Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (5): 26-39.DOI: 10.11686/cyxb2021120
Previous Articles Next Articles
Ya-ni WANG1,3(), Yi-gang HU1(), Zeng-ru WANG1, Yi-kang LI2, Zhen-hua ZHANG2, Hua-kun ZHOU2
Received:
2021-03-29
Revised:
2021-04-26
Online:
2022-05-20
Published:
2022-03-30
Contact:
Yi-gang HU
Ya-ni WANG, Yi-gang HU, Zeng-ru WANG, Yi-kang LI, Zhen-hua ZHANG, Hua-kun ZHOU. Impacts of desertification and artificial revegetation on soil bacterial communities in alpine grassland[J]. Acta Prataculturae Sinica, 2022, 31(5): 26-39.
指标Index | 天然草地NG | 沙化草地DG | 草本人工恢复草地AG | 灌木人工恢复草地AS |
---|---|---|---|---|
植被盖度PC (%) | 61. 67±2.42a | 0b | 59.00±1.63a | 54.95±2.05a |
植物物种丰富度PR (%) | 12.60±1.29a | 0c | 7.40±0.75b | 10.80±0.37a |
植物香农指数PS (%) | 2.41±0.14a | 0b | 1.90±0.18a | 2.28±0.04a |
植物地上生物量Abs (g·m-2) | 167.38±19.45a | 0b | 104.75±9.39a | 344.51±79.67a |
土壤水分SM (%) | 8.36±0.21a | 5.42±0.50b | 8.28±0.13a | 7.32±0.29a |
土壤容重BD (g·m-3) | 124.04±2.00c | 148.78±1.70a | 139.59±1.31b | 141.34±1.81b |
pH | 8.37±0.03b | 8.85±0.03a | 8.71±0.05a | 8.66±0.05a |
电导率EC (us·cm-1) | 161.20±3.31a | 113.42±3.03c | 132.92±1.71b | 136.32±1.78b |
土壤总有机碳TOC (%) | 0.77±0.06b | 0.37±0.03c | 0.74±0.02b | 0.97±0.03a |
土壤全氮TN (%) | 0.06±0.00a | 0.01±0.00b | 0.02±0.00b | 0.04±0.00a |
土壤全磷TP (g·kg-1) | 0.49±0.01a | 0.44±0.02b | 0.44±0.01b | 0.39±0.01c |
土壤有效磷AP (mg·kg-1) | 4.31±0.27b | 2.75±0.37b | 4.40±0.50b | 6.56±0.55a |
速效钾AK (mg·kg-1) | 251.00±3.32a | 173.20±6.54c | 183.20±7.37c | 224.80±7.30b |
硝态氮NO3--N (mg·kg-1) | 1.14±0.09a | 0.50±0.02c | 1.23±0.06a | 0.82±0.01b |
铵态氮NH4+-N (mg·kg-1) | 0.40±0.09b | 0.86±0.02a | 0.46±0.08b | 0.87±0.05a |
Table 1 Vegetation and soil physiochemical properties in different grasslands
指标Index | 天然草地NG | 沙化草地DG | 草本人工恢复草地AG | 灌木人工恢复草地AS |
---|---|---|---|---|
植被盖度PC (%) | 61. 67±2.42a | 0b | 59.00±1.63a | 54.95±2.05a |
植物物种丰富度PR (%) | 12.60±1.29a | 0c | 7.40±0.75b | 10.80±0.37a |
植物香农指数PS (%) | 2.41±0.14a | 0b | 1.90±0.18a | 2.28±0.04a |
植物地上生物量Abs (g·m-2) | 167.38±19.45a | 0b | 104.75±9.39a | 344.51±79.67a |
土壤水分SM (%) | 8.36±0.21a | 5.42±0.50b | 8.28±0.13a | 7.32±0.29a |
土壤容重BD (g·m-3) | 124.04±2.00c | 148.78±1.70a | 139.59±1.31b | 141.34±1.81b |
pH | 8.37±0.03b | 8.85±0.03a | 8.71±0.05a | 8.66±0.05a |
电导率EC (us·cm-1) | 161.20±3.31a | 113.42±3.03c | 132.92±1.71b | 136.32±1.78b |
土壤总有机碳TOC (%) | 0.77±0.06b | 0.37±0.03c | 0.74±0.02b | 0.97±0.03a |
土壤全氮TN (%) | 0.06±0.00a | 0.01±0.00b | 0.02±0.00b | 0.04±0.00a |
土壤全磷TP (g·kg-1) | 0.49±0.01a | 0.44±0.02b | 0.44±0.01b | 0.39±0.01c |
土壤有效磷AP (mg·kg-1) | 4.31±0.27b | 2.75±0.37b | 4.40±0.50b | 6.56±0.55a |
速效钾AK (mg·kg-1) | 251.00±3.32a | 173.20±6.54c | 183.20±7.37c | 224.80±7.30b |
硝态氮NO3--N (mg·kg-1) | 1.14±0.09a | 0.50±0.02c | 1.23±0.06a | 0.82±0.01b |
铵态氮NH4+-N (mg·kg-1) | 0.40±0.09b | 0.86±0.02a | 0.46±0.08b | 0.87±0.05a |
门类 Phylum | 相对丰度 Relative abundance (%) | P 值 P value | 退化比例 Degradation proportion (%) | 恢复比例 Recovery proportion (%) | ||||
---|---|---|---|---|---|---|---|---|
NG | DG | AG | AS | AG | AS | |||
放线菌门Actinobacteriota | 36.82ab | 37.92a | 34.62b | 35.85ab | 0.048 | 0.03 | -0.09 | -0.06 |
变形菌门Proteobacteria | 24.26b | 18.61c | 29.68a | 27.70ab | 0.009 | -0.23 | 0.46 | 0.37 |
绿弯菌门Chloroflexi | 12.64a | 11.05a | 11.41a | 11.70a | 0.381 | -0.13 | 0.03 | 0.05 |
酸杆菌门Acidobacteriota | 14.19a | 12.61a | 10.02a | 9.93a | 0.087 | -0.11 | -0.18 | -0.19 |
芽单胞菌门Gemmatimonadota | 2.61b | 8.71a | 3.14b | 2.86b | 0.017 | 2.34 | -2.13 | -2.24 |
拟杆菌门Bacteroidota | 2.81b | 2.63b | 4.45a | 4.92a | 0.009 | -0.06 | 0.65 | 0.81 |
厚壁菌门Firmicutes | 1.15a | 2.10a | 0.70a | 0.85a | 0.090 | 0.83 | -1.22 | -1.09 |
粘球菌门Myxococcota | 1.13a | 0.82b | 1.19a | 1.06ab | 0.060 | -0.27 | 0.32 | 0.21 |
浮霉菌门Planctomycetota | 1.03a | 0.28b | 0.72ab | 0.92a | 0.025 | -0.73 | 0.43 | 0.63 |
Table 2 Comparison of relative abundance of dominant bacterial phyla (>1%) in different grasslands
门类 Phylum | 相对丰度 Relative abundance (%) | P 值 P value | 退化比例 Degradation proportion (%) | 恢复比例 Recovery proportion (%) | ||||
---|---|---|---|---|---|---|---|---|
NG | DG | AG | AS | AG | AS | |||
放线菌门Actinobacteriota | 36.82ab | 37.92a | 34.62b | 35.85ab | 0.048 | 0.03 | -0.09 | -0.06 |
变形菌门Proteobacteria | 24.26b | 18.61c | 29.68a | 27.70ab | 0.009 | -0.23 | 0.46 | 0.37 |
绿弯菌门Chloroflexi | 12.64a | 11.05a | 11.41a | 11.70a | 0.381 | -0.13 | 0.03 | 0.05 |
酸杆菌门Acidobacteriota | 14.19a | 12.61a | 10.02a | 9.93a | 0.087 | -0.11 | -0.18 | -0.19 |
芽单胞菌门Gemmatimonadota | 2.61b | 8.71a | 3.14b | 2.86b | 0.017 | 2.34 | -2.13 | -2.24 |
拟杆菌门Bacteroidota | 2.81b | 2.63b | 4.45a | 4.92a | 0.009 | -0.06 | 0.65 | 0.81 |
厚壁菌门Firmicutes | 1.15a | 2.10a | 0.70a | 0.85a | 0.090 | 0.83 | -1.22 | -1.09 |
粘球菌门Myxococcota | 1.13a | 0.82b | 1.19a | 1.06ab | 0.060 | -0.27 | 0.32 | 0.21 |
浮霉菌门Planctomycetota | 1.03a | 0.28b | 0.72ab | 0.92a | 0.025 | -0.73 | 0.43 | 0.63 |
项目 Item | 植被盖度PC | 植物物种丰富度PR | 植物香农指数PS | 植物地上生物量Abs | 土壤水分SM | 土壤容重BD | pH | 电导率EC | 土壤总有机碳TOC | 土壤全氮TN | 土壤全磷TP | 土壤有效磷AP | 速效钾AK | 硝态氮NO3--N | 铵态氮NH4+-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | 0.85** | 0.84** | 0.85** | 0.75** | 0.61** | 0.40** | 0.25* | 0.57** | 0.73** | 0.34** | 0.05 | 0.37** | 0.31** | 0.69** | 0.02 |
P | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.008 | 0.025 | 0.001 | 0.001 | 0.001 | 0.610 | 0.003 | 0.004 | 0.001 | 0.879 |
Table 3 Mantel tests of correlations between soil bacterial community structure and vegetation, and soil properties
项目 Item | 植被盖度PC | 植物物种丰富度PR | 植物香农指数PS | 植物地上生物量Abs | 土壤水分SM | 土壤容重BD | pH | 电导率EC | 土壤总有机碳TOC | 土壤全氮TN | 土壤全磷TP | 土壤有效磷AP | 速效钾AK | 硝态氮NO3--N | 铵态氮NH4+-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | 0.85** | 0.84** | 0.85** | 0.75** | 0.61** | 0.40** | 0.25* | 0.57** | 0.73** | 0.34** | 0.05 | 0.37** | 0.31** | 0.69** | 0.02 |
P | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.008 | 0.025 | 0.001 | 0.001 | 0.001 | 0.610 | 0.003 | 0.004 | 0.001 | 0.879 |
1 | Sun H L, Zheng D, Yao T D, et al. Protection and construction of the national ecological security shelter zone on Tibetan plateau. Chinese Journal of Geography, 2012, 67(1): 3-12. |
孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设. 地理学报, 2012, 67(1): 3-12. | |
2 | Chen N, Zhang Y J, Zhu J T, et al. Nonlinear responses of productivity and diversity of alpine meadow communities to degradation. Journal of Plant Ecology, 2018, 42(1): 50-65. |
陈宁, 张扬建, 朱军涛, 等. 高寒草甸退化过程中群落生产力和物种多样性的非线性响应机制研究. 植物生态学报, 2018, 42(1): 50-65. | |
3 | Zheng H P, Chen Z X, Niu J Y, et al. Effects of interseeding on plant diversity and productivity in Maqu alpine desertified meadow. Acta Prataculturae Sinica, 2009, 18(3): 28-33. |
郑华平, 陈子萱, 牛俊义, 等. 补播禾草对玛曲高寒沙化草地植物多样性和生产力的影响. 草业学报, 2009, 18(3): 28-33. | |
4 | Li X Y, Dong S K, Zhu L, et al. Net carbon dioxide exchange of plant communities on degraded and restored alpine grasslands in headwater area of Three Rivers in China. Chinese Journal of Ecology, 2010, 29(10): 1944-1949. |
李小艳, 董世魁, 朱磊, 等. 三江源区高寒草地退化与恢复过程中二氧化碳净交换特征. 生态学杂志, 2010, 29(10): 1944-1949. | |
5 | Zhang H, Song X, Wang C, et al. The effects of different vegetation restoration patterns on soil bacterial diversity for sandy land in Hulunbeier. Acta Ecologica Sinica, 2013, 33(4): 211-216. |
6 | He Y L, Zhou H K, Zhao X Q, et al. Alpine grassland degradation and its restoration on Qinghai-Tibet Plateau. Journal of Grassland and Forage Science, 2008(11): 1-9. |
贺有龙, 周华坤, 赵新全, 等. 青藏高原高寒草地的退化及其恢复. 草业与畜牧, 2008(11): 1-9. | |
7 | Li L, He H D, Wei Y X, et al. Response of vegetation community structure, soil carbon sequestration, and water-holding capacity in the agro-pastoral transitional zone in the Three Rivers Source Region. Prataculturae Science, 2017, 34(10): 1999-2008. |
李令, 贺慧丹, 未亚西, 等. 三江源农牧交错区植被群落及土壤固碳持水能力对退耕还草措施的响应. 草业科学, 2017, 34(10): 1999-2008. | |
8 | Hou X K. Research on variation characteristics of soil and vegetation in different types of alpine artificial grassland. Xining: Qinghai University, 2015. |
侯宪宽. 不同类型高寒人工草地土壤和植被变化特征研究. 西宁: 青海大学, 2015. | |
9 | Yan M Y. Experiment of annual artificial grassland mixture sowing in ecological immigrant community in three river resource region. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2010, 40(5): 9-10. |
阎明毅. 三江源生态移民社区一年生人工草地混播试验. 青海畜牧兽医杂志, 2010, 40(5): 9-10. | |
10 | Wang C T, Cao G M, Wang Q L, et al. Characteristics of artificial grassland plant communities with different establishment duration and their relationships with soil properties in the source region of Three Rivers in China. Chinese Journal of Applied Ecology, 2007(11): 2426-2431. |
王长庭, 曹广民, 王启兰, 等. 三江源地区不同建植期人工草地植被特征及其与土壤特征的关系. 应用生态学报, 2007(11): 2426-2431. | |
11 | Ren H, Peng S L. Introduction to restoration ecology. Beijing: Science Press, 2008. |
任海, 彭少麟. 恢复生态学导论. 北京: 科学出版社, 2008. | |
12 | Millard P, Singh B K. Does grassland vegetation drive soil microbial diversity? Nutrient Cycling in Agroecosystems, 2010, 88(2): 147-158. |
13 | Anderson C R, Condron L M, Clough T J, et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 2011, 54(5/6): 309-320. |
14 | He F L, Jin H X, Wang S M, et al. Effect of desertification on soil microbial biomass and enzyme activities in Maqu alpine meadow. Acta Ecologica Sinica, 2016, 36(18): 5876-5883. |
何芳兰, 金红喜, 王锁民, 等. 沙化对玛曲高寒草甸土壤微生物数量及土壤酶活性的影响. 生态学报, 2016, 36(18): 5876-5883. | |
15 | Zhang X F, Zhao L, Xu S J, et al. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. Journal of Applied Microbiology, 2013, 114(4): 1054-1065. |
16 | Rousk J, Bååth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4(10): 1340-1351. |
17 | Zhu P, Chen R S, Song Y X, et al. Soil bacterial community composition and diversity of four representative vegetation types in the middle section of the Qilian Mountains, China. Acta Ecologica Sinica, 2017, 37(10): 3505-3514. |
朱平, 陈仁升, 宋耀选, 等. 祁连山中部4种典型植被类型土壤细菌群落结构差异. 生态学报, 2017, 37(10): 3505-3514. | |
18 | Zou L N, Zhou Z Y, Yan S Y, et al. Response of soil nutrients to different land utilization types in alpine meadow in Maqu. Chinese Journal of Grassland, 2009, 31(6): 80-87. |
邹丽娜, 周志宇, 颜淑云, 等. 玛曲高寒草地土壤养分对不同利用方式的响应. 中国草地学报, 2009, 31(6): 80-87. | |
19 | Han H T, Zhu X N. Climate change and human activities of Maqu area and its impact on eco-environment. Journal of Desert Research, 2007(4): 608-613. |
韩海涛, 祝小妮. 气候变化与人类活动对玛曲地区生态环境的影响. 中国沙漠, 2007(4): 608-613. | |
20 | Fu B, Qi Y B, Chang Q R. Effect of different revegetation management methods on the soil and vegetation characteristics of degraded sandy grassland. Acta Agrestia Sinica, 2015, 23(1): 47-54. |
付标, 齐雁冰, 常庆瑞. 不同植被重建管理方式对沙质草地土壤及植被性质的影响. 草地学报, 2015, 23(1): 47-54. | |
21 | Olsen S R, Sommers L E. Methods of soil analysis. Madison: Amer Society of Agronomy, 1982: 403-430. |
22 | Lu R K. Analysis method of soil agricultural chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
23 | Jones D L, Willett V B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 2006, 38: 991-999. |
24 | Li C C, Zhou Y X, Gu Q, et al. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grass. Acta Prataculturae Sinica, 2021, 30(1): 46-58. |
李聪聪, 周亚星, 谷强, 等. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制. 草业学报, 2021, 30(1): 46-58. | |
25 | Wang Y, Sheng H F, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Applied & Environmental Microbiology, 2012, 78(23): 8264-8271. |
26 | Mganga K Z, Razavi B S, Kuzyakov Y. Land use affects soil biochemical properties in Mt. Kilimanjaro region. Catena, 2016, 141: 22-29. |
27 | Li H Y, Yao T, Zhang J G, et al. Relationship between soil bacterial community and environmental factors in the degraded alpine grassland of eastern Qilian Mountains, China. Chinese Journal of Applied Ecology, 2018, 29(11): 3793-3801. |
李海云, 姚拓, 张建贵, 等. 东祁连山退化高寒草地土壤细菌群落与土壤环境因子间的相互关系. 应用生态学报, 2018, 29(11): 3793-3801. | |
28 | Prakash T M, Alexandru M, Pete M, et al. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology, 2015, 21(11): 4076-4085. |
29 | Luo Z, Liu J, Jia T, et al. The Response of soil bacterial communities and nitrogen cycling to subalpine meadow degradation on the Loess Plateau, China. Applied and Environmental Microbiology, 2020, 86(9): 1-18. |
30 | Liu M L, Li X R, Zhu R Q, et al. Vegetation richness, species identity, and soil nutrients drive the shifts in soil bacterial communities during restoration process. Environmental Microbiology Reports, 2021,13(4): 411-424. |
31 | Wang X P, Yang X, Yang N, et al. Effects of litter diversity and composition on litter decomposition characteristics and soil microbial community. Acta Ecologica Sinica, 2019, 39(17): 6264-6272. |
王小平, 杨雪, 杨楠, 等. 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响. 生态学报, 2019, 39(17): 6264-6272. | |
32 | Fierer N, Jackson R B. From the cover: The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626-631. |
33 | Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 2011, 6(2): e17000. |
34 | Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. |
35 | Kaiser K, Wemheuer B, Korolkow V, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Scientific Reports, 2016, 6(1): 1-12. |
36 | Shang Z H, Ding L L, Long R J, et al. Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2007(1): 34-40. |
尚占环, 丁玲玲, 龙瑞军, 等. 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系. 草业学报, 2007(1): 34-40. | |
37 | Yang Y R, Lee S H, Jang I, et al. Soil bacterial community structures across biomes in artificial ecosystems. Ecological Engineering, 2020, 158: 1-8. |
38 | Bickel S, Or D. Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nature Communications, 2020, 11(1): 1-9. |
39 | Zhou H, Zhang D G, Jiang Z H, et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Science of the Total Environment, 2019, 651(2): 2281-2291. |
40 | Barnard R L, Osborne C A, Firestone M K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 2013, 7(11): 2229-2241. |
41 | Clark J S, Campbell J H, Grizzle H, et al. Soil microbial community response to drought and precipitation variability in the Chihuahuan desert. Microbial Ecology, 2009, 57(2): 248-260. |
42 | Debruyn J M, Nixon L T, Fawaz M N, et al. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied and Environmental Microbiology, 2011, 77(17): 6295-6300. |
43 | Yang N, Zou D S, Yang M Y, et al. Variations of soil microbial community diversity in purple soils at different re-vegetation stages on sloping-land in Hengyang, Hunan Province. Scientia Silvae Sinicae, 2016, 52(8): 146-156. |
杨宁, 邹冬生, 杨满元, 等. 衡阳紫色土丘陵坡地不同植被恢复阶段土壤微生物群落多样性的变化. 林业科学, 2016, 52(8): 146-156. | |
44 | Kuzyakov Y. Priming effects: Interactions between living and dead organic matter. Soil Biology & Biochemistry, 2010, 42(9): 1363-1371. |
45 | Prober S M, Leff J W, Bates S T, et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18(1): 85-95. |
46 | Stursova M, Zifcakova L, Leigh M B, et al. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiology Ecology, 2012, 80(3): 735-746. |
47 | Zhang P, Li X R, Jia R L, et al. Nitrogenase activity of biological soil crusts and its response to hydrothermic factors in the Shapotou region of Northern China. Chinese Journal of Plant Ecology, 2011, 35(9): 906-913. |
张鹏, 李新荣, 贾荣亮, 等. 沙坡头地区生物土壤结皮的固氮活性及其对水热因子的响应. 植物生态学报, 2011, 35(9): 906-913. | |
48 | Yang D, Fan D Y, Xie Z Q, et al. Research progress on the mechanisms and influence factors of nitrogen retention and transformation in riparian ecosystems. Chinese Journal of Applied Ecology, 2016, 27(3): 973-980. |
杨丹, 樊大勇, 谢宗强, 等. 消落带生态系统氮素截留转化的主要机制及影响因素. 应用生态学报, 2016, 27(3): 973-980. | |
49 | Dassen S, Cortois R, Martens H, et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Molecular Ecology, 2017, 26(15): 4085-4098. |
50 | De D G B, Cornelissen J H C, Bardgett R D, et al. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 2008, 11(5): 516-531. |
51 | Vries F T, Manning P, Tallowin J R B, et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters, 2012, 15(11): 1230-1239. |
52 | Rasche F, Knapp D, Kaiser C, et al. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. The ISME Journal, 2010, 5(3): 389-402. |
53 | Klimek B, Chodak M, Jaźwa M, et al. The relationship between soil bacteria substrate utilisation patterns and the vegetation structure in temperate forests. European Journal of Forest Research, 2016, 135(1): 179-189. |
[1] | Lei ZHOU, Xue WEI, Chang-ting WANG, Peng-fei WU. Differences in soil microarthropod community structure in alpine grasslands with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2022, 31(3): 34-46. |
[2] | Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
[3] | Ting-mei WU, Hui-long LIN, Di FAN, Chang-ting JI, Yu-ting ZHAO, Jing-qiong WEI. Factors influencing the scale of herdsmen’s livestock farming in tundra alpine grassland-A case study from Qinghai Province [J]. Acta Prataculturae Sinica, 2021, 30(9): 117-126. |
[4] | Jia-li LIU, Jian-rong FAN, Xi-yu ZHANG, Chao YANG, Fu-bao XU, Xiao-xue ZHANG, Bo LIANG. Remote sensing estimation of vegetation cover in alpine grassland in the growing and non-growing seasons [J]. Acta Prataculturae Sinica, 2021, 30(9): 15-26. |
[5] | Mei-ling SONG, Yu-qin WANG, Hong-sheng WANG, Gen-sheng Bao. Effect of Epichloë endophyte on the litter decomposition of Stipa purpurea in alpine grassland [J]. Acta Prataculturae Sinica, 2021, 30(9): 150-158. |
[6] | Wen ZHAO, Ya-li YIN, Shi-xiong LI, Yan LIU, Jing-jing LIU, Yi-ling DONG, Shi-feng SU, Ling-he JI. The characteristics of bacterial communities in different vegetation types in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2021, 30(12): 161-171. |
[7] | Ming-ming SHI, Xiao-min WANG, Qi CHEN, Bing-hong HAN, Bing-rong ZHOU, Jian-she XIAO, Hong-bin XIAO. Responses of soil moisture to precipitation and infiltration in dry and wet alpine grassland ecosystems [J]. Acta Prataculturae Sinica, 2021, 30(12): 49-58. |
[8] | Cong-cong LI, Ya-xing ZHOU, Qiang GU, Ming-xin YANG, Chuan-lu ZHU, Zi-yuan PENG, Kai XUE, Xin-quan ZHAO, Yan-fen WANG, Bao-ming JI, Jing ZHANG. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grassland in Sanjiangyuan region [J]. Acta Prataculturae Sinica, 2021, 30(1): 46-58. |
[9] | CHEN Hong, MA Wen-ming, ZHOU Qing-ping, YANG Zhi, LIU Chao-wen, LIU Jin-qiu, DU Zhong-man. Shrub encroachment effects on the stability of soil aggregates and the differentiation of Fe and Al oxides in Qinghai-Tibet alpine grassland [J]. Acta Prataculturae Sinica, 2020, 29(9): 73-84. |
[10] | LUO Nan, SHU Ying-ge, CHEN Meng-jun, XIAO Sheng-yang. Soil structure and fractal characteristics of different land categories in a karst rocky desertification area [J]. Acta Prataculturae Sinica, 2020, 29(7): 11-22. |
[11] | WEI Peng, AN Sha-zhou, DONG Yi-qiang, SUN Zong-jiu, Bieerdawulieti·Xihayi, LI Chao. A high-throughput sequencing evaluation of bacterial diversity and community structure of the desert soil in the Junggar Basin [J]. Acta Prataculturae Sinica, 2020, 29(5): 182-190. |
[12] | MA Xiao-jing, GUO Yan-ju, ZHANG Jia-yu, XU Ai-yun, LIU Jin-long, XU Dong-mei. Size distribution of soil aggregates in different grassland desertification categories in Yanchi County, Ningxia [J]. Acta Prataculturae Sinica, 2020, 29(3): 27-37. |
[13] | SONG Mei-ling, WANG Yu-qin, BAO Gen-sheng, WANG Hong-sheng. Effect of Stellera chamaejasme removal on the nutrient resorption of plants in an alpine grassland community [J]. Acta Prataculturae Sinica, 2020, 29(10): 47-57. |
[14] | GAO Ya-min, LUO Hui-qin, YAO Tuo, ZHANG Jian-gui, LI Hai-yun, YANG Yan-shan, LAN Xiao-jun. Isolation, identification and growth promotion of arbuscular mycorrhizal fungi (AMF) from Potentilla chinensis in degraded alpine grassland in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2020, 29(1): 145-154. |
[15] | LI Zheng-yan, XU Zhi-ming, SHI Shang-li, HE Chun-gui. Effects of different crop rotations on alfalfa yield and soil quality in the Jiang-huai area [J]. Acta Prataculturae Sinica, 2019, 28(8): 28-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||