Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (7): 1-14.DOI: 10.11686/cyxb2023319
Jie SHE1(), Ai-hong SHEN2, Yun SHI1(), Na ZHAO1, Feng-hong ZHANG3, Hong-yuan HE3, Tao WU4, Hong-xia LI1, Yi-ting MA1, Xiao-wen ZHU1
Received:
2023-09-04
Revised:
2023-10-25
Online:
2024-07-20
Published:
2024-04-08
Contact:
Yun SHI
Jie SHE, Ai-hong SHEN, Yun SHI, Na ZHAO, Feng-hong ZHANG, Hong-yuan HE, Tao WU, Hong-xia LI, Yi-ting MA, Xiao-wen ZHU. Vegetation classification of UAV remote sensing images in desert steppe based on object-oriented technology[J]. Acta Prataculturae Sinica, 2024, 33(7): 1-14.
类别Type | 特征名称Feature name | 数量Number |
---|---|---|
光谱特征 Spectral feature | 红光波段标准差、绿光波段标准差、蓝光波段标准差、红光波段平均值、绿光波段平均值、蓝光波段平均值、色度、亮度值、饱和度、最大值Standard deviation-red, standard deviation-green, standard deviation-blue, mean-red, mean-green, mean-blue, hue, brightness, saturation, max | 10 |
纹理特征 Texture feature | 均值、方差、同质性、对比度、异质性、信息熵、能量(角二阶矩)、相关性Mean, variance, homogeneity, contrast, heterogeneity, entropy, angular second moment, correlation | 8 |
Table 1 Characteristic variable statistics
类别Type | 特征名称Feature name | 数量Number |
---|---|---|
光谱特征 Spectral feature | 红光波段标准差、绿光波段标准差、蓝光波段标准差、红光波段平均值、绿光波段平均值、蓝光波段平均值、色度、亮度值、饱和度、最大值Standard deviation-red, standard deviation-green, standard deviation-blue, mean-red, mean-green, mean-blue, hue, brightness, saturation, max | 10 |
纹理特征 Texture feature | 均值、方差、同质性、对比度、异质性、信息熵、能量(角二阶矩)、相关性Mean, variance, homogeneity, contrast, heterogeneity, entropy, angular second moment, correlation | 8 |
方案 Option | 特征名称 Feature name | 数量Number |
---|---|---|
全部特征 All features | 红光波段标准差、绿光波段标准差、蓝光波段标准差、红光波段平均值、绿光波段平均值、蓝光波段平均值、色度、亮度值、饱和度、最大值、均值、方差、同质性、对比度、异质性、信息熵、能量(角二阶矩)、相关性Standard deviation-red, standard deviation-green, standard deviation-blue, mean-red, mean-green, mean-blue, hue, brightness, saturation, max, mean, variance, homogeneity, contrast, heterogeneity, entropy, angular second moment, correlation | 18 |
贡献度大于0 Contribution degree>0 | 红光波段标准差、绿光波段标准差、蓝光波段标准差、红光波段平均值、蓝光波段平均值、亮度值、最大值、均值、方差、同质性、信息熵、能量(角二阶矩)、相关性Standard deviation-red, standard deviation-green, standard deviation-blue, mean-red, mean-blue, brightness, max, mean, variance, homogeneity, entropy, angular second moment, correlation | 13 |
贡献度大于0.50% Contribution degree>0.50% | 蓝光波段平均值、红光波段标准差、绿光波段标准差、蓝光波段标准差、亮度值、最大值、方差、同质性、信息熵、能量(角二阶矩)、相关性Mean-blue, standard deviation-red, standard deviation-green, standard deviation-blue, brightness, max, variance, homogeneity, entropy, angular second moment, correlation | 11 |
贡献度大于1.00% Contribution degree>1.00% | 蓝光波段平均值、红光波段标准差、绿光波段标准差、蓝光波段标准差、亮度值、最大值、方差、同质性、信息熵、能量(角二阶矩)Mean-blue, standard deviation-red, standard deviation-green, standard deviation-blue, brightness, max, variance, homogeneity, entropy, angular second moment | 10 |
Table 2 Features contained in different feature combinations
方案 Option | 特征名称 Feature name | 数量Number |
---|---|---|
全部特征 All features | 红光波段标准差、绿光波段标准差、蓝光波段标准差、红光波段平均值、绿光波段平均值、蓝光波段平均值、色度、亮度值、饱和度、最大值、均值、方差、同质性、对比度、异质性、信息熵、能量(角二阶矩)、相关性Standard deviation-red, standard deviation-green, standard deviation-blue, mean-red, mean-green, mean-blue, hue, brightness, saturation, max, mean, variance, homogeneity, contrast, heterogeneity, entropy, angular second moment, correlation | 18 |
贡献度大于0 Contribution degree>0 | 红光波段标准差、绿光波段标准差、蓝光波段标准差、红光波段平均值、蓝光波段平均值、亮度值、最大值、均值、方差、同质性、信息熵、能量(角二阶矩)、相关性Standard deviation-red, standard deviation-green, standard deviation-blue, mean-red, mean-blue, brightness, max, mean, variance, homogeneity, entropy, angular second moment, correlation | 13 |
贡献度大于0.50% Contribution degree>0.50% | 蓝光波段平均值、红光波段标准差、绿光波段标准差、蓝光波段标准差、亮度值、最大值、方差、同质性、信息熵、能量(角二阶矩)、相关性Mean-blue, standard deviation-red, standard deviation-green, standard deviation-blue, brightness, max, variance, homogeneity, entropy, angular second moment, correlation | 11 |
贡献度大于1.00% Contribution degree>1.00% | 蓝光波段平均值、红光波段标准差、绿光波段标准差、蓝光波段标准差、亮度值、最大值、方差、同质性、信息熵、能量(角二阶矩)Mean-blue, standard deviation-red, standard deviation-green, standard deviation-blue, brightness, max, variance, homogeneity, entropy, angular second moment | 10 |
分类方法 Classification method | 全部特征 All features | 贡献度大于0 Contribution degree>0 | 贡献度大于0.50% Contribution degree>0.50% | 贡献度大于1.00% Contribution degree>1.00% | ||||
---|---|---|---|---|---|---|---|---|
总体分类精度Overall accuracy (%) | Kappa系数 Kappa coefficient | 总体分类精度Overall accuracy (%) | Kappa系数Kappa coefficient | 总体分类精度Overall accuracy (%) | Kappa系数Kappa coefficient | 总体分类精度Overall accuracy (%) | Kappa系数Kappa coefficient | |
分类回归树CART | 80.60 | 0.67 | 80.47 | 0.67 | 84.83 | 0.74 | 84.83 | 0.74 |
K最邻近KNN | 83.83 | 0.73 | 83.68 | 0.72 | 84.29 | 0.73 | 84.29 | 0.73 |
随机森林RF | 86.29 | 0.76 | 85.63 | 0.75 | 86.77 | 0.78 | 87.77 | 0.79 |
支持向量机SVM | 65.54 | 0.46 | 63.53 | 0.47 | 86.24 | 0.76 | 86.24 | 0.76 |
Table 3 Compare the classification accuracy of different feature combinations and classification methods
分类方法 Classification method | 全部特征 All features | 贡献度大于0 Contribution degree>0 | 贡献度大于0.50% Contribution degree>0.50% | 贡献度大于1.00% Contribution degree>1.00% | ||||
---|---|---|---|---|---|---|---|---|
总体分类精度Overall accuracy (%) | Kappa系数 Kappa coefficient | 总体分类精度Overall accuracy (%) | Kappa系数Kappa coefficient | 总体分类精度Overall accuracy (%) | Kappa系数Kappa coefficient | 总体分类精度Overall accuracy (%) | Kappa系数Kappa coefficient | |
分类回归树CART | 80.60 | 0.67 | 80.47 | 0.67 | 84.83 | 0.74 | 84.83 | 0.74 |
K最邻近KNN | 83.83 | 0.73 | 83.68 | 0.72 | 84.29 | 0.73 | 84.29 | 0.73 |
随机森林RF | 86.29 | 0.76 | 85.63 | 0.75 | 86.77 | 0.78 | 87.77 | 0.79 |
支持向量机SVM | 65.54 | 0.46 | 63.53 | 0.47 | 86.24 | 0.76 | 86.24 | 0.76 |
方法 Method | 类别 Type | 砾石 Gravel | 斑子麻黄 E. rhytidosperma | 松叶猪毛菜 S. laricifolia | 刺旋花 C. tragacanthoides | 短花针茅 S. breviflora | 裸地 Bare land | 总体分类精度Overall accuracy (%) | Kappa系数 Kappa coefficient |
---|---|---|---|---|---|---|---|---|---|
分类回归树CART | 砾石Gravel | 79.14 | 2.71 | 0.52 | 10.52 | 2.61 | 27.45 | 84.83 | 0.74 |
斑子麻黄E. rhytidosperma | 0.01 | 56.24 | 0.04 | 0.00 | 0.09 | 0.02 | |||
松叶猪毛菜S. laricifolia | 7.48 | 19.13 | 78.82 | 12.65 | 4.91 | 0.01 | |||
刺旋花C. tragacanthoides | 1.57 | 0.27 | 4.51 | 55.05 | 0.38 | 0.00 | |||
短花针茅S. breviflora | 10.63 | 21.62 | 15.68 | 21.72 | 91.47 | 6.24 | |||
裸地Bare land | 1.17 | 0.03 | 0.43 | 0.07 | 0.54 | 66.27 | |||
K最邻近KNN | 砾石Gravel | 80.82 | 0.58 | 2.28 | 10.35 | 2.26 | 25.15 | 84.29 | 0.73 |
斑子麻黄E. rhytidosperma | 0.01 | 71.10 | 0.01 | 0.00 | 0.29 | 0.00 | |||
松叶猪毛菜S. laricifolia | 7.37 | 10.74 | 71.75 | 19.47 | 5.58 | 0.03 | |||
刺旋花C. tragacanthoides | 2.10 | 0.27 | 7.26 | 53.58 | 0.21 | 0.00 | |||
短花针茅S. breviflora | 7.81 | 16.77 | 18.29 | 16.47 | 91.54 | 5.35 | |||
裸地Bare land | 1.89 | 0.55 | 0.40 | 0.13 | 0.12 | 69.47 | |||
随机森林RF | 砾石Gravel | 82.90 | 0.69 | 0.26 | 6.34 | 1.78 | 31.72 | 87.77 | 0.79 |
斑子麻黄E. rhytidosperma | 0.00 | 27.58 | 0.00 | 0.00 | 0.00 | 0.00 | |||
松叶猪毛菜S. laricifolia | 8.23 | 12.60 | 81.23 | 19.53 | 2.66 | 0.03 | |||
刺旋花C. tragacanthoides | 0.93 | 0.18 | 1.65 | 57.61 | 0.24 | 0.00 | |||
短花针茅S. breviflora | 0.00 | 58.80 | 16.86 | 16.52 | 95.21 | 1.58 | |||
裸地Bare land | 0.41 | 0.13 | 0.01 | 0.00 | 0.11 | 66.67 | |||
支持向量机SVM | 砾石Gravel | 83.01 | 0.44 | 0.75 | 9.65 | 1.15 | 33.10 | 86.24 | 0.76 |
斑子麻黄E. rhytidosperma | 0.00 | 62.19 | 0.00 | 0.00 | 0.00 | 0.02 | |||
松叶猪毛菜S. laricifolia | 8.36 | 22.76 | 78.06 | 70.73 | 3.30 | 0.03 | |||
刺旋花C. tragacanthoides | 1.12 | 0.02 | 8.54 | 28.23 | 0.17 | 0.00 | |||
短花针茅S. breviflora | 6.35 | 14.45 | 12.64 | 16.74 | 95.36 | 5.92 | |||
裸地Bare land | 1.15 | 0.14 | 0.00 | 0.00 | 0.01 | 60.92 |
Table 4 Classification confusion matrix and precision comparison of different classification methods based on optimal features
方法 Method | 类别 Type | 砾石 Gravel | 斑子麻黄 E. rhytidosperma | 松叶猪毛菜 S. laricifolia | 刺旋花 C. tragacanthoides | 短花针茅 S. breviflora | 裸地 Bare land | 总体分类精度Overall accuracy (%) | Kappa系数 Kappa coefficient |
---|---|---|---|---|---|---|---|---|---|
分类回归树CART | 砾石Gravel | 79.14 | 2.71 | 0.52 | 10.52 | 2.61 | 27.45 | 84.83 | 0.74 |
斑子麻黄E. rhytidosperma | 0.01 | 56.24 | 0.04 | 0.00 | 0.09 | 0.02 | |||
松叶猪毛菜S. laricifolia | 7.48 | 19.13 | 78.82 | 12.65 | 4.91 | 0.01 | |||
刺旋花C. tragacanthoides | 1.57 | 0.27 | 4.51 | 55.05 | 0.38 | 0.00 | |||
短花针茅S. breviflora | 10.63 | 21.62 | 15.68 | 21.72 | 91.47 | 6.24 | |||
裸地Bare land | 1.17 | 0.03 | 0.43 | 0.07 | 0.54 | 66.27 | |||
K最邻近KNN | 砾石Gravel | 80.82 | 0.58 | 2.28 | 10.35 | 2.26 | 25.15 | 84.29 | 0.73 |
斑子麻黄E. rhytidosperma | 0.01 | 71.10 | 0.01 | 0.00 | 0.29 | 0.00 | |||
松叶猪毛菜S. laricifolia | 7.37 | 10.74 | 71.75 | 19.47 | 5.58 | 0.03 | |||
刺旋花C. tragacanthoides | 2.10 | 0.27 | 7.26 | 53.58 | 0.21 | 0.00 | |||
短花针茅S. breviflora | 7.81 | 16.77 | 18.29 | 16.47 | 91.54 | 5.35 | |||
裸地Bare land | 1.89 | 0.55 | 0.40 | 0.13 | 0.12 | 69.47 | |||
随机森林RF | 砾石Gravel | 82.90 | 0.69 | 0.26 | 6.34 | 1.78 | 31.72 | 87.77 | 0.79 |
斑子麻黄E. rhytidosperma | 0.00 | 27.58 | 0.00 | 0.00 | 0.00 | 0.00 | |||
松叶猪毛菜S. laricifolia | 8.23 | 12.60 | 81.23 | 19.53 | 2.66 | 0.03 | |||
刺旋花C. tragacanthoides | 0.93 | 0.18 | 1.65 | 57.61 | 0.24 | 0.00 | |||
短花针茅S. breviflora | 0.00 | 58.80 | 16.86 | 16.52 | 95.21 | 1.58 | |||
裸地Bare land | 0.41 | 0.13 | 0.01 | 0.00 | 0.11 | 66.67 | |||
支持向量机SVM | 砾石Gravel | 83.01 | 0.44 | 0.75 | 9.65 | 1.15 | 33.10 | 86.24 | 0.76 |
斑子麻黄E. rhytidosperma | 0.00 | 62.19 | 0.00 | 0.00 | 0.00 | 0.02 | |||
松叶猪毛菜S. laricifolia | 8.36 | 22.76 | 78.06 | 70.73 | 3.30 | 0.03 | |||
刺旋花C. tragacanthoides | 1.12 | 0.02 | 8.54 | 28.23 | 0.17 | 0.00 | |||
短花针茅S. breviflora | 6.35 | 14.45 | 12.64 | 16.74 | 95.36 | 5.92 | |||
裸地Bare land | 1.15 | 0.14 | 0.00 | 0.00 | 0.01 | 60.92 |
1 | Ye J Y. Remote sensing information extraction and inversion of vegetation in dryland areas. Beijing: Chinese Academy of Forestry, 2017. |
叶静芸. 旱区植被遥感信息提取与反演. 北京: 中国林业科学研究院, 2017. | |
2 | Fang K, Song N P, An H, et al. Quantitative classification and ordination of plant communities in a desert steppe in Yanchi County of Ningxia, Northwest China. Chinese Journal of Ecology, 2011, 30(12): 2719-2725. |
方楷, 宋乃平, 安慧, 等. 宁夏盐池荒漠草原植被的数量分类和排序. 生态学杂志, 2011, 30(12): 2719-2725. | |
3 | Wang G, Ding H X. Recognition of vegetation types in Leizhou peninsula based on Sentinel-2A data. Bulletin of Surveying and Mapping, 2022(3): 76-82. |
王刚, 丁华祥. Sentinel-2A数据支持下的雷州半岛植被类型识别. 测绘通报, 2022(3): 76-82. | |
4 | Huang Y F, Lu C Y, Jia M M, et al. Plant species classification of coastal wetlands based on UAV images and object-oriented deep learning. Biodiversity Science, 2023, 31(3): 143-158. |
黄雨菲, 路春燕, 贾明明, 等. 基于无人机影像与面向对象-深度学习的滨海湿地植物物种分类. 生物多样性, 2023, 31(3): 143-158. | |
5 | Sui J M, Song N P, Xue Y, et al. The method of extracting vegetation coverage in the desert steppe based on photographic. Chinese Journal of Grassland, 2019, 41(2): 58-64. |
随金明, 宋乃平, 薛毅, 等. 基于照相法的荒漠草原植被覆盖度测定方法. 中国草地学报, 2019, 41(2): 58-64. | |
6 | Baatz M. Object-oriented and multi-scale image analysis in semantic networks//Proceedings of the 2nd international symposium on operationalization of remote sensing. Enschede: International Trade Center, 1999. |
7 | Tian L J, Song W L, Lu Y Z, et al. Rapid monitoring and classification of landuse in agricultural areas by UAV based on deep learning method. Journal of China Institute of Water Resources and Hydropower Research, 2019, 17(4): 312-320. |
田琳静, 宋文龙, 卢奕竹, 等. 基于深度学习的农业区土地利用无人机监测分类. 中国水利水电科学研究院学报, 2019, 17(4): 312-320. | |
8 | Zhao Q Z, Jiang P, Wang X W, et al. Classification of protection forest tree species based on UAV hyperspectral data. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 190-199. |
赵庆展, 江萍, 王学文, 等. 基于无人机高光谱遥感影像的防护林树种分类. 农业机械学报, 2021, 52(11): 190-199. | |
9 | Yan Y, Deng L, Liu X L, et al. Application of UAV-based multi-angle hyperspectral remote sensing in fine vegetation classification. Remote Sensing, 2019, 11(23): 2753. |
10 | Yang C X, Liu H H, Zhang C. UAV hyperspectral remote sensing image crop fine classification based on SVM and RF. Henan Science, 2020, 38(12): 1987-1995. |
阳昌霞, 刘汉湖, 张春. 基于SVM与RF的无人机高光谱农作物精细分类. 河南科学, 2020, 38(12): 1987-1995. | |
11 | Jiang Y F, Qi J G, Chen B W, et al. Classification of mangrove species with UAV hyperspectral imagery and machine learning methods. Remote Sensing Technology and Application, 2021, 36(6): 1416-1424. |
姜玉峰, 齐建国, 陈博伟, 等. 基于无人机高光谱影像和机器学习的红树林树种精细分类. 遥感技术与应用, 2021, 36(6): 1416-1424. | |
12 | Li F F, Liu Z J, Xu Q Q, et al. Application of object-oriented random forest method in wetland vegetation classification. Remote Sensing Information, 2018, 33(1): 111-116. |
李方方, 刘正军, 徐强强, 等. 面向对象随机森林方法在湿地植被分类的应用. 遥感信息, 2018, 33(1): 111-116. | |
13 | Shojanoori R, Shafri H Z M, Mansor S, et al. The use of WorldView-2 satellite data in urban tree species mapping by object-based image analysis technique. Sains Malaysiana, 2016, 45(7): 1025-1034. |
14 | Hao M Y, Qin L J, Mao P, et al. Unmanned aerial vehicle (UAV) based methodology for spatial distribution pattern analysis of desert vegetation. Journal of Desert Research, 2020, 40(6): 169-179. |
郝梦宇, 秦龙君, 毛鹏, 等. 基于无人机可见光影像的荒漠植被分布格局研究方法. 中国沙漠, 2020, 40(6): 169-179. | |
15 | Immitzer M, Atzberger C, Koukal T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sensing, 2012, 4(9): 2661-2693. |
16 | Li F X. Application and discussion of UAV technology in ecological remote sensing monitoring of grassland. Bulletin of Surveying and Mapping, 2017(7): 99-102, 107. |
李风贤. 无人机技术在草原生态遥感监测中的应用与探讨. 测绘通报, 2017(7): 99-102, 107. | |
17 | Wang Y, Bi Y G. Simplified learning classification model based on UAV hyperspectral remote sensing for desert steppe terrain. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(11): 236-243. |
王圆, 毕玉革. 基于无人机高光谱的荒漠草原地物精简学习分类模型. 农业机械学报, 2022, 53(11): 236-243. | |
18 | Yang H Y, Du J M, Ruan P Y, et al. Vegetation classification of desert steppe based on unmanned aerial vehicle remote sensing and random forest. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(6): 186-194. |
杨红艳, 杜健民, 阮培英, 等. 基于无人机遥感与随机森林的荒漠草原植被分类方法. 农业机械学报, 2021, 52(6): 186-194. | |
19 | Liu B R. Changes in soil microbial biomass carbon and nitrogen under typical plant communies along an altitudinal gradient in east side of Helan Mountain, China. Ecology and Environmental Sciences, 2010, 19(4): 883-888. |
刘秉儒. 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征. 生态环境学报, 2010, 19(4): 883-888. | |
20 | Su C, Ma W H, Zhang X Y, et al. Species composition and structure characteristics of the major montane shrub communities in the west slope of Helan Mountains, Nei Mongol, China. Chinese Journal of Plant Ecology, 2018, 42(10): 1050-1054. |
苏闯, 马文红, 张芯毓, 等. 贺兰山西坡主要山地灌丛群落的基本特征. 植物生态学报, 2018, 42(10): 1050-1054. | |
21 | Zhao L, Yang B, Liu W D, et al. Sex ratio and spatial pattern of Ephedra rhytidosperma in Helan Mountain of Ningxia. Acta Ecologica Sinica, 2022, 42(24): 10297-10304. |
赵玲, 杨博, 刘万弟, 等. 宁夏贺兰山斑子麻黄种群的性比及雌雄空间格局. 生态学报, 2022, 42(24): 10297-10304. | |
22 | Shi B, Dou J D, Huang W, et al. Community characteristics of Ephedra rhytidosperma in Helan Mountain of Ningxia, China. Chinese Journal of Plant Ecology, 2022, 46(3): 362-367. |
师斌, 窦建德, 黄维, 等. 宁夏贺兰山斑子麻黄荒漠群落特征. 植物生态学报, 2022, 46(3): 362-367. | |
23 | Liang C Z, Zhu Z Y, Li Z G, et al. Vegetation of Helan Mountain. Yinchuan: Sunshine Press, 2012: 142-144. |
梁存柱, 朱宗元, 李志刚, 等. 贺兰山植被. 银川: 阳光出版社, 2012: 142-144. | |
24 | Liu B R, Zhang X Z, Hu T H, et al. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains. Acta Ecologica Sinica, 2013, 33(22): 7211-7220. |
刘秉儒, 张秀珍, 胡天华, 等. 贺兰山不同海拔典型植被带土壤微生物多样性. 生态学报, 2013, 33(22): 7211-7220. | |
25 | Dong X M, Zhang Y N, Li S H. Afforestation technology of different site types in piedmont diluvial fan at eastern foot of Helan Mountain. Modern Agricultural Science and Technology, 2013(17): 199. |
董新明, 张亚宁, 李生红. 贺兰山东麓山前洪积扇不同立地类型造林技术. 现代农业科技, 2013(17): 199. | |
26 | Dai J G, Zhang G S, Guo P, et al. Classification method of main crops in northern Xinjiang based on UAV visible waveband images. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 122-129. |
戴建国, 张国顺, 郭鹏, 等. 基于无人机遥感可见光影像的北疆主要农作物分类方法. 农业工程学报, 2018, 34(18): 122-129. | |
27 | Zhang G H, Wang X J, Xu X L, et al. Desert vegetation classification based on object-oriented UAV remote sensing images. Journal of Agricultural Science and Technology, 2021, 23(5): 69-77. |
张冠宏, 王新军, 徐晓龙, 等. 基于面向对象的无人机遥感影像荒漠植被分类. 中国农业科技导报, 2021, 23(5): 69-77. | |
28 | Zhang S Y, Li Z F, Xu F, et al. Optimization of estuary wetland landscape classification based on multi-temporal UAV images. Chinese Journal of Ecology, 2020, 39(9): 3174-3184. |
张舒昱, 李兆富, 徐锋, 等. 基于多时相无人机遥感影像优化河口湿地景观分类. 生态学杂志, 2020, 39(9): 3174-3184. | |
29 | Wu Z C, Hu Z W, Zhang Q, et al. On combining spectral, textural and shape feature for remote sensing image segmentation. Acta Geodaetica et Cartographica Sinica, 2013, 42(1): 44-50. |
巫兆聪, 胡忠文, 张谦, 等. 结合光谱、纹理与形状结构信息的遥感影像分割方法. 测绘学报, 2013, 42(1): 44-50. | |
30 | Zhang W B, Kong J L, Yang Y Y, et al. Fine vegetation classification of remote sensing in arid areas based on object-oriented method. Science of Surveying and Mapping, 2021, 46(1): 136-140, 183. |
张文博, 孔金玲, 杨园园, 等. 面向对象的旱区植被遥感精细分类研究. 测绘科学, 2021, 46(1): 136-140, 183. | |
31 | Li Z, Zhang Q Y, Qiu X C, et al. Temporal stage and method selection of tree species classification based on GF-2 remote sensing image. Chinese Journal of Applied Ecology, 2019, 30(12): 4059-4070. |
李哲, 张沁雨, 邱新彩, 等. 基于高分二号遥感影像树种分类的时相及方法选择. 应用生态学报, 2019, 30(12): 4059-4070. | |
32 | Zhang M L, Zhou Z H. A review on multi-label learning algorithms. IEEETransactions on Knowledge and Data Engineering, 2013, 26(8): 1819-1837. |
33 | Xiao Y, Jiang Q G, Wang B, et al. Object based land-use classification based on hybrid feature selection method of combining ReliefF and PSO. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 211-216. |
肖艳, 姜琦刚, 王斌, 等. 基于ReliefF和PSO混合特征选择的面向对象土地利用分类. 农业工程学报, 2016, 32(4): 211-216. | |
34 | Ding X M, Wang H J, Wang S G, et al. Unsupervised feature selection method based on improved ReliefF. Computer Systems Applications, 2018, 27(3): 149-155. |
丁雪梅, 王汉军, 王炤光, 等. 基于改进ReliefF的无监督特征选择方法. 计算机系统应用, 2018, 27(3): 149-155. | |
35 | Cheng Q Q, Wang L L, Zheng T, et al. Microblogg friend recommendation based on multi-feature classification. Computer Engineering, 2015, 41(4): 65-69, 80. |
程倩倩, 王路路, 郑涛, 等. 基于多特征分类的微博好友推荐. 计算机工程, 2015, 41(4): 65-69, 80. | |
36 | Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999. |
37 | Yang C, Wu G F, Li Q Q, et al. Research progress on remote sensing classification of vegetation. Geography and Geo-Information Science, 2018, 34(4): 24-32. |
杨超, 邬国锋, 李清泉, 等. 植被遥感分类方法研究进展. 地理与地理信息科学, 2018, 34(4): 24-32. | |
38 | Du P J, Xia J S, Xue Z H, et al. Review of hyperspectral remote sensing image classification. National Remote Sensing Bulletin, 2016, 20(2): 236-256. |
杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展. 遥感学报, 2016, 20(2): 236-256. | |
39 | Lv J X. Fall detection method research based on RGB-D image sequence. Shenyang: Shenyang Aerospace University, 2020. |
吕健雄. 基于RGB-D图像序列的摔倒检测方法研究. 沈阳: 沈阳航空航天大学, 2020. | |
40 | Tian Y, Jia M, Wang Z, et al. Monitoring invasion process of Spartina alterniflora by seasonal Sentinel-2 imagery and an object-based random forest classification. Remote Sensing, 2020, 12(9): 1383. |
41 | Moreno M Á, Camps V G, Kattge J, et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sensing of Environment, 2018, 218: 69-88. |
42 | Zhang L, Ning X. Two improvements on CART decision tree and its application. Computer Engineering and Design, 2015, 36(5): 1209-1213. |
张亮, 宁芊. CART决策树的两种改进及应用. 计算机工程与设计, 2015, 36(5): 1209-1213. | |
43 | Congalton R G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 1991, 37(1): 35-46. |
44 | Gao Z Z, Dai F H. Vegetation in Ningxia. Yinchuan: Ningxia People’s Publishing House, 1988: 245-246. |
高正中, 戴法和. 宁夏植被. 银川: 宁夏人民出版社, 1988: 245-246. | |
45 | Jing R, Deng L, Zhao W J, et al. Object-oriented aquatic vegetation extracting approach based on visible vegetation indices. Chinese Journal of Applied Ecology, 2016, 27(5): 1427-1436. |
井然, 邓磊, 赵文吉, 等. 基于可见光植被指数的面向对象湿地水生植被提取方法. 应用生态学报, 2016, 27(5): 1427-1436. | |
46 | Na M L, Li Y, Wang W Y, et al. Identification of typical species in desert steppe based on unmanned aerial vehicle multispectral images. China Agricultural Informatics, 2022, 34(2): 37-48. |
那木拉, 李渊, 王乌云, 等. 基于无人机多光谱影像的荒漠草原典型物种识别. 中国农业信息, 2022, 34(2): 37-48. | |
47 | Ballanti L, Blesius L, Hines E, et al. Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sensing, 2016, 8(6): 445. |
48 | Xie Z, Chen Y, Lu D, et al. Classification of land cover, forest, and tree species classes with ZiYuan-3 multispectral and stereo data. Remote Sensing, 2019, 11(2): 164. |
49 | Fang F, Mcneil B E, Warner T A, et al. Discriminating tree species at different taxonomic levels using multi-temporal WorldView-3 imagery in Washington DC, USA. Remote Sensing of Environment, 2020, 246: 111811. |
50 | Sankey T, Donager J, Mcvay J, et al. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sensing of Environment, 2017, 195: 30-43. |
51 | Fu Y, Zhao C, Wang J, et al. An improved combination of spectral and spatial features for vegetation classification in hyperspectral images. Remote Sensing, 2017, 9(3): 261. |
52 | Cao J, Leng W, Liu K, et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sensing, 2018, 10(1): 89. |
[1] | Rong-xia SU, Yan-ping MA, Hong-mei WANG, Ya-nan ZHAO, Zhi-li LI. Changes in soil bacterial carbon source utilization and soil extracellular enzyme activity after artificial planting of Caragana korshinskii at different densities on the desert steppe [J]. Acta Prataculturae Sinica, 2023, 32(11): 93-105. |
[2] | Jiang-long SHEN, Ji-jun CHEN, Abuduwali IMAM, Kun YANG, Ya-ting GUO, Jiang-hua ZHENG. The relationship between attack by Prosodes dilaticollis and desert grassland changes in Xinjiang: A case study of southern mountain grassland in Changji [J]. Acta Prataculturae Sinica, 2022, 31(6): 163-177. |
[3] | Rui HUA, Rui ZHOU, Daerhan BAO, Ke-chi DONG, Zhuang-sheng TANG, Li-min HUA. A study of UAV remote sensing technology for classifying the level of plateau pika damage to alpine rangeland [J]. Acta Prataculturae Sinica, 2022, 31(4): 165-176. |
[4] | Zhong-chao SUN, Tian-dou GUO, Lu YU, Yan-ping MA, Ya-nan ZHAO, Xue-ying LI, Hong-mei WANG. Changes in soil particle size distribution and fractal characteristics across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(4): 34-45. |
[5] | Chen CHEN, Chang-qing JING, Wen-yuan XING, Xiao-jin DENG, Hao-yu FU, Wen-zhang GUO. Desert grassland dynamics in the last 20 years and its response to climate change in Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(3): 1-14. |
[6] | Hui-xia LIU, Yi-qiang DONG, Yu-xuan CUI, Xing-hong LIU, Pan-xing HE, Qiang SUN, Zong-jiu SUN. Environmental factors influencing soil organic carbon and its characteristics in desert grassland in Altay, Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(10): 41-52. |
[7] | YU Lu, ZHOU Yu-rong, ZHAO Ya-nan, GUO Tian-dou, SUN Zhong-chao, WANG Hong-mei. Responses of the soil seed bank to simulated rainfall levels and anthropogenically introduced shrub encroachment in the desert steppe [J]. Acta Prataculturae Sinica, 2020, 29(4): 41-50. |
[8] | XIE Li, SONG Nai-ping, MENG Chen, WU Ting, CHEN Xiao-ying, LI Min-lan, YUE Jian-min. Time course of changes in soil particle size and carbon and nitrogen reserves after fencing Ningxia desert steppe [J]. Acta Prataculturae Sinica, 2020, 29(2): 1-10. |
[9] | TIAN Meng, SUN Zong-jiu, LI Ying, LI Pei-ying, XIE Kai-yun. Response to increasing precipitation in Artemisia desert grassland of soil seed bank composition and species diversity of germinating plants [J]. Acta Prataculturae Sinica, 2019, 28(12): 17-28. |
[10] | CHEN Yi-shi, SUN Hai-rong, LI Na-na, JIN Sheng-fei, CHE Zhao-bi, CAO Jia-min, LU Wei-hua. Plant community diversity in grazed Seriphidium semidesert grassland and its relationships with environmental factors [J]. Acta Prataculturae Sinica, 2019, 28(11): 1-11. |
[11] | ZHANG Ya-rou, AN Hui, LIU Bing-ru, WEN Zhi-lin, WU Xiu-zhi, LI Qiao-ling, DU Zhong-yu. Effects of short-term nitrogen and phosphorus addition on soil labile organic carbon in desert grassland [J]. Acta Prataculturae Sinica, 2019, 28(10): 12-24. |
[12] | AN Yu, AN Hui, LI Sheng-bing. Effects of grazing on ecological stoichiometry of soil and dominant plants in desert grassland [J]. Acta Prataculturae Sinica, 2018, 27(12): 94-102. |
[13] | YAN Xin, LIU Ren-tao, AN Hui. Characterization of readily oxidizable carbon and dissolved organic carbon within the soil carbon pool during desertification of grassland in central China [J]. Acta Prataculturae Sinica, 2018, 27(11): 15-25. |
[14] | Bademuqiqige, SUN Zong-jiu, LI Pei-ying, TIAN Meng, WU Yong-mei. Effect of increasing precipitation on seed germination characteristics in the soil seed banks of Seriphidium transiliense desert grassland [J]. Acta Prataculturae Sinica, 2018, 27(10): 136-146. |
[15] | HAN Meng-Qi, PAN Zhan-Lei, JIN Yu-Xi, QIN Jie, LI Jiang-Wen, WANG Zhong-Wu, HAN Guo-Dong. Response of soil nitrogen mineralization to different stocking rates on the Stipa breviflora desert steppe [J]. Acta Prataculturae Sinica, 2017, 26(9): 27-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||