Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (7): 188-205.DOI: 10.11686/cyxb2022326
Hao ZHANG(), Hai-ying HU(), Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG
Received:
2022-08-10
Revised:
2022-09-21
Online:
2023-07-20
Published:
2023-05-26
Contact:
Hai-ying HU
Hao ZHANG, Hai-ying HU, Hui-xia LI, Hai-ming HE, Shuang MA, Feng-hua MA, Ke-chen SONG. Physiological response and transcriptome analysis of the desert steppe dominant plant Lespedeza potaninii to drought stress[J]. Acta Prataculturae Sinica, 2023, 32(7): 188-205.
叶Leaf | 根Root | ||
---|---|---|---|
基因 Gene ID | 引物序列 Primer sequences (5′→3′) | 基因 Gene ID | 引物序列 Primer sequences (5′→3′) |
BMK_Unigene_037155 | GTGGTGATGACAAGGAAGAGAA ACTGGCAACTTCTCCTTAACC | BMK_Unigene_039577 | ATACCGTCCCATAGCAAGAATG TCTCCAGCCTCCACTCAATA |
BMK_Unigene_111723 | CTCACACAGATGCAGGGTATG CCTCCTGGAAGCTTCTCTTTAAT | BMK_Unigene_040501 | AACCCTACCTTCCTTCACAATC CACTCTTCACTTCCACCATCA |
BMK_Unigene_009299 | CGCTTTGGTGTTGGAGATTG CAATTGCGATGGGAGCAATAG | BMK_Unigene_016501 | GATGTCGGGTCTTGGGATAAA GCTCCTCCATTGATAGGTCATAA |
BMK_Unigene_035523 | GGTGTGGAATGAGGAAGAGAAA CCACTCCCGAAAGCCAATAA | BMK_Unigene_276197 | ACTGGTGTGAAAGGTCTTGTAG GTCTATGACAGGAGCACTCAAC |
BMK_Unigene_035906 | GACCTTCAACACTCCTGCTATG CATCTCCAGAGTCCAGAACAATAC | BMK_Unigene_029018 | GCCATTCATTTGTTCCCATCC GTGTTTCTGTGTTCTGGGAATTT |
Table 1 Differential gene primer sequences of L. potaninii
叶Leaf | 根Root | ||
---|---|---|---|
基因 Gene ID | 引物序列 Primer sequences (5′→3′) | 基因 Gene ID | 引物序列 Primer sequences (5′→3′) |
BMK_Unigene_037155 | GTGGTGATGACAAGGAAGAGAA ACTGGCAACTTCTCCTTAACC | BMK_Unigene_039577 | ATACCGTCCCATAGCAAGAATG TCTCCAGCCTCCACTCAATA |
BMK_Unigene_111723 | CTCACACAGATGCAGGGTATG CCTCCTGGAAGCTTCTCTTTAAT | BMK_Unigene_040501 | AACCCTACCTTCCTTCACAATC CACTCTTCACTTCCACCATCA |
BMK_Unigene_009299 | CGCTTTGGTGTTGGAGATTG CAATTGCGATGGGAGCAATAG | BMK_Unigene_016501 | GATGTCGGGTCTTGGGATAAA GCTCCTCCATTGATAGGTCATAA |
BMK_Unigene_035523 | GGTGTGGAATGAGGAAGAGAAA CCACTCCCGAAAGCCAATAA | BMK_Unigene_276197 | ACTGGTGTGAAAGGTCTTGTAG GTCTATGACAGGAGCACTCAAC |
BMK_Unigene_035906 | GACCTTCAACACTCCTGCTATG CATCTCCAGAGTCCAGAACAATAC | BMK_Unigene_029018 | GCCATTCATTTGTTCCCATCC GTGTTTCTGTGTTCTGGGAATTT |
指标Index | 对照CK | 处理Tr | F检验F-test | P |
---|---|---|---|---|
总根长Total root length (cm) | 1265.98±24.87a | 933.40±6.64b | 166.87 | 0.00 |
总根表面积Total root area (cm2) | 230.64±44.39a | 92.15±2.97b | 9.69 | 0.04 |
总根体积Total root volume (cm3) | 1.98±0.16a | 0.81±0.04b | 51.15 | 0.00 |
根尖数Root tips number | 3702.00±329.57a | 2578.00±64.73b | 11.20 | 0.03 |
根分枝数Root forks number | 4309.67±127.96a | 3384.33±240.77b | 14.69 | 0.02 |
根生物量Root biomass (g·plant-1) | 1.40±0.10a | 1.32±0.24a | 0.27 | 0.63 |
茎生物量Stem biomass (g·plant-1) | 1.50±0.16a | 1.16±0.12b | 8.61 | 0.04 |
叶生物量Leaf biomass (g·plant-1) | 1.39±0.06a | 1.27±0.24a | 0.76 | 0.43 |
根冠比Root-shoot ratio | 0.48±0.02b | 0.54±0.02a | 10.13 | 0.03 |
Table 2 Effects of drought stress on the root characteristics and organ biomass of L. potaninii
指标Index | 对照CK | 处理Tr | F检验F-test | P |
---|---|---|---|---|
总根长Total root length (cm) | 1265.98±24.87a | 933.40±6.64b | 166.87 | 0.00 |
总根表面积Total root area (cm2) | 230.64±44.39a | 92.15±2.97b | 9.69 | 0.04 |
总根体积Total root volume (cm3) | 1.98±0.16a | 0.81±0.04b | 51.15 | 0.00 |
根尖数Root tips number | 3702.00±329.57a | 2578.00±64.73b | 11.20 | 0.03 |
根分枝数Root forks number | 4309.67±127.96a | 3384.33±240.77b | 14.69 | 0.02 |
根生物量Root biomass (g·plant-1) | 1.40±0.10a | 1.32±0.24a | 0.27 | 0.63 |
茎生物量Stem biomass (g·plant-1) | 1.50±0.16a | 1.16±0.12b | 8.61 | 0.04 |
叶生物量Leaf biomass (g·plant-1) | 1.39±0.06a | 1.27±0.24a | 0.76 | 0.43 |
根冠比Root-shoot ratio | 0.48±0.02b | 0.54±0.02a | 10.13 | 0.03 |
样品名称 Sample | 基本数据 Base number | GC占比 GC content (%) | Q20 (%) | Q30 (%) | 过滤后的数据 Clean reads | 映射读取 Mapped reads | 映射比率 Mapped ratio (%) | |
---|---|---|---|---|---|---|---|---|
CK | L1 | 6186621368 | 44.54 | 98.60 | 95.43 | 20723703 | 12840214 | 61.96 |
L2 | 6234665288 | 45.00 | 98.58 | 95.41 | 20868074 | 12951855 | 62.07 | |
L3 | 6225191496 | 44.71 | 98.47 | 95.09 | 20846238 | 12614651 | 60.51 | |
R1 | 5786751212 | 43.89 | 98.25 | 94.59 | 19357392 | 11709354 | 60.49 | |
R2 | 6370728902 | 43.86 | 98.08 | 94.12 | 21294316 | 13130824 | 61.66 | |
R3 | 6138978110 | 44.20 | 98.34 | 94.85 | 20547009 | 12650760 | 61.57 | |
Tr | L1 | 6225600476 | 44.79 | 98.49 | 95.15 | 20816470 | 12764270 | 61.32 |
L2 | 5816270068 | 44.10 | 98.56 | 95.34 | 19465715 | 11695609 | 60.08 | |
L3 | 6358918316 | 44.00 | 98.55 | 95.32 | 21287781 | 12910160 | 60.65 | |
R1 | 5959686196 | 44.03 | 98.50 | 95.26 | 19944009 | 12394261 | 62.15 | |
R2 | 6326554166 | 44.16 | 98.54 | 95.38 | 21198666 | 13124275 | 61.91 | |
R3 | 6560622132 | 43.93 | 98.68 | 96.02 | 21970365 | 13775359 | 62.70 |
Table 3 Sequencing and assembly data of different organs and different treatments of L. potaninii
样品名称 Sample | 基本数据 Base number | GC占比 GC content (%) | Q20 (%) | Q30 (%) | 过滤后的数据 Clean reads | 映射读取 Mapped reads | 映射比率 Mapped ratio (%) | |
---|---|---|---|---|---|---|---|---|
CK | L1 | 6186621368 | 44.54 | 98.60 | 95.43 | 20723703 | 12840214 | 61.96 |
L2 | 6234665288 | 45.00 | 98.58 | 95.41 | 20868074 | 12951855 | 62.07 | |
L3 | 6225191496 | 44.71 | 98.47 | 95.09 | 20846238 | 12614651 | 60.51 | |
R1 | 5786751212 | 43.89 | 98.25 | 94.59 | 19357392 | 11709354 | 60.49 | |
R2 | 6370728902 | 43.86 | 98.08 | 94.12 | 21294316 | 13130824 | 61.66 | |
R3 | 6138978110 | 44.20 | 98.34 | 94.85 | 20547009 | 12650760 | 61.57 | |
Tr | L1 | 6225600476 | 44.79 | 98.49 | 95.15 | 20816470 | 12764270 | 61.32 |
L2 | 5816270068 | 44.10 | 98.56 | 95.34 | 19465715 | 11695609 | 60.08 | |
L3 | 6358918316 | 44.00 | 98.55 | 95.32 | 21287781 | 12910160 | 60.65 | |
R1 | 5959686196 | 44.03 | 98.50 | 95.26 | 19944009 | 12394261 | 62.15 | |
R2 | 6326554166 | 44.16 | 98.54 | 95.38 | 21198666 | 13124275 | 61.91 | |
R3 | 6560622132 | 43.93 | 98.68 | 96.02 | 21970365 | 13775359 | 62.70 |
组别Group | 代谢通路Metabolic pathway | 数量Count | 上调Up | 下调Down |
---|---|---|---|---|
对照叶vs处理叶CKLvsTrL | 植物-病原体相互作用Plant-pathogen interaction | 175 | 117 | 58 |
植物激素信号转导Plant hormone signal transduction | 68 | 68 | 0 | |
内质网上蛋白质加工Protein processing in endoplasmic reticulum | 59 | 54 | 5 | |
淀粉与蔗糖代谢Starch and sucrose metabolism | 50 | 50 | 0 | |
碳代谢Carbon metabolism | 118 | 19 | 99 | |
光合作用-天线蛋白Photosynthesis-antenna proteins | 40 | 0 | 40 | |
光合作用Photosynthesis | 48 | 2 | 46 | |
光合生物中的碳固定Carbon fixation in photosynthetic organisms | 49 | 4 | 45 | |
氨基酸生物合成Biosynthesis of amino acids | 88 | 28 | 60 | |
对照根vs处理根CKRvsTrR | 精氨酸与脯氨酸代谢Arginine and proline metabolism | 28 | 21 | 7 |
内质网上蛋白质加工Protein processing in endoplasmic reticulum | 41 | 30 | 11 | |
糖酵解/糖异生Glycolysis/ | 27 | 25 | 2 | |
植物-病原体相互作用Plant-pathogen interaction | 93 | 7 | 86 | |
MAPK信号通路MAPK signaling pathway | 71 | 14 | 57 | |
淀粉与蔗糖代谢Starch and sucrose metabolism | 70 | 24 | 46 | |
异黄酮生物合成Isoflavonoid biosynthesis | 11 | 1 | 10 |
Table 4 KEGG pathway was significantly enriched in differential genes of leaf and root of L. potaninii
组别Group | 代谢通路Metabolic pathway | 数量Count | 上调Up | 下调Down |
---|---|---|---|---|
对照叶vs处理叶CKLvsTrL | 植物-病原体相互作用Plant-pathogen interaction | 175 | 117 | 58 |
植物激素信号转导Plant hormone signal transduction | 68 | 68 | 0 | |
内质网上蛋白质加工Protein processing in endoplasmic reticulum | 59 | 54 | 5 | |
淀粉与蔗糖代谢Starch and sucrose metabolism | 50 | 50 | 0 | |
碳代谢Carbon metabolism | 118 | 19 | 99 | |
光合作用-天线蛋白Photosynthesis-antenna proteins | 40 | 0 | 40 | |
光合作用Photosynthesis | 48 | 2 | 46 | |
光合生物中的碳固定Carbon fixation in photosynthetic organisms | 49 | 4 | 45 | |
氨基酸生物合成Biosynthesis of amino acids | 88 | 28 | 60 | |
对照根vs处理根CKRvsTrR | 精氨酸与脯氨酸代谢Arginine and proline metabolism | 28 | 21 | 7 |
内质网上蛋白质加工Protein processing in endoplasmic reticulum | 41 | 30 | 11 | |
糖酵解/糖异生Glycolysis/ | 27 | 25 | 2 | |
植物-病原体相互作用Plant-pathogen interaction | 93 | 7 | 86 | |
MAPK信号通路MAPK signaling pathway | 71 | 14 | 57 | |
淀粉与蔗糖代谢Starch and sucrose metabolism | 70 | 24 | 46 | |
异黄酮生物合成Isoflavonoid biosynthesis | 11 | 1 | 10 |
1 | Wilhite D A. Drought as a natural hazard: concepts and defi-nitions. Drought: A Global Assessment, 2000: 3-18. |
2 | Budb S, Huang J L, Fischer T, et al. Drought losses in China might double between the 1.5 ℃ and 2.0 ℃ warming. Proceedings of the National Academy of Science, 2018, 115(42): 10600-10605. |
3 | Qv T, Nan Z B. Research progress on responses and mechanisms of crop and grass under drought stress. Acta Prataculturae Sinica, 2008, 17(2): 126-135. |
曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展. 草业学报, 2008, 17(2): 126-135. | |
4 | Ma P C, Xie Q G, Zhao X, et al. Effects of different treatments on seed germination and persistent sepals of Lespedeza potaninii Vass. Acta Agrestia Sinica, 2021, 29(8): 1828-1834. |
马鹏程, 谢全刚, 赵祥, 等. 不同处理对牛枝子种子萌发和宿存萼片的影响. 草地学报, 2021, 29(8): 1828-1834. | |
5 | Hu H Y, Li H X, Ni B, et al.Characteristic of typical vegetation community and water use efficiency of dominant plants in desert steppe of Ningxia. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 460-471. |
胡海英, 李惠霞, 倪彪, 等. 宁夏荒漠草原典型群落的植被特征及其优势植物的水分利用效率. 浙江大学学报(农业与生命科学版), 2019, 45(4): 460-471. | |
6 | Huang G T, Ma S L, Bai L P, et al. Signal transduction during cold salt and drought stresses in plants. Molecular Biology Reports, 2012, 39: 969-987. |
7 | Rasheed S, Bashir K, Matsui A, et al. Transcriptomic analysis of soil-grown Arabidopsis thaliana roots and shoots in response to a drought stress. Frontiers in Plant Science, 2016, 7: 180. |
8 | Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 2004, 55(395): 225-236. |
9 | Filichkin S A, Hamilton M, Dharmawardhana P D, et al. Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing, differential intron retention, and isoform ratio switching. Frontiers in Plant Science, 2018, 9: 5. |
10 | Takahashi F, Kuromori T, Sato H, et al. Regulatory gene networks in drought stress responses and resistance in plants. Advances in Experimental Medicine and Biology, 2018, 1081: 189-214. |
11 | Victor E V, Zhang L, Wei Z, et al. Characterization of the yeast transcriptome. Cell, 1997, 88(2): 243-251. |
12 | Lian J, Zhang X C, Gu J T. Advance in transcriptomics and its application in olericulture research. Chinese Agricultural Science Bulletin, 2015, 31(8): 118-122. |
廉洁, 张喜春, 谷建田. 转录组学及其在蔬菜学上应用研究进展. 中国农学通报, 2015, 31(8): 118-122. | |
13 | Avramova Z. Transcriptional ‘memory’ of a stress:transient chromatin and memory (epigenetic) marks at stress-response genes. The Plant Journal: for Cell and Molecular Biology, 2015, 83(1): 149-159. |
14 | Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78. |
15 | Marè C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Molecular Biology, 2004, 55: 399-416. |
16 | Sun S, Yu J P, Chen F, et al. A dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. Journal of Biological Chemistry, 2008, 283: 6261-6271. |
17 | Yang X W, Wang X Y, Lv J, et al. Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Reports, 2015, 34(6): 943-958. |
18 | Chen Y, Liu Z H, Li F. Genome-wide functional analysis of cotton (Gossypium hirsutum) in response to drought. PLoS One, 2013, 8(11): e80879. |
19 | Xiao L H, Yang G, Zhang L C, et al. The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydra-tion.Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5833-5837. |
20 | Zhu Y, Wang X, Huang L, et al. Transcriptomic identification of drought-related genes and SSR markers in Sudan grass based on RNA-seq. Frontiers in Plant Science, 2017, 8: 687. |
21 | Yao L, Jiang Y, Lu X, et al. A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis. Molecular Biology Reports, 2016, 43(10): 1089-1100. |
22 | Ali M A, Azeem F, Nawaz M A, et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. Journal of Plant Physiology, 2018, 226: 12-21. |
23 | Wang X K. Plant physiological and biochemical experiment principles and techniques. Beijing: Higher Education Press, 2006. |
王学奎. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2006. | |
24 | Yue S J, Xu C C, Zou Q, et al. Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiology Journal, 1991, 30(3): 207-210. |
越世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1991, 30(3): 207-210. | |
25 | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.Genome Biology, 2014, 15(12): 550. |
26 | Cai C H. The effects of drought and enhanced UV-B radiation on physiological metabolism and antioxidant isozyme of Lespedeza davurica. Xianyang: Northwest A&F University, 2014. |
蔡彩虹. 干旱和增强UV-B辐射对达乌里胡枝子生理代谢及抗氧化酶同工酶的影响. 咸阳: 西北农林科技大学, 2014. | |
27 | Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa (Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89. |
张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89. | |
28 | Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress:effects mechanisms and management. Agronomy for Sustainable Development, 2009, 29: 185-212. |
29 | Liu L Z, Ouyang H, Li X T, et al. Physiological and transcriptome analysis of ‘Gannan Zao’ navel orange under drought stress. Chinese Journal of Tropical Crops, 2022, 43(5): 893-903. |
刘林芝, 欧阳欢, 李兴涛, 等. ‘赣南早’ 脐橙在干旱胁迫下的生理及转录组研究. 热带作物学报, 2022, 43(5): 893-903. | |
30 | Su S P, Li Y, Liu X E, et al. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica. Acta Prataculturae Sinica, 2022, 31(6): 127-138. |
苏世平, 李毅, 刘小娥, 等. 外源脯氨酸对缓解红砂干旱胁迫的机理研究. 草业学报, 2022, 31(6): 127-138. | |
31 | Demiral T, Türkan I. Exogenous glycine betaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 2006, 56: 72-79. |
32 | Tian Y, Gu H, Fan Z, et al. Role of a cotton endoreduplication-related gene, GaTop6B, in response to drought stress. Planta, 2018, 249: 19-32. |
33 | Wang Z H, Wei Y Q, Zhao Y R, et al. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
王志恒, 魏玉清, 赵延蓉, 等. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征. 草业学报, 2022, 31(3): 71-84. | |
34 | Valente M, Faria J, Soares-Ramos J, et al. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. Journal of Experimental Botany, 2009, 60(2): 533-546. |
35 | Jia X Y, He L H, Jing R L, et al. Calreticulin: conserved protein and diverse functions in plants. Physiologia Plantarum, 2009, 136(2): 127-138. |
36 | Yang K Z, Xia C, Liu X L, et al. A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. The Plant Journal: for Cell and Molecular Biology, 2009, 57(5): 870-882. |
37 | Olivari S, Cali T, Salo K, et al. EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. Biochemical and Biophysical Research Communications, 2006, 349(4): 1278-1284. |
38 | Zhao Y J. Study on physiological metabolism and proteomics of Chamaecrista rotundifolia (86134R1) under drought stress. Fuzhou: Fujian Agriculture and Forestry University, 2009. |
赵雅静. 干旱胁迫下圆叶决明(86134R1)生理代谢及蛋白质组学研究. 福州: 福建农林大学, 2009. | |
39 | Wang L B. The study on response mechanism and screening of key factors under drought and high temperature stresses in soybean. Harbin: Northeast Agricultural University, 2018. |
王利彬.大豆苗期干旱和高温胁迫应答机制研究及关键转录因子的筛选.哈尔滨: 东北农业大学, 2018. | |
40 | Li F F, Mei F M, Zhang Y F, et al. Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis. BMC Plant Biology, 2020, 20: 558. |
41 | Lin Y Y, Li X Y, Liu S, et al. Auxin distribution in Arabidopsis plants over-expressing AhAREB1 encoding a transcription factor. Journal of South China Normal University (Natural Science Edition), 2015, 47(1): 87-92. |
林莹莹, 李晓云, 刘帅, 等. 过表达转录因子AhAREB1对拟南芥生长素分布的影响. 华南师范大学学报(自然科学版), 2015, 47(1): 87-92. | |
42 | Horton R F. Methyl jasmonate and transpiration in barley. Plant Physiology, 1991, 96(4): 1376-1378. |
43 | Tiwari S B, Hagen G, Guilfoyle T J. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004, 16: 533-543. |
44 | Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290: 998-1009. |
45 | Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Current Opinion in Plant Biology, 2004, 7: 465-471. |
46 | Cheng M C, Liao P M, Kuo W W, et al. The Arabidopsis ethylene response factor1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology, 2013, 162: 1566-1582. |
47 | Seo Y J, Park J B, Cho Y J, et al. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Molecular Cell, 2010, 30: 271-277. |
48 | Meng X P, Li F G, Liu C L, et al. Isolation and characterization of an ERF transcription factor gene from cotton (Gossypium barbadense L.). Plant Molecular Biology Reporter, 2020, 28(1): 176-183. |
49 | Lau O S, Davies K A, Chang J, et al. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells. Science, 2014, 345: 1605-1609. |
50 | Zhu L L, Zhou B. Regulation of bHLH protein in plant development and abiotic stress. Molecular Plant Breeding, 2022, 20(20): 6750-6760. |
朱璐璐, 周波. bHLH蛋白在植物发育及非生物胁迫中的调控. 分子植物育种, 2022, 20(20): 6750-6760. | |
51 | Vaten A, Soyars C L, Tarr P T, et al. Modulation of asymmetric division diversity through cytokinin and SPEECHLESS regulatory interactions in the Arabidopsis stomatal lineage. Developmental Cell, 2018, 47: 53-66. |
52 | Samakovli D, Tichá T, Vavrdová T, et al. YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis. Molecular Plant, 2020, 13(4): 612-633. |
53 | Bechtold U, Albihlal W S,Lawson T, et al. Arabidopsis heat shock transcription factor A1b overexpression enhances water productivity, resistance to drought, and infection. Journal of Experimental Botany, 2013, 64(11): 3467-3481. |
54 | Yuan X, Wang H, Cai J, et al. Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biology, 2019, 19: 278. |
55 | Zegaoui Z, Planchais S, Cabassa C, et al. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology, 2017, 218: 26-34. |
[1] | Yi-long ZHANG, Wen LI, Qi-kun YU, Pei-ying LI, Zong-jiu SUN. Nitrogen metabolism response mechanism to different drought stresses in leaves and roots of Cynodon dactylon [J]. Acta Prataculturae Sinica, 2023, 32(7): 175-187. |
[2] | Shi-yang ZHANG, Feng-min LIU, Jun-tao CUI, Lei HE, Yue-yan FENG, Wei-li ZHANG. Effects of three exogenous substances on the physiological and fluorescence characteristics of Stylosanthes guianensis under low-temperature stress [J]. Acta Prataculturae Sinica, 2023, 32(6): 85-99. |
[3] | Yan-peng LI, Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress [J]. Acta Prataculturae Sinica, 2023, 32(4): 101-111. |
[4] | Yi-long ZHANG, Qi-kun YU, Wen LI, Pei-ying LI, Zong-jiu SUN. Aboveground and belowground phenotypic characteristics of Cynodon dactylon lines differing in drought resistance and endogenous hormone response to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 163-178. |
[5] | Hao-yu XU, Ying ZHAO, Qian RUAN, Xiao-lin ZHU, Bao-qiang WANG, Xiao-hong WEI. Resistance of quinoa seedlings under different salt-alkali stress levels [J]. Acta Prataculturae Sinica, 2023, 32(1): 122-130. |
[6] | Fu LIU, Cheng CHEN, Kai-xuan ZHANG, Mei-liang ZHOU, Xin-quan ZHANG. Cloning and identification of drought tolerance function of the LjbHLH34 gene in Lotus japonicus [J]. Acta Prataculturae Sinica, 2023, 32(1): 178-191. |
[7] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[8] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
[9] | Tong JI, Qi JIANG, Zhan-jun WANG, Bo JI. An evaluation of drought resistance of seven Poaceous forages [J]. Acta Prataculturae Sinica, 2022, 31(7): 144-156. |
[10] | Yi-ting JIN, Wen-hui LIU, Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period [J]. Acta Prataculturae Sinica, 2022, 31(6): 112-126. |
[11] | Shi-ping SU, Yi LI, Xiao-e LIU, Pei-fang CHONG, Li-shan SHAN, You-li HOU. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica [J]. Acta Prataculturae Sinica, 2022, 31(6): 127-138. |
[12] | Duo ZHANG, Lan-tao LI, Di LIN, Long-hui ZHENG, Sai-nan GENG, Wen-xuan SHI, Kai SHENG, Yu-hong MIAO, Yi-lun WANG. Effects of P fertilization rate on tuber yield, quality, plant physiological attributes and P use efficiency of Helianthus tuberosus [J]. Acta Prataculturae Sinica, 2022, 31(6): 139-149. |
[13] | Xiao-fan SUN, Yi-long ZHANG, Pei-ying LI, Zong-jiu SUN. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 69-78. |
[14] | Rui WU, Wen-hui LIU, Yong-chao ZHANG, Min-jie LIU. Differences in morphological and physiological characteristics in the abscission zone of shattering-prone and shattering-resistant genotypes of Elymus sibiricus [J]. Acta Prataculturae Sinica, 2022, 31(4): 81-92. |
[15] | Zhi-heng WANG, Yu-qing WEI, Yan-rong ZHAO, Yue-juan WANG. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||