Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (2): 119-130.DOI: 10.11686/cyxb2022044
Jian-xin LIU(), Rui-rui LIU, Xiu-li LIU, Xiao-bin OU, Hai-yan JIA, Ting BU, Na LI
Received:
2022-01-22
Revised:
2022-03-09
Online:
2023-02-20
Published:
2022-12-01
Contact:
Jian-xin LIU
Jian-xin LIU, Rui-rui LIU, Xiu-li LIU, Xiao-bin OU, Hai-yan JIA, Ting BU, Na LI. Effects of exogenous hydrogen sulfide on amino acid metabolism in naked oat leaves under saline-alkali stress[J]. Acta Prataculturae Sinica, 2023, 32(2): 119-130.
氨基酸 Amino acid | CK | SA | SA+NaHS | NaHS | |||
---|---|---|---|---|---|---|---|
置信区间 Confidence interval (μg·g-1 FW) | 置信区间 Confidence interval (μg·g-1 FW) | 差异倍数 Log2FC | 置信区间 Confidence interval (μg·g-1 FW) | 差异倍数 Log2FC | 置信区间 Confidence interval (μg·g-1 FW) | 差异倍数 Log2FC | |
Gly | 32.858~39.705 | 17.389~24.236 | -0.802 | 20.351~27.198 | 0.192 | 23.493~30.340 | -0.431 |
Ala | 330.409~389.297 | 230.053~288.941 | -0.472 | 219.962~278.850 | -0.057 | 329.797~388.685 | -0.002 |
GABA | 499.214~565.512 | 398.812~465.110 | -0.302 | 409.664~475.962 | 0.036 | 541.339~607.637 | 0.110 |
Ser | 116.555~139.956 | 66.621~90.022 | -0.712 | 65.348~88.749 | -0.024 | 127.607~151.008 | 0.119 |
Pro | 38.321~44.476 | 30.165~36.319 | -0.317 | 33.173~39.328 | 0.125 | 35.335~41.490 | -0.108 |
Val | 115.921~131.910 | 89.601~105.590 | -0.344 | 86.784~102.773 | -0.042 | 103.425~119.414 | -0.153 |
Thr | 133.017~145.292 | 91.378~103.653 | -0.513 | 86.568~98.842 | -0.073 | 115.345~127.619 | -0.196 |
Ile | 83.684~93.354 | 68.262~77.932 | -0.276 | 70.137~79.807 | 0.037 | 73.122~82.792 | -0.183 |
Leu | 209.488~238.520 | 187.562~216.594 | -0.149 | 204.842~233.873 | 0.118 | 195.379~224.411 | -0.094 |
Asn | 47.533~62.169 | 24.772~39.408 | -0.773 | 10.285~24.921 | -0.866 | 30.160~44.796 | -0.549 |
Orn | 1.208~1.487 | 1.285~1.565 | 0.081 | 0.303~0.582 | -1.687 | 0.559~0.838 | -0.948 |
Asp | 115.014~138.558 | 113.078~136.621 | -0.022 | 102.951~126.495 | -0.122 | 133.492~157.036 | 0.196 |
Hcy | ND | ND | ND | ND | ND | ND | ND |
Gln | 495.752~561.061 | 463.632~528.940 | -0.090 | 526.960~592.268 | 0.173 | 445.254~510.562 | -0.145 |
Lys | 514.520~588.630 | 473.475~547.585 | -0.112 | 518.119~592.229 | 0.121 | 494.387~568.497 | -0.054 |
Glu | 11.005~12.342 | 2.031~3.367 | -2.113 | 2.647~3.984 | 0.297 | 1.094~2.431 | -2.728 |
Met | 69.670~81.173 | 66.807~78.310 | -0.056 | 70.161~81.663 | 0.065 | 68.094~79.597 | -0.030 |
His | 19.891~23.804 | 17.354~21.266 | -0.178 | 17.304~21.217 | -0.004 | 20.035~23.948 | 0.009 |
Phe | 140.783~163.773 | 132.287~155.277 | -0.083 | 140.298~163.288 | 0.078 | 144.945~167.935 | 0.039 |
Arg | 28.871~54.286 | 81.632~107.047 | 1.182 | 102.889~128.304 | 0.293 | 52.335~77.750 | 0.646 |
Tyr | 117.855~135.378 | 95.177~112.700 | -0.285 | 107.457~124.980 | 0.161 | 110.622~128.144 | -0.085 |
Trp | 36.264~44.057 | 31.483~39.277 | -0.183 | 33.592~41.386 | 0.084 | 37.702~45.496 | 0.051 |
Table 1 Confidence interval and fold change (FC) for the content of individual amino acids in naked oat leaves under different treatments
氨基酸 Amino acid | CK | SA | SA+NaHS | NaHS | |||
---|---|---|---|---|---|---|---|
置信区间 Confidence interval (μg·g-1 FW) | 置信区间 Confidence interval (μg·g-1 FW) | 差异倍数 Log2FC | 置信区间 Confidence interval (μg·g-1 FW) | 差异倍数 Log2FC | 置信区间 Confidence interval (μg·g-1 FW) | 差异倍数 Log2FC | |
Gly | 32.858~39.705 | 17.389~24.236 | -0.802 | 20.351~27.198 | 0.192 | 23.493~30.340 | -0.431 |
Ala | 330.409~389.297 | 230.053~288.941 | -0.472 | 219.962~278.850 | -0.057 | 329.797~388.685 | -0.002 |
GABA | 499.214~565.512 | 398.812~465.110 | -0.302 | 409.664~475.962 | 0.036 | 541.339~607.637 | 0.110 |
Ser | 116.555~139.956 | 66.621~90.022 | -0.712 | 65.348~88.749 | -0.024 | 127.607~151.008 | 0.119 |
Pro | 38.321~44.476 | 30.165~36.319 | -0.317 | 33.173~39.328 | 0.125 | 35.335~41.490 | -0.108 |
Val | 115.921~131.910 | 89.601~105.590 | -0.344 | 86.784~102.773 | -0.042 | 103.425~119.414 | -0.153 |
Thr | 133.017~145.292 | 91.378~103.653 | -0.513 | 86.568~98.842 | -0.073 | 115.345~127.619 | -0.196 |
Ile | 83.684~93.354 | 68.262~77.932 | -0.276 | 70.137~79.807 | 0.037 | 73.122~82.792 | -0.183 |
Leu | 209.488~238.520 | 187.562~216.594 | -0.149 | 204.842~233.873 | 0.118 | 195.379~224.411 | -0.094 |
Asn | 47.533~62.169 | 24.772~39.408 | -0.773 | 10.285~24.921 | -0.866 | 30.160~44.796 | -0.549 |
Orn | 1.208~1.487 | 1.285~1.565 | 0.081 | 0.303~0.582 | -1.687 | 0.559~0.838 | -0.948 |
Asp | 115.014~138.558 | 113.078~136.621 | -0.022 | 102.951~126.495 | -0.122 | 133.492~157.036 | 0.196 |
Hcy | ND | ND | ND | ND | ND | ND | ND |
Gln | 495.752~561.061 | 463.632~528.940 | -0.090 | 526.960~592.268 | 0.173 | 445.254~510.562 | -0.145 |
Lys | 514.520~588.630 | 473.475~547.585 | -0.112 | 518.119~592.229 | 0.121 | 494.387~568.497 | -0.054 |
Glu | 11.005~12.342 | 2.031~3.367 | -2.113 | 2.647~3.984 | 0.297 | 1.094~2.431 | -2.728 |
Met | 69.670~81.173 | 66.807~78.310 | -0.056 | 70.161~81.663 | 0.065 | 68.094~79.597 | -0.030 |
His | 19.891~23.804 | 17.354~21.266 | -0.178 | 17.304~21.217 | -0.004 | 20.035~23.948 | 0.009 |
Phe | 140.783~163.773 | 132.287~155.277 | -0.083 | 140.298~163.288 | 0.078 | 144.945~167.935 | 0.039 |
Arg | 28.871~54.286 | 81.632~107.047 | 1.182 | 102.889~128.304 | 0.293 | 52.335~77.750 | 0.646 |
Tyr | 117.855~135.378 | 95.177~112.700 | -0.285 | 107.457~124.980 | 0.161 | 110.622~128.144 | -0.085 |
Trp | 36.264~44.057 | 31.483~39.277 | -0.183 | 33.592~41.386 | 0.084 | 37.702~45.496 | 0.051 |
Fig.2 Effects of exogenous hydrogen sulfide on the content of individual amino acids in the 3-phosphoglycerate, α-ketoglutarate, pyruvate, aromatic, and oxaloacetate pathways in naked oat leaves under saline-alkali stress
Fig.3 Principal component analysis scores plot (A), loading plot (B), and biplot (C) of amino acid content in naked oat leaves under different treatments
Fig.7 Exogenous hydrogen sulfide regulates amino acid metabolism pathways in naked oat leaves under saline-alkali stress obtained from OPLS-DA analysis
1 | Zhang Y, Shi Y, Hu X H, et al. Effects of exogenous spermidine on the nitrogen metabolism and main mineral elements contents of tomato seedlings under saline-alkali stress. Chinese Journal of Applied Ecology, 2013, 24(5): 1401-1408. |
张毅, 石玉, 胡晓辉, 等. 外源Spd对盐碱胁迫下番茄幼苗氮代谢及主要矿质元素含量的影响. 应用生态学报, 2013, 24(5): 1401-1408. | |
2 | Fu Y S, Cui J Z, Chen G D, et al. Expression of Na+/H+ antiporter gene KsNHX1 in Kochia sieversiana under saline-alkali stress. Chinese Journal of Applied Ecology, 2012, 23(6): 1629-1634. |
付寅生, 崔继哲, 陈广东, 等. 盐碱胁迫下碱地肤Na+/H+逆向转运蛋白基因KsNHX1表达分析. 应用生态学报, 2012, 23(6): 1629-1634. | |
3 | Yan Y Q, Wang W J, Zhu H, et al. Effects of salt alkali stress on osmoregulation substance and active oxygen metabolism of Qingshan poplar (Populus pseudo cathayana×P. deltoides). Chinese Journal of Applied Ecology, 2009, 20(9): 2085-2091. |
闫永庆, 王文杰, 朱虹, 等. 混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响. 应用生态学报, 2009, 20(9): 2085-2091. | |
4 | Liu J X, Liu R R, Jia H Y, et al. Regulation of exogenous hydrogen sulfide on osmotic stress in leaves of naked oat seedlings under saline alkali mixed stress. Chinese Journal of Ecology, 2020, 39(12): 3989-3997. |
刘建新, 刘瑞瑞, 贾海燕, 等. 外源H2S对盐碱胁迫下裸燕麦幼苗叶片渗透胁迫的调节作用. 生态学杂志, 2020, 39(12): 3989-3997. | |
5 | Liu J X, Wang J C, Liu X L, et al. Effect of exogenous H2O2 on proline accumulation and metabolic pathway in leaves of oat seedlings under complex saline alkali stress. Bulletin of Botanical Research, 2016, 36(3): 427-433. |
刘建新, 王金成, 刘秀丽, 等. 外源H2O2对混合盐碱胁迫下燕麦幼苗叶片脯氨酸积累和代谢途径的影响. 植物研究, 2016, 36(3): 427-433. | |
6 | Kumar S G, Reddy A M, Sudhakar C. NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. Plant Science, 2003, 165(6): 1245-1251. |
7 | Yan H, Peng X B, Xue J J. Effects of NaCl stress on leaf photosynthesis characteristics and free amino acid metabolism of Heyedysarum scoparium. Chinese Journal of Applied Ecology, 2012, 23(7): 1790-1796. |
燕辉, 彭晓邦, 薛建杰. NaCl胁迫对花棒叶片光合特性及游离氨基酸代谢的影响. 应用生态学报, 2012, 23(7): 1790-1796. | |
8 | Rai V K. Role of amino acids in plant responses to stresses. Biologia Plantarum, 2002, 45(4): 481-487. |
9 | Yang Z Y, Zhao L Y, Xu Z D. Impacts of salt stress on the growth and physiological characteristics of Rosa rugosa. Chinese Journal of Applied Ecology, 2011, 22(8): 1993-1998. |
杨志莹, 赵兰勇, 徐宗大. 盐胁迫对玫瑰生长和生理特性的影响. 应用生态学报, 2011, 22(8): 1993-1998. | |
10 | Wu Z H, Yang C W, Yang M Y. Photosynthesis, photosystem Ⅱ efficiency, amino acid metabolism and ion distribution in rice (Oryza sativa L.) in response to alkaline stress. Photosynthetica, 2014, 52(1): 157-160. |
11 | Aidoo M K, Quansah L, Galkin E, et al. A combination of stomata deregulation and a distinctive modulation of amino acid metabolism are associated with enhanced tolerance of wheat varieties to transient drought. Metabolomics, 2017, 13: 138-150. |
12 | Jin Z P, Pei Y X. Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. Oxidative Medicine and Cellular Longevity, 2015, 2015: 1-6. |
13 | Mostofa M G, Saegusa D, Fujita M, et al. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Frontiers in Plant Science, 2015, 6: 1055-1068. |
14 | Chen J, Wang W H, Wu F H, et al. Hydrogen sulfide enhances salt tolerance through nitric oxide mediated maintenance of ion homeostasis in barley seedling roots. Scientific Reports, 2015, 5: 12516-12534. |
15 | Huang H, Guo S S, Chen L C, et al. Effects of exogenous hydrogen sulfide on the antioxidant characteristics of tea plant (Camellia sinensis) under salt stress.Plant Physiology Journal, 2017, 53(3): 497-504. |
黄菡, 郭莎莎, 陈良超, 等. 外源硫化氢对盐胁迫下茶树抗氧化特性的影响. 植物生理学报, 2017, 53(3): 497-504. | |
16 | Shan C, Liu H, Zhao L, et al. Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress. Biologia Plantarum, 2013, 58(1): 169-173. |
17 | Liu J X, Liu R R, Jia H Y, et al. Effects of exogenous hydrogensulfide on growth and physiological characteristics of naked oat seedlings under saline alkali mixed stress. Journal of Triticeae Crops, 2021, 41(2): 245-253. |
刘建新, 刘瑞瑞, 贾海燕, 等. 外源H2S对盐碱胁迫下裸燕麦幼苗生长和生理特性的影响. 麦类作物学报, 2021, 41(2): 245-253. | |
18 | Liu J X, Liu R R, Jia H Y, et al. Effects of spraying NaHS at different growth stages on osmotic adjustment substance and antioxidant activity in leaves of naked oat under saline alkali stress. Chinese Journal of Ecology, 2021, 40(11): 3620-3632. |
刘建新, 刘瑞瑞, 贾海燕, 等. 不同时期喷施NaHS对盐碱胁迫下裸燕麦叶片渗透调节物质和抗氧化活性的影响. 生态学杂志, 2021, 40(11): 3620-3632. | |
19 | Zheng D S, Zhang Z W. Discussion on the origin and taxonomy of naked oat (Avena nuda L.). Journal of Plant Genetic Resources, 2011, 12(5): 667-670. |
郑殿升, 张宗文. 大粒裸燕麦(莜麦) (Avena nuda L.)起源及分类问题的探讨. 植物遗传资源学报, 2011, 12(5): 667-670. | |
20 | Micek P, Kulig B, Woźnica P, et al. The nutritive value for ruminants of faba bean (Vicia faba) seeds and naked oat (Avena nuda) grain cultivated in an organic farming system. Journal of Animal Science, 2012, 21: 773-786. |
21 | Li H S. Principles and techniques of plant physiological biochemical experiment. Beijing: Higher Education Press, 2000: 192-194, 260-261. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 192-194, 260-261. | |
22 | Ben B B, Xu W H, Zou D Y, et al. Study on metabonomics of wheat grain under different fertilization conditions.Journal of Triticeae Crops, 2021, 41(2): 212-219. |
贲蓓倍, 徐维红, 邹德玉, 等. 不同施肥条件下的小麦籽粒代谢组学研究. 麦类作物学报, 2021, 41(2): 212-219. | |
23 | Hartzendorf T, Rolletschek H. Effects of NaCl salinity on amino acid and carbohydrate contents of Phragmites australis. Aquatic Botany, 2001, 69: 195-208. |
24 | Guo R, Zhou J, Yang F, et al. Effects of alkaline stress on metabonomic responses of wheat (Triticum aestivum Linn) leaves. Scientia Agricultura Sinica, 2017, 50(2): 250-259. |
郭瑞, 周际, 杨帆, 等. 碱胁迫对小麦(Triticum aestivum Linn)叶片代谢过程的影响. 中国农业科学, 2017, 50(2): 250-259. | |
25 | Deng R L, Xu H R, Cao Y F, et al. The molecular basis of ammonium transporters in plants. Plant Nutrition and Fertilizer Science, 2007, 13(3): 512-519. |
邓若磊, 徐海荣, 曹云飞, 等. 植物吸收铵态氮的分子生物学基础. 植物营养与肥料学报, 2007, 13(3): 512-519. | |
26 | Chen P, Yang W X, Min X W, et al. Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity. Plant Physiology and Biochemistry,2021, 167: 738-747. |
27 | Deng Y Q, Bao J, Yuan F, et al. Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regulation, 2016, 79: 391-399. |
28 | Zhu Y W, Che Y M, Zhao F G, et al. H2S functions in growth regulation in rice (Oryza sativa) seedling and metabolism modulating of reactive oxygen under alkaline stress. Journal of Agricultural Biotechnology, 2018, 26(7): 1124-1131. |
祝一文, 车永梅, 赵方贵, 等. 碱胁迫下H2S参与活性氧代谢和水稻幼苗生长的调控. 农业生物技术学报, 2018, 26(7): 1124-1131. | |
29 | Ren X M, Jiang J L, Sun W, et al. Proteomic analysis of cucumber seedling response to high salt stress by exogenous H2S. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(12): 2236-2248. |
任绪明, 蒋景龙, 孙旺, 等. 外源H2S影响黄瓜幼苗响应高盐胁迫的蛋白质组学分析. 西北植物学报, 2018, 38(12): 2236-2248. | |
30 | Keutgen A J, Pawelzik E. Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chemistry, 2008, 111(3): 642-647. |
31 | Rossi S, Chapman C, Yuan B, et al. Improved heat tolerance in creeping bentgrass by γ aminobutyric acid, proline, and inorganic nitrogen associated with differential regulation of amino acid metabolism. Plant Growth Regulation, 2021, 93(2): 231-242. |
32 | Bokhary S U F, Wang L, Zheng Y H, et al. Pre-storage hot water treatment enhances chilling tolerance of zucchini (Cucurbita pepo L.) squash by regulating arginine metabolism. Postharvest Biology and Technology, 2020, 166: 111229. |
33 | Kakkar R K, Bhadur S, Rai V K, et al. Amelioration of NaCl stress by arginine in rice seedlings: Changes in endogenous polyamines. Biologia Plantarum,2000, 43(3): 419-422. |
34 | Kovács Z, Simon S L, Sovány C, et al. Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Science, 2011, 180(1): 61-68. |
35 | Zeng Z J, Zeng Y, Yan L, et al. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
曾紫君, 曾钰, 闫磊, 等. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响. 作物学报, 2021, 47(8): 1616-1623. | |
36 | Dai H, Xiao C, Liu H, et al. Combined NMR and LC-MS analysis reveals the metabonomic changes in Salvia miltiorrhiza Bunge induced by water depletion.Journal of Proteome Research, 2010, 9(3): 1460-1475. |
37 | Heinemann B, Hildebrandt T M. The role of amino acid metabolism in signaling and metabolic adaptation to stress induced energy deficiency in plants. Journal of Experimental Botany, 2021, 72(13): 4634-4645. |
[1] | Xing-yu WANG, Jing CHENG, Sheng GAO, Mo-han LI, Man-xia YANG, Jun-yong GE, Hai-tao ZHOU, Yun-xia LI, Hua-dong ZANG, Wen-bo ZUO. Evaluation of adaptability of naked oat varieties in the alpine region of North China based on the AMMI model and GGE Biplot [J]. Acta Prataculturae Sinica, 2022, 31(12): 76-84. |
[2] | Qian-qian ZHOU, Ya-jian ZHANG, Jing ZHANG, Tu-tong YIN, Xia-fang SHENG, Lin-yan HE. Isolation of a beneficial hydrogen sulfide-producing bacterial strain that reduces lead uptake by Medicago sativa and aids remediation of Pb-contaminated soil [J]. Acta Prataculturae Sinica, 2021, 30(7): 44-52. |
[3] | Ya-qi CHEN, Kai-qi SU, Tai-xiang CHEN, Chun-jie LI. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
[4] | Jian-xin LIU, Rui-rui LIU, Hai-yan JIA, Ting BU, Na LI. Physiological mechanism of NaHS priming improvement of seed vigor in naked oat [J]. Acta Prataculturae Sinica, 2021, 30(2): 135-142. |
[5] | Zhen-lian FAN, Yang-jie JIA, Yuan FAN, Hui-ping SONG, Zheng-jun FENG. Growth of Elymus nutans in saline saline-alkali soil amended with calcium silicate slag: Performance and mechanism [J]. Acta Prataculturae Sinica, 2021, 30(2): 93-101. |
[6] | ZHAO Ying, WEI Xiao-hong, LI Tao-tao. Effects of exogenous nitric oxide on seed germination and seedling growth of Chenopodium quinoa under complex saline-alkali stress [J]. Acta Prataculturae Sinica, 2020, 29(4): 92-101. |
[7] | SHEN Wu-yan, FENG Zheng-jun, QIN Wen-fang, FAN Yuan. Effects of saline-alkali stress on the growth and ion micro-distribution of ryegrass plants [J]. Acta Prataculturae Sinica, 2020, 29(2): 52-63. |
[8] | ZHAO Ying, WEI Xiao-hong, HE Ya-long, ZHAO Xiao-fei, HAN Ting, YUE Kai, XIN Xia-qing, SU Mei-fei, MA Wen-jing, LUO Qiao-juan. Effects of complex saline-alkali stress on seed germination and seedling antioxidant characteristics of Chenopodium quinoa [J]. Acta Prataculturae Sinica, 2019, 28(2): 156-167. |
[9] | LI Li, ZHANG Yi-Gong, JIANATI, LI Xue-Sen. Seed germination and physiological responses of Vicia costata under saline-alkali stress conditions [J]. Acta Prataculturae Sinica, 2016, 25(9): 46-53. |
[10] | LIU Wen-Hui. Effect of sowing date and variety on grain-filling in naked oats [J]. Acta Prataculturae Sinica, 2016, 25(3): 143-153. |
[11] | GE Jian, YANG Cui-Jun, LIU Gui-He, YANG Zhi-Min, BAI Xue-Mei. Effects of additives and crop ratio on quality of mixed naked oat (Avena nuda) and alfalfa (Medicago sativa) silage [J]. Acta Prataculturae Sinica, 2015, 24(6): 116-124. |
[12] | GE Jian, YANG Cui-Jun, YANG Zhi-Min, BAI Xue-Mei, ZHAO Hai-Xiang, LIU Gui-He. Quality of mixed naked oats (Avena nuda) and alfalfa (Medicago sativa) silage [J]. Acta Prataculturae Sinica, 2015, 24(4): 104-113. |
[13] | ZHANG Yang, GUO Hai-jun, LIU Long-biao, WANG Sa, LIANG Ying, NIE Yu-zhe, LI Yu-hua. Cloning and expression of PtGAPDH from Puccinellia tenuiflora [J]. Acta Prataculturae Sinica, 2014, 23(2): 207-214. |
[14] | ZHANG Yong-feng, LIANG Zheng-wei, SUI Li, CUI Yan-ru. Effect on physiological characteristic of Medicago sativa under saline-alkali stress at seeding stage [J]. Acta Prataculturae Sinica, 2009, 18(4): 230-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||