Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (12): 160-170.DOI: 10.11686/cyxb2023104
Ting-lun LI1(), Yi-heng LI1, Hui YU1, Zai-li JIANG2, Li-tao TANG1, Chang-ting WANG1, Lei HU1()
Received:
2023-04-04
Revised:
2023-05-08
Online:
2023-12-20
Published:
2023-10-18
Contact:
Lei HU
Ting-lun LI, Yi-heng LI, Hui YU, Zai-li JIANG, Li-tao TANG, Chang-ting WANG, Lei HU. Effects of the lead halide perovskite on the seedling growth of Elymus nutans[J]. Acta Prataculturae Sinica, 2023, 32(12): 160-170.
铅浓度 Pb concentration (mg·kg-1) | 出苗率 Emergence ratio (%) | 出苗时滞 Emergence delay (d) | 出苗速率 Emergence rate (No.·d-1) | 出苗持续时间 Emergence duration (d) |
---|---|---|---|---|
0 | 16.0±3.16a | 3.6±0.49b | 0.321±0.068a | 10.8±3.87a |
36 | 16.4±1.72a | 4.0±0.00ab | 0.319±0.041a | 7.0±2.53b |
72 | 19.2±3.44a | 3.4±0.49b | 0.292±0.053ab | 8.2±1.33ab |
130 | 14.4±2.40a | 4.2±0.75ab | 0.188±0.033ab | 8.2±1.60ab |
170 | 13.2±1.20a | 4.6±0.49a | 0.159±0.010b | 6.4±0.49b |
Table 1 The effects of Pb gradients on the seedlings emergence of E.nutans
铅浓度 Pb concentration (mg·kg-1) | 出苗率 Emergence ratio (%) | 出苗时滞 Emergence delay (d) | 出苗速率 Emergence rate (No.·d-1) | 出苗持续时间 Emergence duration (d) |
---|---|---|---|---|
0 | 16.0±3.16a | 3.6±0.49b | 0.321±0.068a | 10.8±3.87a |
36 | 16.4±1.72a | 4.0±0.00ab | 0.319±0.041a | 7.0±2.53b |
72 | 19.2±3.44a | 3.4±0.49b | 0.292±0.053ab | 8.2±1.33ab |
130 | 14.4±2.40a | 4.2±0.75ab | 0.188±0.033ab | 8.2±1.60ab |
170 | 13.2±1.20a | 4.6±0.49a | 0.159±0.010b | 6.4±0.49b |
铅浓度 Pb concentration (mg·kg-1) | 土壤pH Soil pH | NH4+-N含量 NH4+-N content (mg·kg-1) | NO3--N含量 NO3--N content (mg·kg-1) | 全碳含量 Total carbon content (g·kg-1) |
---|---|---|---|---|
0 | 8.48±0.06a | 0.97±0.23a | 3.97±1.27b | 11.93±0.49ab |
36 | 8.40±0.03ab | 0.73±0.03a | 5.97±0.66ab | 11.97±0.01ab |
72 | 8.43±0.01ab | 1.07±0.20a | 5.80±0.17ab | 11.27±0.02b |
130 | 8.39±0.03ab | 1.41±0.83a | 6.71±0.41ab | 11.50±0.06ab |
170 | 8.31±0.01b | 0.57±0.05a | 7.62±1.67a | 12.37±0.01a |
Table 2 Soil physicochemical properties with different Pb concentration gradients
铅浓度 Pb concentration (mg·kg-1) | 土壤pH Soil pH | NH4+-N含量 NH4+-N content (mg·kg-1) | NO3--N含量 NO3--N content (mg·kg-1) | 全碳含量 Total carbon content (g·kg-1) |
---|---|---|---|---|
0 | 8.48±0.06a | 0.97±0.23a | 3.97±1.27b | 11.93±0.49ab |
36 | 8.40±0.03ab | 0.73±0.03a | 5.97±0.66ab | 11.97±0.01ab |
72 | 8.43±0.01ab | 1.07±0.20a | 5.80±0.17ab | 11.27±0.02b |
130 | 8.39±0.03ab | 1.41±0.83a | 6.71±0.41ab | 11.50±0.06ab |
170 | 8.31±0.01b | 0.57±0.05a | 7.62±1.67a | 12.37±0.01a |
变量 Variables | 铅胁迫Pb concentration | 硝态氮 NO3--N | 土壤pH Soil pH | 幼苗生长 Seedling growth | 铅耐受能力Pb tolerance index | 出苗时滞 Emergence delay | 出苗持续时间 Emergence duration |
---|---|---|---|---|---|---|---|
硝态氮NO3--N | 0.529 | ||||||
土壤pH Soil pH | -0.601 | -0.467 | |||||
幼苗生长Seedling growth | -0.847 | -0.255 | |||||
铅耐受能力Pb tolerance index | -0.847 | -0.255 | 0.999 | ||||
出苗时滞Emergence delay | 0.262 | 0.079 | -0.309 | ||||
出苗持续时间Emergence duration | -0.558 | -0.168 | 0.659 | ||||
出苗速率Emergence rate | -0.793 | -0.238 | 0.936 | -0.177 | |||
生物量耐受指数BTI | -0.821 | -0.090 | 0.472 | 0.851 | 0.851 | ||
高度耐受指数HTI | -0.765 | -0.160 | -0.245 | 1.000 | 0.853 | 0.341 | |
铅富集能力Pb accumulation | -0.510 | -0.037 | -0.405 | 0.889 | 0.294 |
Table 3 The standardized total effects of the variables
变量 Variables | 铅胁迫Pb concentration | 硝态氮 NO3--N | 土壤pH Soil pH | 幼苗生长 Seedling growth | 铅耐受能力Pb tolerance index | 出苗时滞 Emergence delay | 出苗持续时间 Emergence duration |
---|---|---|---|---|---|---|---|
硝态氮NO3--N | 0.529 | ||||||
土壤pH Soil pH | -0.601 | -0.467 | |||||
幼苗生长Seedling growth | -0.847 | -0.255 | |||||
铅耐受能力Pb tolerance index | -0.847 | -0.255 | 0.999 | ||||
出苗时滞Emergence delay | 0.262 | 0.079 | -0.309 | ||||
出苗持续时间Emergence duration | -0.558 | -0.168 | 0.659 | ||||
出苗速率Emergence rate | -0.793 | -0.238 | 0.936 | -0.177 | |||
生物量耐受指数BTI | -0.821 | -0.090 | 0.472 | 0.851 | 0.851 | ||
高度耐受指数HTI | -0.765 | -0.160 | -0.245 | 1.000 | 0.853 | 0.341 | |
铅富集能力Pb accumulation | -0.510 | -0.037 | -0.405 | 0.889 | 0.294 |
1 | Ma C Q, Felix T E, Lee S H, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science, 2023, 379: 173-178. |
2 | Zhao X M, Liu T R, Quinn C B, et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science, 2022, 377: 307-310. |
3 | Babayigit A, Duy Thanh D, Ethirajan A, et al. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Scientific Reports, 2016(6): 18721. |
4 | Bekele H, Hailegnaw S, Rran E, et al. Rain on methylammonium lead iodide-based perovskites: possible environmental effects of perovskite solar cells. The Journal of Physical Chemistry Letters, 2015, 6(9): 1543-1547. |
5 | Aristidou N, Sanchez M I, Thana C, et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angewandte Chemie, 2015, 127(28): 8326-8330. |
6 | Tsai S M, Mesina M, Goshia T, et al. Perovskite nanoparticles toxicity study on airway epithelial cells. Nanoscale Research Letters, 2019, 14(14): 1-8. |
7 | Zhai Y J, Zhuang W, Wang G Y, et al. The fate and toxicity of Pb-based perovskite nanoparticles on soil bacterial community: impacts of pH, humic acid, and divalent cations. Chemosphere, 2020, 249: 126564. |
8 | Danae P, Cristina D R, Ana I C, et al. Exposure to Pb-halide perovskite nanoparticles can deliver bioavailable Pb but does not alter endogenous gut microbiota in zebrafish. Science of the Total Environment, 2020, 715(5): 136941. |
9 | Li J, Cao H L, Jiao W B, et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nature Communications, 2020, 11(1): 310. |
10 | Li J X, Li H Y, Liu L E, et al. Tolerance mechanisms of plants under lead stress. Molecular Plant Breeding, 2023(3): 1-11. |
李嘉欣, 李鸿燕, 刘丽娥, 等. 植物在铅胁迫下的耐受机制. 分子植物育种, 2023(3): 1-11. | |
11 | Duan D C, Yu M G, Shi J Y. Research advances in uptake, translocation, accumulation and detoxification of Pb in plants. Chinese Journal of Applied Ecology, 2014, 25(1): 287-296. |
段德超, 于明革, 施积炎. 植物对铅的吸收、转运、累积和解毒机制研究进展. 应用生态学报, 2014, 25(1): 287-296. | |
12 | Liu L. Translocation, migration, and control of heavy metals and health risk assessment in soil-vegetable system. Changsha: Central South University of Forestry and Technology, 2018. |
刘丽. 重金属在土壤-蔬菜系统中的迁移转运与调控及其健康风险评估. 长沙: 中南林业科技大学, 2018. | |
13 | Williams S T, McNeilly T, Wellington E M H. The decomposition of vegetation growing on metal mine wastes.Soil Biology and Biochemistry, 1977, 9: 271-275. |
14 | Barry S, Clark S C. Problems of interpreting the relationship between the amounts of lead and zinc in plants and soil on metalliferous wastes. New Phytologist, 1978, 81: 773-783. |
15 | Hu N, Li B C, Yao L R, et al. Effects of different heavy metals on the seed germination and establishment of Halogeton glomeratus. Acta Prataculturae Sinica, 2019, 28(6): 66-81. |
胡娜, 李葆春, 姚立蓉, 等. 不同重金属胁迫对盐生草种子萌发特性的影响. 草业学报, 2019, 28(6): 66-81. | |
16 | Begonia G B, Davis C D, Begonia M F, et al. Growth responses of Indian mustard [Brassica juncea (L.) Czern] and its phytoextraction of lead from a contaminated soil. Bulletin of Environmental Contamination and Toxicology, 1998, 61(1): 38-43. |
17 | Miller J E, Hassett J J, Keoppe D E. The effect of soil properties and extract able lead levels on lead uptake by soybeans. Communications in Soil Science and Plant Analysis, 1975, 6: 339-347. |
18 | Wu J, Meng X X, Li K. Phytoremediation of soils contaminated by lead. Soils, 2005, 37(3): 258-264. |
伍钧, 孟晓霞, 李昆. 铅污染土壤的植物修复研究进展. 土壤, 2005, 37(3): 258-264. | |
19 | Bai Y Z, Xie Y H, Chen C C, et al. Effects of 14 native herbaceous plants on Pb speciation characteristic and content in polluted soil. Journal of Soil and Water Conservation, 2012, 26(1): 136-140. |
白彦真, 谢英荷, 陈灿灿, 等. 14种本土草本植物对污染土壤铅形态特征与含量的影响. 水土保持学报, 2012, 26(1): 136-140. | |
20 | Zhu Q, Li R, Liu Y J. Effects of lead stress on growth and physiological characteristics of 5 species of Cruciferae. Bulletin of Agricultural Science and Technology, 2013(4): 88-90. |
朱强, 李瑞, 刘玉娟. 铅胁迫对十字花科5种植物生长及生理特性的影响. 农业科技通讯, 2013(4): 88-90. | |
21 | Wang C Q, Miao Y J, Wang J L, et al. Studies on drought resistance of wild Elymus nutans in Tibet under drought stress at seedlings stage. Chinese Journal of Grassland, 2017, 39(4): 116-120. |
王传旗, 苗彦军, 王建林, 等. 西藏野生垂穗披碱草苗期抗旱性研究. 中国草地学报, 2017, 39(4): 116-120. | |
22 | Wang P, Chen J H, Wang P, et al. Status of research into the abiotic stress tolerance of Elymus species. Acta Prataculturae Sinica, 2019, 28(5): 151-162. |
王沛, 陈玖红, 王平, 等. 披碱草属植物抗逆性研究现状和存在的问题. 草业学报, 2019, 28(5): 151-162. | |
23 | Ministry of Ecology and Environment of the People’s Republic of China, State Administration for Market Regulation. Soil environment quality risk control standard for soil contamination of agriculture land, GB15618-2018. Beijing: China Environment Publishing Group, 2018. |
生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行), GB15618-2018. 北京: 中国环境出版集团, 2018. | |
24 | Wang R K. Determination of soil pH by potentiometry. Shanxi Chemical Industry, 2018, 3: 64-65. |
王瑞琨. 用电位法测定土壤pH值. 山西化工, 2018, 3: 64-65. | |
25 | Lu R K. Analysis method of agricultural chemistry in soil. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
26 | Bi X Y, Ren L M, Gong M, et al. Transfer of cadmium and lead from soil to mangoes in an uncontaminated area, Hainan Island, China. Geoderma, 2010, 155(1): 115-120. |
27 | Yan L Y, Fan C W, Zhao Z Y, et al. Heavy metal absorption and enrichment characteristics of dominant weed species naturally growing on farmland in Northern Guizhou. Acta Prataculturae Sinica, 2017, 26(10): 237-244. |
严莲英, 范成五, 赵振宇, 等. 黔北轻污染耕地12种优势杂草重金属含量及富集特征. 草业学报, 2017, 26(10): 237-244. | |
28 | Liu X M, Nie J H, Wang Q R. Research on lead uptake and tolerance in six plants. Acta Phytoecologica Sinica, 2002, 26(5): 533-537. |
刘秀梅, 聂俊华, 王庆仁. 6种植物对Pb的吸收与耐性研究. 植物生态学报, 2002, 26(5): 533-537. | |
29 | Wang B Q, Zhang X P, Chen J, et al. Adsorbability and tolerance capacity of sludges heavy metals by Carallia brachiata and Pinus elliottii. Protection Forest Science and Technology, 2021, 209(2): 11-15. |
王冰清, 张学平, 陈杰, 等. 竹节树、湿地松对污泥重金属的吸附与耐受能力研究. 防护林科技, 2021, 209(2): 11-15. | |
30 | Yang E H. Effects of lead and cadmium stress on germination and seeding morphology of wheat and identification of the tolerance (resistance) for American wheat germplasm. Xianyang: Northwest A&F University, 2017. |
杨二航. 铅、镉胁迫对小麦种子萌发和幼苗形态的影响及美国小麦种质耐(抗)性鉴定. 咸阳: 西北农林科技大学, 2017. | |
31 | Li H S. Modern plant physiology. Beijing: Higher Education Press, 2002: 421-429. |
李合生.现代植物生理学. 北京: 高等教育出版社, 2002: 421-429. | |
32 | Zhang J Q, Chen J L, Li F, et al. Responses of seed germination and seedling growth of Poa pratensis to lead stress. Acta Agrestia Sinica, 2020, 28(1): 130-140. |
张金青, 陈金龙, 李凡, 等. 草地早熟禾种子萌发和幼苗生长对铅胁迫的适应性. 草地学报, 2020, 28(1): 130-140. | |
33 | Wang M, Wang J X, Wang Y X, et al. Effects of lead stress on seed and seedling of Bothriochloa ischaemum under different soil moisture. Acta Agrestia Sinica, 2016, 24(4): 841-848. |
王敏, 王进鑫, 王榆鑫, 等. 不同土壤水分条件下铅胁迫对白羊草种子和幼苗的影响. 草地学报, 2016, 24(4): 841-848. | |
34 | Liu H Q, Han J C, Liu H P, et al. Influence of lead gradient stress on the physiological and biochemical characteristics of perennial ryegrass (Lolium perenne) seedlings. Acta Prataculturae Sinica, 2012, 21(6): 57-63. |
刘慧芹, 韩巨才, 刘慧平, 等. 铅梯度胁迫对多年生黑麦草幼苗生理生化特性影响. 草业学报, 2012, 21(6): 57-63. | |
35 | Chen J W. Study on response and potential phytoremediation of Bidens pilosa L.in cadmium and lead stress. Chongqing: Southwest University, 2013. |
谌金吾. 三叶鬼针草(Bidens pilosa L.)对重金属Cd、Pb胁迫的响应与修复潜能研究. 重庆: 西南大学, 2013. | |
36 | Li H F, Wang Y, Yuan Q H, et al. The impacts of lead stress on the growth of forage grasses and their enzyme activities. Seed, 2014, 33(8): 1-7. |
李慧芳, 王瑜, 袁庆华, 等. 铅胁迫对禾本科牧草的生长及体内酶活性的影响. 种子, 2014, 33(8): 1-7. | |
37 | Cheng J M, Pan G X, Zheng G W, et al. Several paddy soils buffering capacity to heavy metals in Tai Lake area. Agricultural Environmental Protection, 2000, 19(1): 21-24. |
成杰民, 潘根兴, 郑根伟, 等. 太湖地区几种水稻土对重金属的缓冲能力初探. 农业环境保护, 2000, 19(1): 21-24. | |
38 | Han Z P, Wang C Y. Accumulation and distribution of cadmium, lead, mercury, and copper in Arundo donax of different ecotype. Ecology and Environment, 2007(4): 1092-1097. |
韩志萍, 王趁义. 不同生态型芦竹对Cd、Hg、Pb、Cu的富集与分布. 生态环境, 2007(4): 1092-1097. | |
39 | Xu Y M, Wang C Q, Wu J X, et al. Effects of Mn2+ and Pb2+ on seed germination and seedling growth of Elymus nutans. Acta Prataculturae Sinica, 2018, 27(3): 194-200. |
徐雅梅, 王传旗, 武俊喜, 等. Mn2+、Pb2+对野生垂穗披碱草种子萌发与幼苗生长的影响. 草业学报, 2018, 27(3): 194-200. | |
40 | Liu X Q, Peng K J, Wang A G, et al. Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere, 2010, 78(9): 1136-1141. |
41 | Kovalchuk I, Titov V, Hohn B, et al. Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutation Research, 2005, 570(2): 149-161. |
42 | Chen M Y. Study on tolerance and enrichment characteristics of cadmium, lead in Malva sinensis Cavan. Chengdu: Sichuan Agricultural University, 2011. |
陈明英. 锦葵对镉、铅的耐性和富集特征研究. 成都: 四川农业大学, 2011. | |
43 | Dong Y T, Cui Y S, Wang Q R. Uptake of Cd, Zn and Pb by two susceptible plants under mono- and multiple-contamination conditions. Acta Ecologica Sinica, 2003(5): 1018-1024. |
董艺婷, 崔岩山, 王庆仁. 单一与复合污染条件下两种敏感性植物对Cd、Zn、Pb的吸收效应. 生态学报, 2003(5): 1018-1024. | |
44 | Punamiya P, Datta R, Sarkar D, et al. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass. Journal of Hazardous Materials, 2010, 177(1): 465-474. |
45 | Vega F A, Andrade M L, Covelo E F. Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: comparison of linear regression and tree regression analyses. Journal of Hazardous Materials, 2010, 174(1): 522-533. |
[1] | Shao-ying MA, Gui-ping CHEN, Na WANG, Lei MA, Rong-fang LIAN, Sheng LI, Xu-cheng ZHANG. Identification of potential autotoxic substances in pea soil and analysis of their autotoxic effects [J]. Acta Prataculturae Sinica, 2023, 32(6): 134-145. |
[2] | Wei-peng HE, Xia-song HU, Chang-yi LIU, Xuan LI, Xi-lai LI, Jiang-tao FU, Hai-jing LU, Fu-cheng YANG, Guo-rong LI. Impact of the different duration years of grazing prohibition on the mechanical strength characteristics of Elymus nutans roots and its composite systems in the Yellow River source region [J]. Acta Prataculturae Sinica, 2023, 32(5): 106-117. |
[3] | Jiao-yun LU, Hong TIAN, He-shan ZHANG, Jun-bo XIONG, Yang LIU, Zhen-nan WANG. Effects of H2O2 immersion on seed germination and seedling growth of alfalfa under salt stress [J]. Acta Prataculturae Sinica, 2023, 32(10): 141-152. |
[4] | Hao-yu XU, Ying ZHAO, Qian RUAN, Xiao-lin ZHU, Bao-qiang WANG, Xiao-hong WEI. Resistance of quinoa seedlings under different salt-alkali stress levels [J]. Acta Prataculturae Sinica, 2023, 32(1): 122-130. |
[5] | Wen-hui XIE, Li-juan HUANG, Li-li ZHAO, Lei-ting WANG, Wen-wu ZHAO. Effects of calcium salt stress on seed germination and seedling physiological characteristics of three Pueraria lobata germplasm lines [J]. Acta Prataculturae Sinica, 2022, 31(7): 220-233. |
[6] | Dong-rong HAN, Tuo YAO, Hai-yun LI, Min-hao CHEN, Ya-min GAO, Chang-ning LI, Jie BAI, Ming SU. Effect of reducing chemical fertilizer and substitution with microbial fertilizer on the growth of Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(4): 53-61. |
[7] | Peng ZHANG, Xi REN, Si-yu MENG, Xiao-xing WEI, Gen-sheng BAO. Effects of Epichloё endophyte on seed germination and seedling growth of Stipa purpurea under salt stress [J]. Acta Prataculturae Sinica, 2022, 31(10): 110-121. |
[8] | Chuan-qi WANG, Wen-hui LIU, Yong-chao ZHANG, Qing-ping ZHOU. Drought tolerance of wild Elymus nutans during germination and seedling establishment [J]. Acta Prataculturae Sinica, 2021, 30(9): 76-85. |
[9] | Zhen-lian FAN, Yang-jie JIA, Yuan FAN, Hui-ping SONG, Zheng-jun FENG. Growth of Elymus nutans in saline saline-alkali soil amended with calcium silicate slag: Performance and mechanism [J]. Acta Prataculturae Sinica, 2021, 30(2): 93-101. |
[10] | Hui-fang YAN, Juan SUN. Effect of seed moisture content and deterioration time on seed vigor and seedling growth of Sorghum bicolor×Sorghum sudanense [J]. Acta Prataculturae Sinica, 2021, 30(12): 152-160. |
[11] | Yu-lian GAO, Jing CHANG, Yi-hui WANG, Feng LI, Hai-ping LI, Chong-yong MA. Allelopathic effects of Stellera chamaejasme on seed germination and growth of three crops [J]. Acta Prataculturae Sinica, 2021, 30(10): 83-91. |
[12] | LI Feng-lan, WU Jia-wen, YAO Shu-kuan, ZHAO Zi-yi, ZHAO Xiao-can, HE Fu-meng, ZHU Yuan-fang, SHI Qi-hai, ZHOU Lei, XU Yong-qing. A study of the allelopathic effect of extracts from different parts of Iva xanthiifolia on five native species [J]. Acta Prataculturae Sinica, 2020, 29(9): 169-178. |
[13] | CUI Xue-lian, XIA Chao. Effect of exogenous abscisic acid on seedling establishment of Epichloё gansuensis-Achnatherum inebrians symbiont [J]. Acta Prataculturae Sinica, 2020, 29(7): 70-80. |
[14] | LIANG Jun, QUAN Xiao-long, ZHANG Jie-xue, SHI Hui-lan, DUAN Zhong-hua, QIAO You-ming. Potential allelopathic effects of water extracts of three grasses on germination of their own seeds and seedling growth [J]. Acta Prataculturae Sinica, 2020, 29(7): 81-89. |
[15] | LI Ke, SHI Chong, HE Fei-yan, LI Hao-yu. Effects of endophyte infection on growth and physiological characteristics of Melica transsilvanica under Pb stress [J]. Acta Prataculturae Sinica, 2020, 29(3): 112-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||