Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (7): 41-52.DOI: 10.11686/cyxb2023300
Previous Articles Next Articles
Cheng-lan ZHANG1(), Chun-zeng LIU1(), Yu-hu LYU2, Ben-yin LI1, Lin ZHANG2, Li DING2, Guang-hui DU2, Xiang-ning ZHANG1, Chun-feng ZHENG1, Ji-shi ZHANG1, Min LI3, Wei-dong CAO4
Received:
2023-08-29
Revised:
2023-10-17
Online:
2024-07-20
Published:
2024-04-08
Contact:
Chun-zeng LIU
Cheng-lan ZHANG, Chun-zeng LIU, Yu-hu LYU, Ben-yin LI, Lin ZHANG, Li DING, Guang-hui DU, Xiang-ning ZHANG, Chun-feng ZHENG, Ji-shi ZHANG, Min LI, Wei-dong CAO. Effects of Chinese milk vetch combined with reduced chemical fertilizer on soil phosphorus adsorption and desorption characteristics in different years[J]. Acta Prataculturae Sinica, 2024, 33(7): 41-52.
年份Year | 处理 Treatments | Langmuir方程 Langmuir equation | R2 | 土壤磷最大吸附量 Maximum buffer capacity (Qmax, mg·kg-1) | 吸附亲和力常数 Adsorption constant (K) | 土壤磷最大缓冲容量Maximum buffer capacity of soil P (MBC, mg·kg-1) | 土壤磷吸附饱和度 Degree of phosphorus saturation (DPS, %) |
---|---|---|---|---|---|---|---|
2011 | CK | C/Q=0.0006C+0.0888 | 0.9907 | 1617.92a | 0.0076a | 11.27a | 0.2967b |
CF | C/Q=0.0007C+0.0848 | 0.9934 | 1477.21a | 0.0082a | 11.80a | 0.5321a | |
G+80% CF | C/Q=0.0007C+0.0812 | 0.9928 | 1432.88a | 0.0082a | 11.35a | 0.5318a | |
G+60% CF | C/Q=0.0007C+0.0857 | 0.9917 | 1482.96a | 0.0080a | 11.67a | 0.4071ab | |
G+40% CF | C/Q=0.0007C+0.0872 | 0.9927 | 1517.49a | 0.0077a | 11.46a | 0.4624ab | |
2016 | CK | C/Q=0.0007C+0.0841 | 0.9910 | 1443.15a | 0.0086a | 11.89a | 0.2831b |
CF | C/Q=0.0007C+0.0851 | 0.9949 | 1512.98a | 0.0081a | 11.75a | 0.4718a | |
G+80% CF | C/Q=0.0007C+0.0822 | 0.9911 | 1375.88a | 0.0090a | 12.16a | 0.4700a | |
G+60% CF | C/Q=0.0007C+0.0822 | 0.9915 | 1364.41a | 0.0091a | 12.16a | 0.5458a | |
G+40% CF | C/Q=0.0007C+0.0845 | 0.9912 | 1387.58a | 0.0086a | 11.83a | 0.4433a | |
2020 | CK | C/Q=0.0007C+0.0843 | 0.9884 | 1394.34ab | 0.0086a | 11.86a | 0.3470c |
CF | C/Q=0.0006C+0.0873 | 0.9941 | 1607.17a | 0.0072a | 11.45a | 0.5366ab | |
G+80% CF | C/Q=0.0008C+0.0811 | 0.9853 | 1271.01b | 0.0099a | 12.33a | 0.6366a | |
G+60% CF | C/Q=0.0008C+0.0805 | 0.9890 | 1290.88b | 0.0098a | 12.42a | 0.4456bc | |
G+40% CF | C/Q=0.0008C+0.0821 | 0.9804 | 1282.67b | 0.0098a | 12.18a | 0.5084b | |
P值P value | ** | * | NS | NS | * |
Table 1 Langmuir fitting equation and adsorption parameters of soil phosphorus under different fertilization treatments
年份Year | 处理 Treatments | Langmuir方程 Langmuir equation | R2 | 土壤磷最大吸附量 Maximum buffer capacity (Qmax, mg·kg-1) | 吸附亲和力常数 Adsorption constant (K) | 土壤磷最大缓冲容量Maximum buffer capacity of soil P (MBC, mg·kg-1) | 土壤磷吸附饱和度 Degree of phosphorus saturation (DPS, %) |
---|---|---|---|---|---|---|---|
2011 | CK | C/Q=0.0006C+0.0888 | 0.9907 | 1617.92a | 0.0076a | 11.27a | 0.2967b |
CF | C/Q=0.0007C+0.0848 | 0.9934 | 1477.21a | 0.0082a | 11.80a | 0.5321a | |
G+80% CF | C/Q=0.0007C+0.0812 | 0.9928 | 1432.88a | 0.0082a | 11.35a | 0.5318a | |
G+60% CF | C/Q=0.0007C+0.0857 | 0.9917 | 1482.96a | 0.0080a | 11.67a | 0.4071ab | |
G+40% CF | C/Q=0.0007C+0.0872 | 0.9927 | 1517.49a | 0.0077a | 11.46a | 0.4624ab | |
2016 | CK | C/Q=0.0007C+0.0841 | 0.9910 | 1443.15a | 0.0086a | 11.89a | 0.2831b |
CF | C/Q=0.0007C+0.0851 | 0.9949 | 1512.98a | 0.0081a | 11.75a | 0.4718a | |
G+80% CF | C/Q=0.0007C+0.0822 | 0.9911 | 1375.88a | 0.0090a | 12.16a | 0.4700a | |
G+60% CF | C/Q=0.0007C+0.0822 | 0.9915 | 1364.41a | 0.0091a | 12.16a | 0.5458a | |
G+40% CF | C/Q=0.0007C+0.0845 | 0.9912 | 1387.58a | 0.0086a | 11.83a | 0.4433a | |
2020 | CK | C/Q=0.0007C+0.0843 | 0.9884 | 1394.34ab | 0.0086a | 11.86a | 0.3470c |
CF | C/Q=0.0006C+0.0873 | 0.9941 | 1607.17a | 0.0072a | 11.45a | 0.5366ab | |
G+80% CF | C/Q=0.0008C+0.0811 | 0.9853 | 1271.01b | 0.0099a | 12.33a | 0.6366a | |
G+60% CF | C/Q=0.0008C+0.0805 | 0.9890 | 1290.88b | 0.0098a | 12.42a | 0.4456bc | |
G+40% CF | C/Q=0.0008C+0.0821 | 0.9804 | 1282.67b | 0.0098a | 12.18a | 0.5084b | |
P值P value | ** | * | NS | NS | * |
年份 Year | 磷浓度 Concentration of P (mg·L-1) | CK | CF | G+80% CF | G+60% CF | G+40% CF | P值P value |
---|---|---|---|---|---|---|---|
2011 | 5 | 3.32ab | 4.09a | 2.54b | 2.77b | 2.31b | * |
10 | 3.54a | 3.20ab | 2.76bc | 2.56c | 2.70bc | * | |
20 | 5.52a | 5.59a | 5.92a | 5.14b | 5.72a | * | |
40 | 8.28b | 9.71ab | 9.46ab | 10.29a | 10.85a | * | |
60 | 9.81b | 11.36a | 11.84a | 10.88ab | 11.42a | * | |
80 | 11.98a | 10.91a | 11.97a | 11.39a | 11.61a | NS | |
100 | 11.27c | 11.63bc | 13.23a | 13.54a | 13.00ab | * | |
均值 Average | 7.67a | 8.07a | 8.25a | 8.08a | 8.23a | NS | |
2016 | 5 | 2.58ab | 2.83a | 1.98ab | 2.43ab | 1.74b | * |
10 | 1.93b | 3.20a | 1.80b | 2.54ab | 2.10b | * | |
20 | 4.48bc | 4.24c | 5.10a | 4.97ab | 4.98ab | * | |
40 | 8.05b | 6.97b | 9.53a | 10.13a | 9.75a | * | |
60 | 9.90b | 10.53b | 10.41b | 10.55b | 11.59a | * | |
80 | 11.41a | 10.91a | 10.76a | 11.04a | 11.27a | NS | |
100 | 11.03a | 11.14a | 11.93a | 12.07a | 11.83a | NS | |
均值Average | 7.05b | 7.12ab | 7.36ab | 7.68a | 7.61ab | * | |
2020 | 5 | 2.62ab | 2.83a | 1.88ab | 2.07ab | 1.64b | * |
10 | 1.80b | 2.48a | 2.50a | 2.63a | 2.00b | * | |
20 | 4.41bc | 4.17c | 5.29a | 4.79ab | 4.95ab | * | |
40 | 8.31a | 8.13a | 9.81a | 9.30a | 10.50a | NS | |
60 | 9.47a | 9.89a | 10.68a | 10.76a | 11.05a | NS | |
80 | 11.41ab | 10.37b | 11.78ab | 11.41ab | 12.00a | * | |
100 | 11.00ab | 10.63b | 11.64ab | 11.90ab | 12.13a | * | |
均值Average | 7.00ab | 6.93b | 7.65ab | 7.55ab | 7.75a | * |
Table 2 Desorption rate of soil phosphate under different fertilization treatments (%)
年份 Year | 磷浓度 Concentration of P (mg·L-1) | CK | CF | G+80% CF | G+60% CF | G+40% CF | P值P value |
---|---|---|---|---|---|---|---|
2011 | 5 | 3.32ab | 4.09a | 2.54b | 2.77b | 2.31b | * |
10 | 3.54a | 3.20ab | 2.76bc | 2.56c | 2.70bc | * | |
20 | 5.52a | 5.59a | 5.92a | 5.14b | 5.72a | * | |
40 | 8.28b | 9.71ab | 9.46ab | 10.29a | 10.85a | * | |
60 | 9.81b | 11.36a | 11.84a | 10.88ab | 11.42a | * | |
80 | 11.98a | 10.91a | 11.97a | 11.39a | 11.61a | NS | |
100 | 11.27c | 11.63bc | 13.23a | 13.54a | 13.00ab | * | |
均值 Average | 7.67a | 8.07a | 8.25a | 8.08a | 8.23a | NS | |
2016 | 5 | 2.58ab | 2.83a | 1.98ab | 2.43ab | 1.74b | * |
10 | 1.93b | 3.20a | 1.80b | 2.54ab | 2.10b | * | |
20 | 4.48bc | 4.24c | 5.10a | 4.97ab | 4.98ab | * | |
40 | 8.05b | 6.97b | 9.53a | 10.13a | 9.75a | * | |
60 | 9.90b | 10.53b | 10.41b | 10.55b | 11.59a | * | |
80 | 11.41a | 10.91a | 10.76a | 11.04a | 11.27a | NS | |
100 | 11.03a | 11.14a | 11.93a | 12.07a | 11.83a | NS | |
均值Average | 7.05b | 7.12ab | 7.36ab | 7.68a | 7.61ab | * | |
2020 | 5 | 2.62ab | 2.83a | 1.88ab | 2.07ab | 1.64b | * |
10 | 1.80b | 2.48a | 2.50a | 2.63a | 2.00b | * | |
20 | 4.41bc | 4.17c | 5.29a | 4.79ab | 4.95ab | * | |
40 | 8.31a | 8.13a | 9.81a | 9.30a | 10.50a | NS | |
60 | 9.47a | 9.89a | 10.68a | 10.76a | 11.05a | NS | |
80 | 11.41ab | 10.37b | 11.78ab | 11.41ab | 12.00a | * | |
100 | 11.00ab | 10.63b | 11.64ab | 11.90ab | 12.13a | * | |
均值Average | 7.00ab | 6.93b | 7.65ab | 7.55ab | 7.75a | * |
处理 Treatments | 有机质 Organic matter (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH | 阳离子交换量 Cation exchange capacity [cmol(+)·kg-1] |
---|---|---|---|---|---|---|
CK | 22.49±0.13b | 157.12±1.80b | 4.38±0.26c | 85.24±3.01ab | 6.59±0.10a | 19.28±0.26a |
CF | 23.59±0.64ab | 194.88±9.07a | 7.77±0.40a | 88.90±3.08a | 6.42±0.09ab | 19.42±0.24a |
G+80% CF | 24.14±0.46a | 204.41±3.86a | 7.25±0.46ab | 83.98±0.70ab | 6.07±0.07b | 19.03±0.22a |
G+60% CF | 24.86±0.29a | 195.04±9.76a | 6.39±0.54b | 83.73±1.66ab | 6.08±0.14b | 18.61±0.42a |
G+40% CF | 23.89±0.51ab | 189.88±3.72a | 6.50±0.20ab | 80.74±0.82b | 6.11±0.16b | 18.91±0.15a |
Table 3 Soil physical and chemical properties under different fertilization treatments
处理 Treatments | 有机质 Organic matter (g·kg-1) | 碱解氮 Alkaline nitrogen (mg·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH | 阳离子交换量 Cation exchange capacity [cmol(+)·kg-1] |
---|---|---|---|---|---|---|
CK | 22.49±0.13b | 157.12±1.80b | 4.38±0.26c | 85.24±3.01ab | 6.59±0.10a | 19.28±0.26a |
CF | 23.59±0.64ab | 194.88±9.07a | 7.77±0.40a | 88.90±3.08a | 6.42±0.09ab | 19.42±0.24a |
G+80% CF | 24.14±0.46a | 204.41±3.86a | 7.25±0.46ab | 83.98±0.70ab | 6.07±0.07b | 19.03±0.22a |
G+60% CF | 24.86±0.29a | 195.04±9.76a | 6.39±0.54b | 83.73±1.66ab | 6.08±0.14b | 18.61±0.42a |
G+40% CF | 23.89±0.51ab | 189.88±3.72a | 6.50±0.20ab | 80.74±0.82b | 6.11±0.16b | 18.91±0.15a |
项目Item | SOM | AN | AP | AK | pH | CEC |
---|---|---|---|---|---|---|
Qmax | -0.338 | -0.225 | -0.027 | 0.173 | 0.240 | 0.649** |
K | 0.318 | 0.251 | -0.061 | -0.481 | -0.231 | -0.363 |
MBC | 0.289 | 0.162 | 0.021 | 0.022 | -0.158 | -0.665** |
DPS | 0.370 | 0.763** | 0.934** | 0.124 | -0.399 | -0.193 |
DR | 0.470 | 0.255 | 0.235 | -0.722** | -0.587* | 0.141 |
Table 4 Correlation analysis of soil phosphorus adsorption and desorption parameters with soil physicochemical properties
项目Item | SOM | AN | AP | AK | pH | CEC |
---|---|---|---|---|---|---|
Qmax | -0.338 | -0.225 | -0.027 | 0.173 | 0.240 | 0.649** |
K | 0.318 | 0.251 | -0.061 | -0.481 | -0.231 | -0.363 |
MBC | 0.289 | 0.162 | 0.021 | 0.022 | -0.158 | -0.665** |
DPS | 0.370 | 0.763** | 0.934** | 0.124 | -0.399 | -0.193 |
DR | 0.470 | 0.255 | 0.235 | -0.722** | -0.587* | 0.141 |
1 | Ardón M, Montanari S, Morse J L, et al. Phosphorus export from a restored wetland and ecosystem in response to natural and experimental hydrologic fluctuations. Journal of Geophysical Research: Biogeosciences, 2010, 115(4): 31-43. |
2 | Zhou L, Su L Z, Wang S R, et al. Effect of intercropping on balancing effect of absorption and desorption characteristics of phosphorus in red soil. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1867-1878. |
周龙, 苏丽珍, 王思睿, 等. 间作对红壤磷素吸附解吸平衡效应的影响. 中国生态农业学报, 2021, 29(11): 1867-1878. | |
3 | Zhan X Y, Ren Y, Zhang S X, et al. Changes in olsen phosphorus concentration and its response to phosphorus balance in the main types of soil in China. Scientia Agricultura Sinica, 2015, 48(23): 4728-4737. |
展晓莹, 任意, 张淑香, 等. 中国主要土壤有效磷演变及其与磷平衡的响应关系. 中国农业科学, 2015, 48(23): 4728-4737. | |
4 | Wang Q, Zhan X Y, Zhang S X, et al. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877. |
王琼, 展晓莹, 张淑香, 等. 长期不同施肥处理黑土磷的吸附-解吸特征及对土壤性质的响应. 中国农业科学, 2019, 52(21): 3866-3877. | |
5 | Yan X, Wang D J, Zhang H L, et al. Organic amendments affect phosphorus sorption characteristics in a paddy soil. Agriculture, Ecosystems and Environment, 2013, 175: 47-53. |
6 | Bai J H, Ye X F, Jia J, et al. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 2017, 188: 677-688. |
7 | Liu Y L, Li Y, Zhang M, et al. Effects of long-term fertilization on phosphorus adsorption and desorption characters in yellow soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 450-459. |
刘彦伶, 李渝, 张萌, 等. 长期不同施肥对黄壤磷素吸附-解吸特性的影响. 植物营养与肥料学报, 2021, 27(3): 450-459. | |
8 | Yang X, Chen X, Yang X. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil and Tillage Research, 2019, 187: 85-91. |
9 | Lin C, Wang F, Lin X J, et al. The effection of phosphorus adsorption and desorption of long-term fertilization on south yellow clayey soil. Fujian Journal of Agricultural Sciences, 2011, 26(6): 1034-1038. |
林诚, 王飞, 林新坚, 等. 长期施肥对南方黄泥田土壤磷吸附与解吸的影响. 福建农业学报, 2011, 26(6): 1034-1038. | |
10 | Gong Z P, Du T T, Yan C, et al. Effects of corn straw returning and phosphorus application rate on phosphorus adsorption and desorption characteristics of black soil. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 161-169. |
龚振平, 杜婷婷, 闫超, 等. 玉米秸秆还田及施磷量对黑土磷吸附与解吸特性的影响. 农业工程学报, 2019, 35(22): 161-169. | |
11 | Li X, Liu Y X, Liu Y R, et al. Interactive effects of combined inorganic and organic fertilizers on phosphorous adsorption, desorption and mobility. Journal of Nuclear Agricultural Sciences, 2013, 27(2): 253-259. |
李想, 刘艳霞, 刘益仁, 等. 有机无机肥配合对土壤磷素吸附、解吸和迁移特性的影响. 核农学报, 2013, 27(2): 253-259. | |
12 | Zhang C L, Liu C Z, Lyu Y H, et al. Effects of the combination of reduced chemical fertilizer and various amounts of Chinese milk vetch (Astragalus sinicus L.) on soil phosphorus forms and rice yield. Soil and Fertilizer Sciences in China, 2020(1): 100-106. |
张成兰, 刘春增, 吕玉虎, 等. 减量化肥配施不同量紫云英对土壤磷素形态及水稻产量的影响. 中国土壤与肥料, 2020(1): 100-106. | |
13 | Liu C L, Wang R, Li Y, et al. Changes in soil phosphorus contents induced by milk vetch green manure. Soil and Fertilizer Sciences in China, 2019(6): 44-48, 70. |
刘彩玲, 王瑞, 李昱, 等. 不等量翻压紫云英处理下黄泥田土壤磷组分的变化. 中国土壤与肥料, 2019(6): 44-48, 70. | |
14 | Lu R K. Analytical method of soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
15 | Zhang D, Wei Z M, Li S Q, et al. Effect of bio-organic fertilizers on phosphorus adsorption-desorption. Journal of Northeast Agricultural University, 2005(5): 31-35. |
张迪, 魏自民, 李淑芹, 等. 生物有机肥对土壤中磷的吸附和解吸特性的影响. 东北农业大学学报, 2005(5): 31-35. | |
16 | Zhao Q L, Wang K R, Xie X L. Effects of organic nutrient recycling on phosphorus adsorption-desorption characteristics in a reddish paddy rice system. Scientia Agricultura Sinica, 2009, 42(1): 355-362. |
赵庆雷, 王凯荣, 谢小立. 长期有机物循环对红壤稻田土壤磷吸附和解吸特性的影响. 中国农业科学, 2009, 42(1): 355-362. | |
17 | Xia H Y, Wang K R. Effects of soil organic matter on characteristics of phosphorus adsorption and desorption in calcareous yellow fluvo-aquic soil and lime concretion black soil. Journal of Plant Nutrition and Fertilizers, 2009, 15(6): 1303-1310. |
夏海勇, 王凯荣. 有机质含量对石灰性黄潮土和砂姜黑土磷吸附-解吸特性的影响. 植物营养与肥料学报, 2009, 15(6): 1303-1310. | |
18 | Zang Y H, Huang S M, Guo D D, et al. Phosphorus adsorption and desorption characteristics of different textural fluvo-aquic soils under long-term fertilization. Journal of Soils and Sediments, 2019, 19(3): 1306-1318. |
19 | Bhadha J H, Daroub S H, Lang T A. Effect of kinetic control, soil∶solution ratio, electrolyte cation, and others, on equilibrium phosphorus concentration. Geoderma, 2012, 173/174: 209-214. |
20 | Lai D Y F, Lam K C. Phosphorus sorption by sediments in a subtropical constructed wetland receiving storm water runoff. Ecological Engineering, 2009, 35(5): 735-743. |
21 | Wang Q, Chen Y H, Zhang N Y, et al. Phosphorus adsorption and desorption characteristics as affected by long-term phosphorus application in black soil. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1569-1581. |
王琼, 陈延华, 张乃于, 等. 长期施磷黑土中磷的吸附-解吸特征及其影响因素. 植物营养与肥料学报, 2022, 28(9): 1569-1581. | |
22 | Qian D, Fan H M, Zhou L L, et al. Effects of freeze-thaw cycles on phosphorus adsorption and desorption characteristic in brown earth. Journal of Soil and Water Conservation, 2012, 26(2): 279-283. |
钱多, 范昊明, 周丽丽, 等. 冻融作用对棕壤磷素吸附-解吸特性的影响. 水土保持学报, 2012, 26(2): 279-283. | |
23 | Li X. The synergistic effects and mechanisms of combined application of organic and inorganic phosphorous fertilizer. Nanjing: Nanjing Agricultural University, 2012. |
李想. 有机无机肥磷配施的协同效应与机理研究. 南京: 南京农业大学, 2012. | |
24 | Wang B, Liu H, Li Y H, et al. Phosphorus adsorption and desorption characteristics of gray desert soil under long-term fertilization. Acta Pedologica Sinica, 2013, 50(4): 726-733. |
王斌, 刘骅, 李耀辉, 等. 长期施肥条件下灰漠土磷的吸附与解吸特征. 土壤学报, 2013, 50(4): 726-733. | |
25 | Lyu Y Q, Zheng M J, Wu J S, et al. Effects of different nitrogen reduction fertilizer combined with milk vetch (Astragalus sinicus L.) on the loss of nitrogen and phosphorus in field water and rice growth. Journal of Soil and Water Conservation, 2022, 36(6): 148-155. |
吕永强, 郑铭洁, 吴家森, 等. 不同减量氮肥配施紫云英对田面水氮磷流失及水稻生长的影响. 水土保持学报, 2022, 36(6): 148-155. | |
26 | Qi R S, Dang T H, Yang S Q, et al. The impact on soil phosphorus adsorption characteristics and leaching change-point under long-term fertilization. Chinese Journal of Soil Science, 2012, 43(5): 1187-1194. |
戚瑞生, 党廷辉, 杨绍琼, 等. 长期定位施肥对土壤磷素吸持特性与淋失突变点影响的研究. 土壤通报, 2012, 43(5): 1187-1194. | |
27 | Chrysostome M, Nair V D, Harris W G, et al. Laboratory validation of soil phosphorus storage capacity predictions for use in risk assessment. Soil Science Society of America Journal, 2007, 71(5): 1564-1569. |
28 | Wang Y L, He Y Q, Wu H S, et al. Environmental risk analysis of accumulated phosphorus in red soil under long-term fertilization. Acta Pedologica Sinica, 2010, 47(5): 880-887. |
王艳玲, 何园球, 吴洪生, 等. 长期施肥下红壤磷素积累的环境风险分析. 土壤学报, 2010, 47(5): 880-887. | |
29 | Fu H M, Jia L M. Study progress of nitrogen and phosphate adsorption & desorption in soils. Chinese Agricultural Science Bulletin, 2009, 25(21): 198-203. |
付海曼, 贾黎明. 土壤对氮、磷吸附/解吸附特性研究进展. 中国农学通报, 2009, 25(21): 198-203. | |
30 | Wang X Y, Zhang L P, Zhang H S, et al. Phosphorus adsorption characteristics at the sediment-water interface and relationship with sediment properties in FUSHI reservoir, China. Environmental Earth Sciences, 2012, 67(1): 15-22. |
31 | Tang X X. Study on adsorption-desorption properties of soil phosphorus in cotton field under four consecutive years of phosphorus application. Urumqi: XinjiangAgricultural University, 2021. |
唐雪霞. 连续四年施磷条件下棉田土壤磷的吸附-解吸特征研究. 乌鲁木齐: 新疆农业大学, 2021. | |
32 | Siddique M T, Robinson J S. Phosphorus sorption and availability in soils amended with animal manures and sewage sludge. Journal of Environmental Quality, 2003, 32(3): 1114-1121. |
33 | Xia W J, Liang G Q, Zhou W, et al. Adsorption and desorption characteristics of soil phosphorus in calcareous fluvo-aquic soil under long-term fertilization. Journal of Plant Nutrition and Fertilizers, 2008, 14(3): 431-438. |
夏文建, 梁国庆, 周卫, 等. 长期施肥条件下石灰性潮土磷的吸附解吸特征. 植物营养与肥料学报, 2008, 14(3): 431-438. | |
34 | Zou H F. Phosphorus adsorption characteristics of cinnamon soil and growth of cucumber under different water and fertilizer conditions. Taiyuan: Shanxi University, 2019. |
邹慧芳. 褐土磷吸附特征及不同水肥条件下设施黄瓜的生长. 太原: 山西大学, 2019. | |
35 | He S, Yin F H, Xie H X. Forms of inorganic phosphorus and phosphate sorption characteristics of grey desert soil in Junggar Basin. Arid Land Geography, 2017, 40(5): 1061-1069. |
何帅, 尹飞虎, 谢海霞. 准噶尔盆地灰漠土无机磷形态及磷吸附特性研究. 干旱区地理, 2017, 40(5): 1061-1069. | |
36 | Zhao Z J, Jin R, Fang D, et al. Paddy cultivation significantly alters the forms and contents of Fe oxides in an Oxisol and increases phosphate mobility. Soil and Tillage Research, 2018, 184: 176-180. |
37 | Sun J N, Xu G, Shao H B, et al. Potential retention and release capacity of phosphorus in the newly formed wetland soils from the Yellow River Delta, China. CLEAN-Soil Air Water, 2012, 40(10): 1131-1136. |
38 | Song C L, Fan J B, He Y Q, et al. Phosphorus adsorption characteristics of red paddy soils derived from different parent materials and their influencing factors. Acta Pedologica Sinica, 2012, 49(3): 607-611. |
宋春丽, 樊剑波, 何园球, 等. 不同母质发育的红壤性水稻土磷素吸附特性及其影响因素的研究. 土壤学报, 2012, 49(3): 607-611. | |
39 | Wang J G. Soil chemistry of plant nutrition. Beijing: Beijing Agricultural University Press, 1995. |
王敬国. 植物营养的土壤化学. 北京: 北京农业大学出版社, 1995. |
[1] | Dan-na CHANG, Zi-ying CHEN, Mei HAN, Zheng-peng LI, Qing-biao YAN, Shuai-lei LV, Guo-peng ZHOU, Xiao-feng SUN, Wei-dong CAO. Differences in phosphorus acquisition characteristics and rhizosphere properties among different hairy vetch genotypes [J]. Acta Prataculturae Sinica, 2024, 33(4): 122-134. |
[2] | Yu SUN, Yong-sheng YANG, Qi HE, Jun-bang WANG, Xiu-juan ZHANG, Hui-ting LI, Xing-liang XU, Hua-kun ZHOU, Yu-heng ZHANG. Responses of soil water conservation function and soil physicochemical properties to a range of degradation conditions in alpine meadows of the Three River Headwater Region [J]. Acta Prataculturae Sinica, 2023, 32(6): 16-29. |
[3] | Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet [J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
[4] | Yong-mei LIU, Xing-zhi DONG, Yong-qing LONG, Zhi-mei ZHU, Lei WANG, Xing-hua GE, Fan ZHAO, Jing-zhong LI. Classification of Stellera chamaejasme communities and their relationships with environmental factors in degraded alpine meadow in the central Qilian Mountains, Qinghai Province [J]. Acta Prataculturae Sinica, 2022, 31(4): 1-11. |
[5] | Ying MA, Zhi-hao XU, Qiao-hong ZENG, Jian-long MENG, Ya-hu HU, Jie-qiong SU. Impact of nitrogen addition on stoichiometric characteristics of herbaceous species in desert steppe [J]. Acta Prataculturae Sinica, 2021, 30(6): 64-72. |
[6] | Hui-xia LIU, Yi-qiang DONG, Yu-xuan CUI, Xing-hong LIU, Pan-xing HE, Qiang SUN, Zong-jiu SUN. Environmental factors influencing soil organic carbon and its characteristics in desert grassland in Altay, Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(10): 41-52. |
[7] | XU Qi-wen, MA Shu-min, ZHU Bo, ZHANG Xiao-duan, XING Yi, DUAN Mei-chun, WANG Long-chang. Effects of the combined application of biochar and chemical fertilizer on fertility and microbial characteristics of purple soil and yield and quality of oilseed rape [J]. Acta Prataculturae Sinica, 2020, 29(5): 121-131. |
[8] | LEI Wei-qian, HU Yu-fu, YANG Ze-peng, HE Jian-feng, XIAO Hai-hua, SHU Xiang-yang, YANG Fan, LI Zheng-qing. Effects of reclamation on the soil phosphorus fractions of alpine meadow in Northwest Sichuan [J]. Acta Prataculturae Sinica, 2019, 28(5): 36-45. |
[9] | XIE Fang, ZHANG Ya-Jun, CHANG Li-Ming, LIU Shuai, CHEN Chen. Relationship between Notopterygium forbesii quality and soil factors in Gansu Province [J]. Acta Prataculturae Sinica, 2017, 26(9): 75-82. |
[10] | FU Gang, SHEN Zhen-Xi. Grazing alters soil microbial community in alpine grasslands of Northern Tibet [J]. Acta Prataculturae Sinica, 2017, 26(10): 170-178. |
[11] | WANG Xing, SONG Nai-ping, YANG Xin-guo, CHEN Lin, LIU Bing-ru, QU Wen-jie, YANG Ming-xiu, XIAO Xu-pei. Redundancy analysis of soil and vegetation of recovered grassland on abandoned land in the desert steppe [J]. Acta Prataculturae Sinica, 2014, 23(2): 90-97. |
[12] | ZHAO Qing-lei,WU Xiu,YUAN Shou-jiang,WANG Kai-rong,GAO Jie,CHEN Feng,ZHANG Shi-yong,SUN Gong-chen,XIE Xiao-li,MA Jia-qing. A study on the dynamics of phosphorus adsorption and desorption characteristics of paddy soil with long-term fertilization [J]. Acta Prataculturae Sinica, 2014, 23(1): 113-122. |
[13] | TENG Ze-qin, LI Xu-dong, HAN Hui-ge, ZHANG Chun-ping, FU Hua. Effects of land use patterns on soil phosphorus fractions in the Longzhong part of the Loess Plateau [J]. Acta Prataculturae Sinica, 2013, 22(2): 30-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||