖吡喃糖酶活性Intramolecular transferase activity/UDP-arabinopyranose mutase activity | 纤维素生物合成过程/细胞壁组织/植物细胞壁组织或生物发生Cellulose biosynthetic process/cell wall organization/plant-type cell wall organization or biogenesis | 组织或生物发生/高尔基体/胞间连丝Cellulose biosynthetic process/plant-type cell wall organization or biogenesis/golgi apparatus/plasmodesma | ||
GRMZM2G017087 | DNA/RNA/蛋白结合DNA/RNA/protein binding | 转录调节/DNA模板/胞间质转运Regulation of transcription/DNA-templated/plasmodesmata-mediated intercellular transport | 细胞质/胞间连丝/微管细胞骨架Cytoplasm/plasmodesma/microtubule cytoskeleton | ||
bnlg1233~ bnlg1520 | 104 | GRMZM2G140667 | 过氧化物酶活性Peroxidase activity | 氧化应激反应/细胞氧化解毒Response to oxidative stress/cellular oxidant detoxification | 叶绿体/类囊体Chloroplast/thylakoid |
GRMZM2G005990 | 二氢叶酸还原酶活性/戊二酸合酶活性Dihydrofolate reductase activity/hymidylate synthase activity | dTMP生物合成/单碳代谢dTMP biosynthetic process/one-carbon metabolic process | - | ||
umc2041~ umc22870 | 139 | GRMZM2G094497 | ATP结合ATP binding | ATP水解耦合质子转运/质子转运/ATP代谢过程ATP hydrolysis coupled proton transport/proton transport/ATP metabolic process | 质子运输V型ATP酶/V1结构域Proton-transporting V-type ATPase/V1domain |
GRMZM2G074122 | 催化活性/苯醇丙酮酸羧化酶活性Catalytic activity/hosphoenolpyruvate carboxylase activity | 三羧酸循环/碳固定Tricarboxylic acid cycle/carbon fixation | - | ||
GRMZM2G162434 | DNA结合DNA binding | - | - | ||
GRMZM2G116079 | 金属离子结合 Metalion binding | - | - | ||
umc2040~ bnlg1174a | 24 | GRMZM2G039113 | - | - | 细胞质/细胞骨架Cytoplsm/cytoskeleton |
umc2040~ bnlg1174a | 2 | GRMZM2G119169 | 核糖体结构组成Structural constituent of ribosome | 翻译Translation | 核糖体/核糖体大亚基/细胞内核糖体蛋白复合体Ribosome/large ribosomal subunit/intracellular ribonucleoprotein complex |
umc2040~ bnlg1174a | 48 | GRMZM2G163437 | ATP结合/葡萄糖-1-1磷酸腺苷转移酶活性ATP binding/glucose-1-phosphate adenylytransferase activity | 核糖体生物合成/淀粉生物合成Glycogen biosynthetic process/starch biosynthetic process | 叶绿体/质体Chloroplast/plastid |
sQTLs区间 sQTLs interval | 基因数量Number of gene | 基因 ID Gene ID | KEGG注释 KEGG annotation | Nr注释 Nr annotation (玉米Z. mays) | 功能 Function |
---|---|---|---|---|---|
mmc0041~ phi308707 | 146 | GRMZM2G014392 | ABA/类胡萝卜素/次生代谢物生物合成Abscisic acid biosynthesis/carotenoids biosynthesis of secondary metabolites | Viviparous 14 | 水亏缺下ABA作用参与叶片生长Leaf growth via ABA under water deficit |
GRMZM2G073725 | 氨基酸糖/核苷酸糖代谢Amino sugar and nucleotide sugar metabolism | 高尔基相关蛋白se-wap41 Golgi associated protein se-wap41 | 乙烯信号作用下参与干旱胁迫反应Drought stress response via ethylene signal | ||
GRMZM2G017087 | 氨基酸代谢Metabolism of amino acids | Knotted 1 | 维持分生组织稳态/促进叶片形成Meristem homeostasis/leaf formation | ||
bnlg1233~ bnlg1520 | 104 | GRMZM2G140667 | 抗坏血酸和醛糖代谢/谷胱甘肽代谢Ascorbate and aldarate metabolism/glutathione metabolism | 抗坏血酸盐过氧化物酶2 Ascorbate peroxidase 2 | 干旱胁迫下维持叶片叶绿素量Chlorophyll content was maintained under drought stress |
GRMZM2G005990 | 叶酸生物合成/四氢叶酸生物合成Folate biosynthesis/tetrahydrofolate biosynthesis | 双功能二氢叶酸还原酶-胸腺酸合成酶Bifunctional dihydrofolate reductase-thymidylate synthase | 碳代谢Carbon metabolism | ||
umc2041~ umc2287 | 139 | GRMZM2G094497 | 代谢途径/氧化磷酸化Metabolic pathways/oxidative phosphorylation | 空泡ATP合酶B亚基Vacuolar ATP synthase subunit B | 液泡ATP合酶亚基B Vacuolar ATP synthase subunit B |
GRMZM2G074122 | C4 -二羧酸循环/NAD-苹果酸酶代谢C4-dicarboxylic acid cycle/NAD-malic enzyme type | 磷酸烯醇丙酮酸羧化酶1亚型Phosphoenolpyruvate carboxylase isoform 1 | 光合作用/C4植物中参与固碳作用Photosynthesis/carbon fixation in C4 plants | ||
GRMZM2G162434 | 组织特异性生物系统Organism-specific biosystem | 转录因子MYB30 Transcription factor MYB30 | 生长发育/代谢调控/细胞形态/胁迫应答Growth and development/metabolic regulation/cell morphology/stress response | ||
GRMZM2G116079 | 细胞色素代谢外源性物质Metabolism of xenobiotics by cytochrome | 假定的锌指蛋白Putative zinc finger protein30 | 调控细胞分化Cell differentiation | ||
umc2040~ bnlg1174a | 24 | GRMZM2G039113 | 囊泡运输SNARE作用SNARE interactions in vesicular transport | Tangled 1 | 细胞骨架排列/细胞分裂/叶片发育Cytoskeletal arrangement/cell division/leaf development |
bnlg1863~ umc2075 | 2 | GRMZM2G119169 | 核糖体生物合成、组织特异性生物系统Ribosome biosynthesis/organism-specific biosystem | 60S核糖体蛋白L17 60S ribosomal protein L17 | 组织特异性表达Tissue specific expression |
bnlg1655~ umc1345 | 48 | GRMZM2G163437 | 氨基酸/核苷酸糖代谢Amino sugar and nucleotide sugar metabolism | ADP葡糖糖焦磷酸化酶小亚基叶1 ADP glucose pyrophosphorylase small subunit leaf 1 | 促进光合作用和碳代谢Photosynthesis and carbon metabolism |
Table 5 Candidate genes were detected and corresponding function were annotated in sQTLs intervals for leaf area
sQTLs区间 sQTLs interval | 基因数量Number of gene | 基因 ID Gene ID | KEGG注释 KEGG annotation | Nr注释 Nr annotation (玉米Z. mays) | 功能 Function |
---|---|---|---|---|---|
mmc0041~ phi308707 | 146 | GRMZM2G014392 | ABA/类胡萝卜素/次生代谢物生物合成Abscisic acid biosynthesis/carotenoids biosynthesis of secondary metabolites | Viviparous 14 | 水亏缺下ABA作用参与叶片生长Leaf growth via ABA under water deficit |
GRMZM2G073725 | 氨基酸糖/核苷酸糖代谢Amino sugar and nucleotide sugar metabolism | 高尔基相关蛋白se-wap41 Golgi associated protein se-wap41 | 乙烯信号作用下参与干旱胁迫反应Drought stress response via ethylene signal | ||
GRMZM2G017087 | 氨基酸代谢Metabolism of amino acids | Knotted 1 | 维持分生组织稳态/促进叶片形成Meristem homeostasis/leaf formation | ||
bnlg1233~ bnlg1520 | 104 | GRMZM2G140667 | 抗坏血酸和醛糖代谢/谷胱甘肽代谢Ascorbate and aldarate metabolism/glutathione metabolism | 抗坏血酸盐过氧化物酶2 Ascorbate peroxidase 2 | 干旱胁迫下维持叶片叶绿素量Chlorophyll content was maintained under drought stress |
GRMZM2G005990 | 叶酸生物合成/四氢叶酸生物合成Folate biosynthesis/tetrahydrofolate biosynthesis | 双功能二氢叶酸还原酶-胸腺酸合成酶Bifunctional dihydrofolate reductase-thymidylate synthase | 碳代谢Carbon metabolism | ||
umc2041~ umc2287 | 139 | GRMZM2G094497 | 代谢途径/氧化磷酸化Metabolic pathways/oxidative phosphorylation | 空泡ATP合酶B亚基Vacuolar ATP synthase subunit B | 液泡ATP合酶亚基B Vacuolar ATP synthase subunit B |
GRMZM2G074122 | C4 -二羧酸循环/NAD-苹果酸酶代谢C4-dicarboxylic acid cycle/NAD-malic enzyme type | 磷酸烯醇丙酮酸羧化酶1亚型Phosphoenolpyruvate carboxylase isoform 1 | 光合作用/C4植物中参与固碳作用Photosynthesis/carbon fixation in C4 plants | ||
GRMZM2G162434 | 组织特异性生物系统Organism-specific biosystem | 转录因子MYB30 Transcription factor MYB30 | 生长发育/代谢调控/细胞形态/胁迫应答Growth and development/metabolic regulation/cell morphology/stress response | ||
GRMZM2G116079 | 细胞色素代谢外源性物质Metabolism of xenobiotics by cytochrome | 假定的锌指蛋白Putative zinc finger protein30 | 调控细胞分化Cell differentiation | ||
umc2040~ bnlg1174a | 24 | GRMZM2G039113 | 囊泡运输SNARE作用SNARE interactions in vesicular transport | Tangled 1 | 细胞骨架排列/细胞分裂/叶片发育Cytoskeletal arrangement/cell division/leaf development |
bnlg1863~ umc2075 | 2 | GRMZM2G119169 | 核糖体生物合成、组织特异性生物系统Ribosome biosynthesis/organism-specific biosystem | 60S核糖体蛋白L17 60S ribosomal protein L17 | 组织特异性表达Tissue specific expression |
bnlg1655~ umc1345 | 48 | GRMZM2G163437 | 氨基酸/核苷酸糖代谢Amino sugar and nucleotide sugar metabolism | ADP葡糖糖焦磷酸化酶小亚基叶1 ADP glucose pyrophosphorylase small subunit leaf 1 | 促进光合作用和碳代谢Photosynthesis and carbon metabolism |
环境 Environment | 时期 Stage | QTL (i) | 区间 Interval (i) | Bin (i) | QTL (j) | 区间 Interval (j) | Bin (j) | AA | h2 (AA) (%) |
---|---|---|---|---|---|---|---|---|---|
E6 | R1 | qLS-Ch.1-1 | mmc0041~phi308707 | 1.08~1.10 | qLS-J2-1 | bnlg1233~bnlg1520 | 2.08~2.09 | -0.68 | 4.83 |
Table 6 Epistatic interactions among QTLs for leaf area were analyzed in F2∶3 (POPCT) populations under multiple environments
环境 Environment | 时期 Stage | QTL (i) | 区间 Interval (i) | Bin (i) | QTL (j) | 区间 Interval (j) | Bin (j) | AA | h2 (AA) (%) |
---|---|---|---|---|---|---|---|---|---|
E6 | R1 | qLS-Ch.1-1 | mmc0041~phi308707 | 1.08~1.10 | qLS-J2-1 | bnlg1233~bnlg1520 | 2.08~2.09 | -0.68 | 4.83 |
1 | An Y Q, Zhang J, Xi Z Y, et al. QTL mapping of leaf area for different leaf position in maize (Zea mays L.). Molecular Plant Breeding, 2016, 14(8): 2113-2120. |
安允权, 张君, 席章营, 等. 玉米不同位叶叶面积的QTL定位. 分子植物育种, 2016, 14(8): 2113-2120. | |
2 | Zhang Z L, Jiang F, Liu P F, et al. QTL mapping of ear leaf area in sweet corn. Hubei Agricultural Sciences, 2014, 53(7): 1502-1505. |
张资丽, 蒋锋, 刘鹏飞, 等. 甜玉米穗位叶面积QTL定位. 湖北农业科学, 2014, 53(7): 1502-1505. | |
3 | Zhao X Q, Lu Y T, Bai M X, et al. Response of maize genotypes with different plant architecture to drought tolerance. Acta Prataculturae Sinica, 2020, 29(2): 149-162. |
赵小强, 陆晏天, 白明兴, 等. 不同株型玉米基因型对干旱胁迫的响应分析. 草业学报, 2020, 29(2): 149-162. | |
4 | Huang C X, Zhang H J. Effect of different irrigation amounts on leaf area dynamics and grain yield of spring maize (Zea mays) in oasis region. Journal of Water Resources & Water Engineering, 2016, 27(4): 229-232, 240. |
黄彩霞, 张恒嘉. 不同灌水量对绿洲玉米叶面积动态及产量的影响. 水资源与水工程学报, 2016, 27(4): 229-232, 240. | |
5 | Zhao X Q, Fang P, Zhang J W, et al. QTL mapping for six ear leaf architecture traits under water-stressed and well-watered conditions in maize (Zea mays L.). Plant Breeding, 2018, 137(1): 60-72. |
6 | Maes Y H, Steppe K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agricultura: A review. Journal of Experimental Botany, 2015, 63: 4671-4712. |
7 | Ribaut J, Betran J, Mnneveux P, et al. Drought tolerance in maize//Handbook of maize: Its biology. New York: Springer, 2009: 311-344. |
8 | Pagano E, Cela S, Maddonni G A, et al. Intra-specific competition in maize: Ear development, flowering dynamics and kernel set of carly-established plant hierarchies. Field Crop Research, 2007, 102(3): 198-209. |
9 | Mickelson S M, Stuber C S, Senior L, et al. Quantitative trait loci controlling leaf and tassel trait in a B73×Mo17 population of maize. Crop Science, 2002, 42(6): 1902-1909. |
10 | Quarrie S A, Stojanovic J, Sofija P J. Improving drought resistance in small-grained cereals: A case study, progress and prospects. Plant growth Regulation, 1999, 29(1): 1-21. |
11 | Dong Y B, Zhang Z W, Shi Q L, et al. QTL consistency for agronomic traits across three generations and potential applications in popcorn. Journal of Integrative Agriculture, 2015, 14(12): 2547-2557. |
12 | Cai H G, Chu Q, Yuan L X, et al. Identification of quantitative trait loci for leaf area and chlorophyII content in maize (Zea mays) under low nitrogen and low phosphorus supply. Molecular Breeding, 2012, 30: 251-266. |
13 | Nikolic A, Andjelkovic V, Dodig D, et al. Quantitative trait loci for yield and morphological traits in maize under drought stress. Genetika, 2011, 43: 263-276. |
14 | Liu J C, Chu Q, Cai H G, et al. SSR linkage map construction and QTL mapping for leaf area in maize. Hereditas, 2010, 32(6): 625-631. |
刘建超, 褚群, 蔡红光, 等. 玉米SSR连锁图谱构建及叶面积的QTL定位. 遗传, 2010, 32(6): 625-631. | |
15 | Agrama H A S, Zakaria A G, Said F B, et al. Identification of quantitative trait loci for nitrogen use efficiency in maize. Molecular Breeding, 1999, 5(2): 187-195. |
16 | Zhao X Q, Ren B, Peng Y L, et al. Epistatic and QTL×environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments. Acta Agronomica Sinica, 2019, 45(6): 856-871. |
赵小强, 任斌, 彭云玲, 等. 8种水旱环境下2个玉米群体穗部性状QTL间的上位性及环境互作效应分析. 作物学报, 2019, 45(6): 856-871. | |
17 | Zhao X Q, Fang P, Peng Y L, et al. Genetic analysis and QTL mapping for seven agronomic traits in maize (Zea mays) using two connected populations. Acta Prataculturae Sinica, 2018, 27(9): 152-165. |
赵小强, 方鹏, 彭云玲, 等. 基于两个相关群体的玉米7个主要农艺性状遗传分析和QTL定位. 草业学报, 2018, 27(9): 152-165. | |
18 | Zhao X Q, Peng Y L, Zhang J W, et al. Mapping QTLs and meta-QTLs for two inflorescence architecture traits in multiple maize populations under different watering environments. Molecular Breeding, 2017, 37(7): 91. |
19 | Zhao X Q, Peng Y L, Li J Y, et al. Comprehensive evaluation of salt tolerance in 16 maize inbred lines. Agricultural Research in the Arid Areas, 2014, 32(5): 40-45, 51. |
赵小强, 彭云玲, 李建英, 等. 16份玉米自交系的耐盐性评价. 干旱地区农业研究, 2014, 32(5): 40-45, 51. | |
20 | Zhao X Q, Fang P, Peng Y L, et al. QTL mapping for six ear-related traits based on two maize (Zea mays) related populations. Journal of Agricultural Biotechnology, 2018, 26(5): 729-742. |
赵小强, 方鹏, 彭云玲, 等. 基于两个相关群体的玉米6个穗部性状QTL定位. 农业生物技术学报, 2018, 26(5): 729-742. | |
21 | Zhao X Q, Peng Y L, Zhang J W, et al. Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions. Crop Science, 2018, 58(2): 507-520. |
22 | Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Science, 1985, 25(1): 192-194. |
23 | Van-Ooijen J W, Join M. Software for the calculation of genetic linkage maps in experimental populations. The Netherlands: Kyazma Wageningen. (http://www.kyazma.nl/index.php/mc.JoinMap/sc.Evaluate/). |
24 | Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138(3): 963-971. |
25 | Stuber C W, Edwards M D, Wendel J. F1 molecular marker facilitated investigations of quantitative trait loci in maize II. Factors influencing yield and its component traits. Crop Science, 1987, 27: 639-648. |
26 | McCouch S R, Cho Y G, Yano P E, et al. Report on QTL nomenclature. Rice Genet New Slett, 1997, 14: 11-13. |
27 | Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23(12): 1527-1536. |
28 | Tuberosa R, Salvi S, Sanguineti M C, et al. Mapping QTL regulating morpho-physiological traits and yields: Case studies, short comings and perspectives in drought-stress maize. Annals of Botany, 2002, 89(7): 941-963. |
29 | Ashbumer M. Gene ontology: Tool for the unifieation of biology. Nature Genet, 2000, 25(1): 25-29. |
30 | Kanehisa M, Goto S, Sato Y, et al. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res, 2014, 42: 199-205. |
31 | Guo S L, Zhang J, Qi J S, et al. Analysis of meta-quantitative trait loci and their candidate genes related to leaf shape in maize. Chinese Bulletin of Botany, 2018, 53(4): 487-501. |
郭书磊, 张君, 齐建双, 等. 玉米叶形相关性状的Meta-QTL及候选基因分析. 植物学报, 2018, 53(4): 487-501. | |
32 | Zhou D S, Zhao Y M, Yan M, et al. Analysis of genetic effect and genotype by environment of leaf area of different leaf position in maize. Chinese Agricultural Science Bulletin, 2008, 24(4): 195-198. |
周东升, 赵延明, 严敏, 等. 玉米不同叶位叶面积遗传效应及与环境互作效应分析. 中国农学通报, 2008, 24(4): 195-198. | |
33 | Ma J, Wang T G, Zhang H S, et al. Genetic analysis on three leaves area near the ear by mixed inheritance model of major genes and polygenes in maize. Journal of Henan Agricultural Sciences, 2012, 41(4): 25-28. |
马娟, 王铁固, 张怀胜, 等. 玉米穗三叶叶面积主基因+多基因遗传模型分析. 河南农业科学, 2012, 41(4): 25-28. | |
34 | Peng J, Cai Y L, Xu D L, et al. Genetic analysis of plant-type characters in maize (Zea mays L.) by using joint analysis of multiple generations. Journal of Biomathematics, 2009, 24(1): 149-156. |
彭静, 蔡一林, 徐德林, 等. 玉米株型性状多世代联合遗传分析. 生物数学学报, 2009, 24(1): 149-156. | |
35 | Si S L, Hao X J, Wei C, et al. The correlation and heterosis of plant-type traits in maize. Journal of Maize Sciences, 2009, 17(1): 51-53. |
司书丽, 郝学景, 魏春, 等. 玉米株型性状的亲子相关与杂种优势. 玉米科学, 2009, 17(1): 51-53. | |
36 | Xu C, Wang B, Mao K J, et al. QTL mapping for plant-type related traits using single segment substitution lines in maize. Journal of Maize Sciences, 2014, 22(2): 28-34. |
许诚, 王彬, 毛克举, 等. 利用单片段代换系群体定位玉米株型性状QTL. 玉米科学, 2014, 22(2): 28-34. | |
37 | Tang J H, Teng W T, Yan J. Genetic dissection of plant height by molecular by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007, 155: 117-124. |
38 | Zheng Z P, Huang Y B, Tian M L, et al. Mapping QTLs and epistasis for plant type traits in maize under two nitrogen levels. Journal of Maize Sciences, 2007, 15(2): 14-18. |
郑祖平, 黄玉碧, 田孟良, 等. 不同供氮水平下玉米株型相关性状的QTLs定位和上位性效应分析. 玉米科学, 2007, 15(2): 14-18. | |
39 | Pelleschi S, Leonardi A, Rocher J P, et al. Analysis of the relationships between growth, photosynthesis and carbohydrate metabolism using quantitative trait loci (QTLs) in young maize plants subjected to water deprivation. Molecular Breeding, 2006, 17: 21-39. |
40 | Voisin A S, Reidy B, Parent B, et al. Are ABA, ethylene or their interaction involved in the response of leaf growth to soil water deficit? An analysis using naturally occurring variation or genetic transformation of ABA production in maize. Plant Cell Environ, 2006, 29(9): 1829-1840. |
41 | Jia J P, Fu J J, Zheng J, et al. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Plant Journal, 2006, 48(5): 710-727. |
42 | Ramirez J, Bolduc N, Lisch D, et al. Distal expression of knotted in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection. Physiologia Plantarum, 2009, 151(4): 1878-1888. |
43 | Lunde C, Hake S. The interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize. 2009, 181(4): 1693-1697. |
44 | Singh D G, Lomako J, Lomako W M, et al. Beta-glucosylarginine: A new glucose-protein bond in a self-glucosylating protein from sweet corn. Febs Letters, 1995, 376(1): 61-64. |
45 | Zhao N, Zhao F, Li Y H. Advances in research on zinc finger protein. Letters in Biotechnology, 2009, 20(1): 131-134. |
赵楠, 赵飞, 李玉花. 锌指蛋白结构及功能研究进展. 生物技术通讯, 2009, 20(1): 131-134. | |
46 | Cleary A L, Smith L G. The tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. Plant Cell, 1998, 10(11): 1875-1888. |
47 | Smidansky E D, Meyer F D, Blakeslee B, et al. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta, 2007, 225(4): 965-976. |
48 | Xing W H, Li T, Qiao Q, et al. The QTL mapping for leaf area based on maize Ye478 introgression lines. Molecular Plant Breeding, 2019, 17(6): 1938-1943. |
邢文慧, 李彤, 乔巧, 等. 基于掖478导入系的玉米叶面积QTL定位. 分子植物育种, 2019, 17(6): 1938-1943. | |
49 | Zhao X Q. Genetic mechanisms study of drought tolerance related to plant architecture in maize (Zea mays L.). Lanzhou: Gansu Agricultural University, 2018. |
赵小强. 玉米株型相关耐旱遗传机理研究. 兰州: 甘肃农业大学, 2018. | |
50 | Li X T, Ding J Q, Wang R X, et al. QTL mapping of related traits of plant type in maize. Jiangsu Agricultural Sciences, 2011, 39(2): 21-25. |
李贤唐, 丁俊强, 王瑞霞, 等. 玉米株型相关性状的QTL定位与分析. 江苏农业科学, 2011, 39(2): 21-25. |
[1] | Zhen-feng ZANG, Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress [J]. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
[2] | Qiao-yu LUO, Yan-long WANG, Zhi CHEN, Yong-gui MA, Qi-mei REN, Yu-shou MA. Effect of water stress on proline accumulation and metabolic pathways in Deschampsia caespitosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 75-83. |
[3] | Yi-yao HOU, Xiao LI, Rui-cai LONG, Qing-chuan YANG, Jun-mei KANG, Chang-hong GUO. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis [J]. Acta Prataculturae Sinica, 2021, 30(4): 170-179. |
[4] | Zi-xin WANG, Guo-zheng HU, Hong-wei SHUI, Yi-qing GE, Ling HAN, Qing-zhu GAO, Ganjurjav HASBAGAN, Luo-bu DANJIU. Effect of seasonal timing of drought on carbon exchange in the alpine meadow ecosystem of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2021, 30(4): 24-33. |
[5] | Ning ZHANG, Yun-xin CAO, Wei XU, Zhi-hui CAHNG. Effects of biosolids on the growth and auxin metabolism of Poa pratensis under drought stress [J]. Acta Prataculturae Sinica, 2021, 30(3): 167-176. |
[6] | Kai-qiang LIU, Wen-hui LIU, Zhi-feng JIA, Guo-ling LIANG, Xiang MA. Effects of drought stress on yield and dry matter accumulation and distribution of Avena sativa cv. Qingyan No.1 [J]. Acta Prataculturae Sinica, 2021, 30(3): 177-188. |
[7] | Zhi-peng CHANG, Ying-ying SUN, Jia-yang LI, Chun-mei GONG. Cloning and transformation of the CkCAD gene in Caragana korshinskii and analysis of its drought resistance function [J]. Acta Prataculturae Sinica, 2021, 30(3): 68-80. |
[8] | Wen-rong LUO, Guo-zheng HU, Ganjurjav H, Qing-zhu GAO, Yan LI, Yi-qing Ge, Yu LI, Shi-cheng HE, Luo-bu DANJIU. Effects of simulated drought on plant phenology and productivity in an alpine meadow in Northern Tibet [J]. Acta Prataculturae Sinica, 2021, 30(2): 82-92. |
[9] | Hai-feng HE, Cheng-hong YAN, Na WU, Ji-li LIU, Yu-han JIA. Effects of different nitrogen levels on photosynthetic characteristics and drought resistance of switchgrass (Panicum virgatum) [J]. Acta Prataculturae Sinica, 2021, 30(1): 107-115. |
[10] | Dong LI, Hong-tao SHEN, Yan-fang WANG, Yue-hua WANG, Li-jun WANG, Shi-min ZHAO, Ling LIU. Effects of exogenous melatonin on photosynthetic carbon assimilation and endogenous hormones in tobacco seedlings under drought stress [J]. Acta Prataculturae Sinica, 2021, 30(1): 130-139. |
[11] | Zhen-song LI, Li-qiang WAN, Shuo LI, Xiang-lin LI. Response of alfalfa root architecture and physiological characteristics to drought and rehydration [J]. Acta Prataculturae Sinica, 2021, 30(1): 189-196. |
[12] | LU Jiao-yun, XIONG Jun-bo, ZHANG He-shan, TIAN Hong, YANG Hui-min, LIU Yang. Effects of water stress on yield, quality and trace element composition of alfalfa [J]. Acta Prataculturae Sinica, 2020, 29(8): 126-133. |
[13] | ZENG Ling-shuang, LI Pei-ying, SUN Xiao-fan, SUN Zong-jiu. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang province [J]. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
[14] | WANG Yan-cui, YU Wei-li, WANG Shu-kai, GE Chun-xia, ZHANG Guo-bin, CHEN Cui-xia. QTL analysis of tiller number in Miscanthus [J]. Acta Prataculturae Sinica, 2020, 29(7): 52-59. |
[15] | ZHANG Yu-jun, SHANG Yi-shun, WANG Pu-chang, DING Lei-lei, ZHANG Wen, ZOU Chao. Effects of super absorbent polymers on growth and physiological characteristics of Sophora davidii vs. Panjiang seedlings under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(7): 90-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||