Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (1): 135-150.DOI: 10.11686/cyxb2024122
Yuan LI1,2,3(), Si-yu MENG1(), Xiao-yun FENG1,2,3, Gen-sheng BAO1,2,3()
Received:
2024-04-10
Revised:
2024-06-05
Online:
2025-01-20
Published:
2024-11-04
Contact:
Gen-sheng BAO
About author:
First author contact:These authors contributed equally to this work.
Yuan LI, Si-yu MENG, Xiao-yun FENG, Gen-sheng BAO. Effect of the Epichloë endophyte on the root morphology of Stipa purpurea infected by the hemiparasite Pedicularis kansuensis[J]. Acta Prataculturae Sinica, 2025, 34(1): 135-150.
项目Item | 处理Treatments | df | F | P |
---|---|---|---|---|
地上生物量 Shoot biomass | 内生真菌带菌状态 Es | 1 | 2516.90 | <0.01 |
寄生密度 Pd | 2 | 1060.58 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 136.99 | <0.01 | |
根系生物量 Root biomass | 内生真菌带菌状态 Es | 1 | 321.32 | <0.01 |
寄生密度 Pd | 2 | 96.93 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 9.75 | <0.01 | |
比根长度 Specific root length | 内生真菌带菌状态 Es | 1 | 10.36 | <0.01 |
寄生密度 Pd | 2 | 3.83 | 0.04 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.34 | 0.72 | |
比根面积 Specific root area | 内生真菌带菌状态 Es | 1 | 14.14 | <0.01 |
寄生密度 Pd | 2 | 21.46 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.69 | 0.51 | |
比根体积 Specific root volume | 内生真菌带菌状态 Es | 1 | 8.11 | <0.01 |
寄生密度 Pd | 2 | 12.95 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 4.12 | 0.03 | |
根冠比 Ratio of root to shoot | 内生真菌带菌状态 Es | 1 | 0.01 | 0.91 |
寄生密度 Pd | 2 | 1.27 | 0.30 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.24 | 0.30 |
Table 1 Two-way ANOVA analysis for the effect of Epichlo? endophyte status and density of P. kansuensis on biomass, specific root, ratio of root to shoot of S. purpurea
项目Item | 处理Treatments | df | F | P |
---|---|---|---|---|
地上生物量 Shoot biomass | 内生真菌带菌状态 Es | 1 | 2516.90 | <0.01 |
寄生密度 Pd | 2 | 1060.58 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 136.99 | <0.01 | |
根系生物量 Root biomass | 内生真菌带菌状态 Es | 1 | 321.32 | <0.01 |
寄生密度 Pd | 2 | 96.93 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 9.75 | <0.01 | |
比根长度 Specific root length | 内生真菌带菌状态 Es | 1 | 10.36 | <0.01 |
寄生密度 Pd | 2 | 3.83 | 0.04 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.34 | 0.72 | |
比根面积 Specific root area | 内生真菌带菌状态 Es | 1 | 14.14 | <0.01 |
寄生密度 Pd | 2 | 21.46 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.69 | 0.51 | |
比根体积 Specific root volume | 内生真菌带菌状态 Es | 1 | 8.11 | <0.01 |
寄生密度 Pd | 2 | 12.95 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 4.12 | 0.03 | |
根冠比 Ratio of root to shoot | 内生真菌带菌状态 Es | 1 | 0.01 | 0.91 |
寄生密度 Pd | 2 | 1.27 | 0.30 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.24 | 0.30 |
项目Item | 处理Treatments | df | F | P |
---|---|---|---|---|
根系总长度 Total root length | 内生真菌带菌状态 Es | 1 | 12.71 | <0.01 |
寄生密度 Pd | 2 | 20.40 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.44 | 0.11 | |
根投影面积 Root projection area | 内生真菌带菌状态 Es | 1 | 11.56 | <0.01 |
寄生密度 Pd | 2 | 9.00 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.17 | 0.14 | |
根面积 Root area | 内生真菌带菌状态 Es | 1 | 13.51 | <0.01 |
寄生密度 Pd | 2 | 1.96 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.39 | 0.11 | |
根表面积 Root surface area | 内生真菌带菌状态 Es | 1 | 11.56 | <0.01 |
寄生密度 Pd | 2 | 9.00 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.17 | 0.14 | |
根体积 Root volume | 内生真菌带菌状态 Es | 1 | 4.52 | 0.44 |
寄生密度 Pd | 2 | 1.72 | 0.20 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.36 | 0.09 | |
根平均直径 Mean root diameter | 内生真菌带菌状态 Es | 1 | 3.56 | 0.07 |
寄生密度 Pd | 2 | 8.41 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.66 | 0.52 | |
根尖数 Root tip number | 内生真菌带菌状态 Es | 1 | 10.04 | <0.01 |
寄生密度 Pd | 2 | 8.96 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.45 | 0.11 | |
根节点数 Root node number | 内生真菌带菌状态 Es | 1 | 5.99 | 0.02 |
寄生密度 Pd | 2 | 13.32 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.88 | 0.17 | |
根分叉数 Root bifurcation number | 内生真菌带菌状态 Es | 1 | 6.49 | 0.02 |
寄生密度 Pd | 2 | 14.89 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.84 | 0.18 | |
根交叉数 Root crossing number | 内生真菌带菌状态 Es | 1 | 2.51 | 0.13 |
寄生密度 Pd | 2 | 8.32 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.38 | 0.27 | |
根连接数 Number of root connections | 内生真菌带菌状态 Es | 1 | 5.12 | 0.03 |
寄生密度 Pd | 2 | 12.90 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.73 | 0.20 | |
外部连接数 Number of external connections | 内生真菌带菌状态 Es | 1 | 9.42 | <0.01 |
寄生密度 Pd | 2 | 22.14 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 3.36 | 0.05 | |
内部连接数 Number of internal connections | 内生真菌带菌状态 Es | 1 | 4.53 | 0.04 |
寄生密度 Pd | 2 | 12.83 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.61 | 0.22 | |
分形维数 Fractal dimension | 内生真菌带菌状态 Es | 1 | 0.62 | 0.44 |
寄生密度 Pd | 2 | 8.78 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.63 | 0.54 | |
拓扑指数 Topological index | 内生真菌带菌状态 Es | 1 | 5.30 | 0.03 |
寄生密度 Pd | 2 | 51.49 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.54 | 0.59 |
Table 2 Two-way ANOVA results for the effect of Epichlo? endophyte status and density of P. kansuensis on root morphological characteristics of S. purpurea
项目Item | 处理Treatments | df | F | P |
---|---|---|---|---|
根系总长度 Total root length | 内生真菌带菌状态 Es | 1 | 12.71 | <0.01 |
寄生密度 Pd | 2 | 20.40 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.44 | 0.11 | |
根投影面积 Root projection area | 内生真菌带菌状态 Es | 1 | 11.56 | <0.01 |
寄生密度 Pd | 2 | 9.00 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.17 | 0.14 | |
根面积 Root area | 内生真菌带菌状态 Es | 1 | 13.51 | <0.01 |
寄生密度 Pd | 2 | 1.96 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.39 | 0.11 | |
根表面积 Root surface area | 内生真菌带菌状态 Es | 1 | 11.56 | <0.01 |
寄生密度 Pd | 2 | 9.00 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.17 | 0.14 | |
根体积 Root volume | 内生真菌带菌状态 Es | 1 | 4.52 | 0.44 |
寄生密度 Pd | 2 | 1.72 | 0.20 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.36 | 0.09 | |
根平均直径 Mean root diameter | 内生真菌带菌状态 Es | 1 | 3.56 | 0.07 |
寄生密度 Pd | 2 | 8.41 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.66 | 0.52 | |
根尖数 Root tip number | 内生真菌带菌状态 Es | 1 | 10.04 | <0.01 |
寄生密度 Pd | 2 | 8.96 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.45 | 0.11 | |
根节点数 Root node number | 内生真菌带菌状态 Es | 1 | 5.99 | 0.02 |
寄生密度 Pd | 2 | 13.32 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.88 | 0.17 | |
根分叉数 Root bifurcation number | 内生真菌带菌状态 Es | 1 | 6.49 | 0.02 |
寄生密度 Pd | 2 | 14.89 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.84 | 0.18 | |
根交叉数 Root crossing number | 内生真菌带菌状态 Es | 1 | 2.51 | 0.13 |
寄生密度 Pd | 2 | 8.32 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.38 | 0.27 | |
根连接数 Number of root connections | 内生真菌带菌状态 Es | 1 | 5.12 | 0.03 |
寄生密度 Pd | 2 | 12.90 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.73 | 0.20 | |
外部连接数 Number of external connections | 内生真菌带菌状态 Es | 1 | 9.42 | <0.01 |
寄生密度 Pd | 2 | 22.14 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 3.36 | 0.05 | |
内部连接数 Number of internal connections | 内生真菌带菌状态 Es | 1 | 4.53 | 0.04 |
寄生密度 Pd | 2 | 12.83 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.61 | 0.22 | |
分形维数 Fractal dimension | 内生真菌带菌状态 Es | 1 | 0.62 | 0.44 |
寄生密度 Pd | 2 | 8.78 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.63 | 0.54 | |
拓扑指数 Topological index | 内生真菌带菌状态 Es | 1 | 5.30 | 0.03 |
寄生密度 Pd | 2 | 51.49 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.54 | 0.59 |
Fig.5 Structural equation model (SEM) based on effects of Epichlo? endophyte status and P. kansuensis density on root architecture and shoot and root biomass of S. purpurea
1 | Hetrick B A D. Mycorrhizas and root architecture. Experientia, 1991, 47: 355-362. |
2 | Linkohr B I, Williamson L C, Fitter A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 2002, 29(6): 751-760. |
3 | de Dorlodot S, Forster B, Pages L, et al. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 2007, 12(10): 474-481. |
4 | Giehl R F H, Gruber B D, von Wirén N. It’s time to make changes: Modulation of root system architecture by nutrient signals. Journal of Experimental Botany, 2014, 65(3): 769-778. |
5 | Zhai S L, Liu X L, Yao L Y, et al. Effect of AMF inoculation on root configuration of alfalfa under mixed saline-alkali stress. Feed Research, 2023, 46(21): 90-94. |
翟书林, 刘晓琳, 姚璐莹, 等. 混合盐碱下接种丛枝菌根真菌(AMF)对紫花苜蓿根系构型的影响. 饲料研究, 2023, 46(21): 90-94. | |
6 | Peng F. Effects of arbuscular mycorrhizal fungi and nutrient interaction on the drought resistance of Leymus chinensis. Changchun: Northeast Normal University, 2019. |
彭飞. 丛枝菌根真菌与营养互作对羊草抗旱性的影响. 长春: 东北师范大学, 2019. | |
7 | Sui X L, Zhang T, Tian Y Q, et al. A neglected alliance in battles against parasitic plants: Arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species. New Phytologist, 2018, 221(1): 470-481. |
8 | Bao G S, Song M L, Wang Y Q, et al. Epichloë endophyte infection enhances the tolerance of Stipa purpurea to parasitic stress through the regulation of antioxidants and phytohormones. Plant and Soil, 2021, 466(1): 239-256. |
9 | Bao G S, Song M L, Wang Y Q, et al. Effects of Pedicularis kansuensis parasitism on the photosynthetic characteristics of host grass-Epichloë symbionts. Acta Microbiologica Sinica, 2020, 60(2): 294-305. |
鲍根生, 宋梅玲, 王玉琴, 等. 甘肃马先蒿寄生对禾草内生真菌共生体光合特性的影响. 微生物学报, 2020, 60(2): 294-305. | |
10 | Bao G S, Wang Y Q, Song M L, et al. Effects of Pedicularis kansuensis parasitism on physiological characteristics of grass-Epichloë symbiont under different hemiparasite density. Acta Microbiologica Sinica, 2020, 60(3): 590-600. |
鲍根生, 王玉琴, 宋梅玲, 等. 甘肃马先蒿不同寄生密度对紫花针茅内生真菌共生体生理特性的影响. 微生物学报, 2020, 60(3): 590-600. | |
11 | Bao G S, Song M L, Wang Y Q, et al. Does Epichloë endophyte enhance host tolerance to root hemiparasite? Microbial Ecology, 2021, 82(1): 35-48. |
12 | Ren A Z, Gao Y B. Recent research progress on grass-endophyte symbiosis. Microbiology China, 2004, 31(2): 130-133. |
任安芝, 高玉葆. 禾草类内生真菌的研究进展. 微生物学通报, 2004, 31(2): 130-133. | |
13 | Li S Q, Chen Z J, Chen T X, et al. Bibliometric analysis of research on endophytic fungi in grasses and non-grasses based on the CNKI database. Acta Prataculturae Sinica, 2021, 30(6): 121-132. |
李淑琴, 陈振江, 陈泰祥, 等. 基于CNKI数据库的禾草与非禾草内生真菌文献计量分析. 草业学报, 2021, 30(6): 121-132. | |
14 | Nan Z B, Li C J. Roles of the grass-Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 2004, 24(3): 605-616. |
南志标, 李春杰. 禾草-内生真菌共生体在草地农业系统中的作用. 生态学报, 2004, 24(3): 605-616. | |
15 | Siegel M R, Latch G C M, Johnson M C. Fungal endophytes of grasses. Annual Review Phytopathology, 1987, 25: 293-315. |
16 | Du M X, Wang T, Li C J, et al. Advances in the taxonomy of the genus Epichloё endophytic fungi in grasses. Acta Agrestia Sinica, 2023, 31(12): 3575-3586. |
杜明祥, 王添, 李春杰, 等. 禾草Epichloë属内生真菌分类学研究进展. 草地学报, 2023, 31(12): 3575-3586. | |
17 | Leuchtmann A. Systematics, distribution, and host specificity of grass endophytes. Natural Toxins, 1992, 1(3): 150-162. |
18 | Omacini M, Semmartin M, Pérez L I, et al. Grass-endophyte symbiosis: A neglected aboveground interaction with multiple belowground consequences. Applied Soil Ecology, 2011, 61: 273-279. |
19 | Schardl C L, Florea S, Pan J, et al. The Epichloë: Alkaloid diversity and roles in symbiosis with grasses. Current Opinion in Plant Biology, 2013, 16(4): 480-488. |
20 | Xia C, Zhang X, Christensen M J, et al. Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecology, 2016, 16: 26-34. |
21 | Wang X Y, Qin J H, Chen W, et al. Pathogen resistant advantage of endophyte-infected over endophyte-free Leymus chinensis is strengthened by pre-drought treatment. European Journal of Plant Pathology, 2016, 144(3): 477-486. |
22 | Chen T X, White J F, Li C J. Fungal endophyte Epichloë bromicola infection regulates anatomical changes to account for salt stress tolerance in wild barley (Hordeum brevisubulatum). Plant and Soil, 2021, 461: 533-546. |
23 | Xu W B, Li M M, Lin W H, et al. Effects of Epichloë sinensis endophyte and host ecotype on physiology of Festuca sinensis under different soil moisture conditions. Plants, 2021, 10(8): 1649. |
24 | Chen Z J, Jin Y Y, Yao X, et al. Fungal endophyte improves survival of Lolium perenne in low fertility soils by increasing root growth, metabolic activity and absorption of nutrients. Plant and Soil, 2020, 452(1): 185-206. |
25 | Bao G S, Suetsugu K, Wang H S, et al. Effects of the hemiparasitic plant Pedicularis kansuensis on plant community structure in a degraded grassland. Ecological Research, 2015, 30(3): 507-515. |
26 | Bao G S, Song M L, Wang Y Q, et al. Effects of parasitism by a root hemiparasite on mutualistic relationship between host grasses and their Epichloë endophytes. Acta Prataculturae Sinica, 2020, 29(2): 42-51. |
鲍根生, 宋梅玲, 王玉琴, 等. 甘肃马先蒿寄生对禾草内生真菌共生体共生关系的影响. 草业学报, 2020, 29(2): 42-51. | |
27 | Rimer S, Cameron D D, Wacker R, et al. An anatomical study of the haustoria of Rhinanthus minor attached to roots of different hosts. Flora-Morphology, Distribution, Functional Ecology of Plants, 2007, 202(3): 194-200. |
28 | Bao G S, Song M L, Wang Y Q, et al. Interactive effects of different densities of Pedicularis kansuensis parasitism and Epichloë endophyte infection on the endogenous hormone levels and alkaloid contents of Stipa purpurea. Acta Prataculturae Sinica, 2020, 29(4): 147-156. |
鲍根生, 宋梅玲, 王玉琴, 等. 不同密度甘肃马先蒿寄生和内生真菌互作对紫花针茅内源激素及生物碱含量的影响. 草业学报, 2020, 29(4): 147-156. | |
29 | Li C J, Nan Z B, Liu Y, et al. Methodology of endophyte detection of drunken horse grass (Achnatherum inebrians). Edible Fungi of China, 2008, 27(suppl.): 16-19. |
李春杰, 南志标, 刘勇, 等. 醉马草内生真菌检测方法的研究. 中国食用菌, 2008, 27(suppl.): 16-19. | |
30 | Yao X, Li X Z, Zhu X X, et al. Effects of two fungicides on Neotyphodium seed-borne fungal endophyte of Festuca sinensis. Pratacultural Science, 2013, 30(10): 1517-1522. |
姚祥, 李秀璋, 朱小晓, 等. 两种杀菌剂对中华羊茅种传内生真菌的影响. 草业科学, 2013, 30(10): 1517-1522. | |
31 | Sui X L, Li A R, Chen Y, et al. Arbuscular mycorrhizal fungi: Potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis? Mycorrhiza, 2014, 24(3): 187-195. |
32 | Shang Z H, Yang S H, Shi J J, et al. Seed rain and its relationship with above-ground vegetation of degraded Kobresia meadows. Journal of Plant Research, 2013, 126: 63-72. |
33 | Bouma T, Nielsen K, Van Hal J, et al. Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 2001, 15(3): 360-369. |
34 | Fitter A. An architectural approach to the comparative ecology of plant root systems. New Phytologist, 1987, 106(1): 61-77. |
35 | Phoenix G K, Press M C. Linking physiological traits to impacts on community structure and function: The role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). Journal of Ecology, 2005, 93(1): 67-78. |
36 | Huang X Y, Guan K Y, Li A R. Biological trait and their ecological significances of parasitic plants: A review. Chinese Journal of Ecology, 2011, 30(8): 1838-1844. |
黄新亚, 管开云, 李爱荣. 寄生植物的生物学特性及生态学效应. 生态学杂志, 2011, 30(8): 1838-1844. | |
37 | Joel D M, Gressel J, Musselman L J. Parasitic Orobanchaceae parasitic mechanisms and control strategies. Berlin, Germany: Springer, 2013: 87-110. |
38 | Zhao Q Q, Diao P F, Liao J, et al. Research progresses in molecular communication between parasitic plants and hosts. Plant Physiology Journal, 2018, 54(4): 519-527. |
赵琦琪, 刁鹏飞, 廖坚, 等. 寄生植物和寄主间的分子交流研究进展. 植物生理学报, 2018, 54(4): 519-527. | |
39 | Wang L Q, Zhang B J, Tang N. Effects of nitrogen deficiency on the photosynthetic characteristics of wheat. Hubei Agricultural Sciences, 2014, 53(8): 1758-1761. |
王履清, 张边江, 唐宁. 氮素匮乏对小麦光合特性的影响. 湖北农业科学, 2014, 53(8): 1758-1761. | |
40 | Chen Y, Guan K Y, Li A R, et al. Effects of nitrogen and phosphorus supply on root morphology of two Pedicularis species. Plant Diversity and Resources, 2014, 36(1): 56-64. |
陈燕, 管开云, 李爱荣, 等. 氮磷供给对两种马先蒿根系形态建成的影响. 植物分类与资源学报, 2014, 36(1): 56-64. | |
41 | Tian Y Q, Sui X L, Zhang T, et al. Effects of soil nitrogen heterogeneity and parasitism by Pedicularis species on growth and root spatial distribution of Polypogon monspeliensis. Guihaia, 2020, 40(12): 1838-1848. |
田玉清, 隋晓琳, 张婷, 等. 土壤氮素异质性分布和马先蒿寄生对长芒棒头草生长发育及根系分布的影响. 广西植物, 2020, 40(12): 1838-1848. | |
42 | Yang T X, Du Y H, Liu G K, et al. Effect of parasitic Cistanche tubulosa on photosynthesis characteristic and growth of annual Tamarix chinensis. Modern Chinese Medicine, 2015, 17(4): 375-378, 386. |
杨太新, 杜艳华, 刘国库, 等. 管花肉苁蓉寄生对一年生柽柳光合特性及生长的影响. 中国现代中药, 2015, 17(4): 375-378, 386. | |
43 | Li D D, Tian M Y, Cai J, et al. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regulation, 2013, 70: 257-263. |
44 | Mei L L, Yang X, Cao H B, et al. Arbuscular mycorrhizal fungi alter plant and soil C∶N∶P stoichiometries under warming and nitrogen input in a semiarid meadow of China. International Journal of Environmental Research and Public Health, 2019, 16(3): 397. |
45 | Trachsel S, Kaeppler S M, Brown K M, et al. Maize root growth angles become steeper under low N conditions. Field Crops Research, 2013, 140: 18-31. |
46 | Gealy D R, Moldenhauer K A K, Duke S. Root distribution and potential interactions between allelopathic rice, sprangle top (Leptochloa spp.), and barnyardgrass (Echinochloa crusgalli) based on 13C isotope discrimination analysis. Journal of Chemical Ecology, 2013, 39(2): 186-203. |
47 | Neumann U, Vian B, Weber H C, et al. Interface between haustoria of parasitic members of the Scrophulariaceae and their hosts: A histochemical and immunocytochemical approach. Protoplasma, 1999, 207: 84-97. |
48 | Watling J R, Press M C. Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biology, 2001, 3(3): 244-250. |
49 | Du H, Li Y P, Cheng W, et al. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
杜红, 李玉鹏, 程文, 等. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应. 浙江农业学报, 2022, 34(5): 1039-1048. | |
50 | Jabborova D, Annapurna K, Al-Sadi A M, et al. Biochar and arbuscular mycorrhizal fungi mediated enhanced drought tolerance in okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi Journal of Biological Sciences, 2021, 28(10): 5490-5499. |
51 | Li Q, Duan W Y, Li X, et al. Effect of arbuscular mycorrhizal fungi on growth and root morphology of Acer truncatum. Journal of Northwest Agriculture & Forestry University (Natural Science Edition), 2024, 52(1): 79-86. |
李晴, 段文艳, 李鑫, 等. 丛枝菌根真菌对元宝枫生长及其根系形态的影响. 西北农林科技大学学报(自然科学版), 2024, 52(1): 79-86. | |
52 | Wu J D, Chen Q, Liu X X, et al. Preliminary study on mechanisms of growth promotion in rice colonized by Piriformospora indica. Chinese Journal of Rice Science, 2015, 29(2): 200-207. |
吴金丹, 陈乾, 刘晓曦, 等. 印度梨形孢对水稻的促生作用及其机理的初探. 中国水稻学, 2015, 29(2): 200-207. | |
53 | Yuan Z L. Study on the growth and physiological effects of a broad-spectrum endophytic fungal strain B3 on rice. Nanjing: Nanjing Normal University, 2005. |
袁志林. 一株广谱内生真菌B3对水稻生长及生理影响研究. 南京: 南京师范大学, 2005. | |
54 | Guo X W, Li K, Guo Y S, et al. Effect of arbuscular mycorrhizal fungi (AMF) strains on growth and root exudation characteristics of grapevine. Journal of Shenyang Agricultural University, 2009, 40(4): 392-395. |
郭修武, 李坤, 郭印山, 等. 丛枝菌根真菌对连作土壤中葡萄生长及根系分泌特性的影响. 沈阳农业大学学报, 2009, 40(4): 392-395. | |
55 | Berta G, Fusconi A, Trotta A. VA mycorrhizal infection and the morphology and function of root systems. Environmental and Experimental Botany, 1993, 33(1): 159-173. |
56 | Zangaro W, Nishidate F R, Camargo F R S, et al. Relationships among arbuscular mycorrhizas, root morphology and seedlings growth of tropical native woody species in southern Brazil. Journal of Tropical Ecology, 2005, 21(5): 529-540. |
57 | Ma J F, Xin M, Xu C C, et al. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies. Chinese Journal of Plant Ecology, 2021, 45(7): 728-737. |
马炬峰, 辛敏, 徐陈超, 等. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响. 植物生态学报, 2021, 45(7): 728-737. | |
58 | Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555: 94-97. |
59 | Sun C Y, Zeng Y H, Ma J Q, et al. Effects of arbuscular mycorrhizal fungi on Artemisia annua L. growth and chemical composition of root exudates. Journal of Tropical Crops, 2020, 41(9): 1831-1837. |
孙晨瑜, 曾燕红, 马俊卿, 等. 丛枝菌根真菌对黄花蒿生长和根系分泌物化学组成的影响. 热带作物学报, 2020, 41(9): 1831-1837. | |
60 | Těšitel J, Těšitelová T, Fisher J P, et al. Integrating ecology and physiology of root hemiparasitic interaction: Interactive effects of abiotic resources shape the interplay between parasitism and autotrophy. New Phytologist, 2015, 205(1): 350-360. |
61 | Hou W P, Wang J F, Christensen M J, et al. Metabolomics insights into the mechanism by which Epichloë gansuensis endophyte increased Achnatherum inebrians tolerance to low nitrogen stress. Plant and Soil, 2021, 463: 487-508. |
62 | Zhou F, Gao Y B, Ma W J. Effects of phosphorus deficiency on growth of perennial ryegrass-fungal endophyte symbiont and phenolic content in root. Plant Physiology Communications, 2003, 39(4): 321-324. |
周芳, 高玉葆, 马文江. 缺磷对黑麦草-内生真菌共生体生长和根中酚含量的影响. 植物生理学通讯, 2003, 39(4): 321-324. | |
63 | Zhang P, Meng S Y, Bao G S, et al. Effect of Epichloë endophyte on the growth and carbon allocation of its host plant Stipa purpurea under hemiparasitic root stress. Microorganisms, 2023, 11(11): 2761. |
64 | Korell L, Sandner T, Matthies D, et al. Effects of drought and N level on the interactions of the root hemiparasite Rhinanthus alectorolophus with a combination of three host species. Plant Biology, 2020, 22: 84-92. |
65 | Chen Z J, Jin Y Y, Yao X, et al. Gene analysis reveals that leaf litter from Epichloë endophyte-infected perennial ryegrass alters diversity and abundance of soil microbes involved in nitrification and denitrification. Soil Biology and Biochemistry, 2021, 154(1): 108123. |
66 | Yang B, Ma H Y, Wang X M, et al. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. Plant Physiology and Biochemistry, 2014, 82: 172-182. |
67 | Wei Y Q, Chen J X, Zheng Y L, et al. Diversity of arbuscular mycorrhizal fungi in Cycas panzhihuaensis at different tree ages in Dry Hot Valley. Journal of Northwest Forestry University, 2022, 37(4): 203-209. |
魏玉倩, 陈健鑫, 郑艳玲, 等. 干热河谷不同树龄攀枝花苏铁丛枝菌根真菌多样性研究. 西北林学院学报, 2022, 37(4): 203-209. | |
68 | Liu H, Yao T, Li J H, et al. Effect of various arbuscular mycorrhizal fungi on growth of tomato. Journal of Gansu Agricultural University, 2017, 52(4): 75-81. |
刘欢, 姚拓, 李建宏, 等. 丛枝菌根真菌对番茄生长的影响. 甘肃农业大学学报, 2017, 52(4): 75-81. |
[1] | Gen-sheng BAO, Yuan LI, Xiao-yun FENG, Peng ZHANG, Si-yu MENG. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region [J]. Acta Prataculturae Sinica, 2024, 33(3): 73-84. |
[2] | Xiao-ming CHEN, Dong-ying HAN, Gui-long SONG. Effect of arsenic stress on arsenic uptake and root morphological changes in seashore paspalum [J]. Acta Prataculturae Sinica, 2023, 32(6): 112-119. |
[3] | Yuan-yuan JIN, Zhen-jiang CHEN, Tian WANG, Chun-jie LI. Effects of Epichloë endophyte and field management practices on the abundance and diversity of the soil fungal community [J]. Acta Prataculturae Sinica, 2023, 32(4): 142-152. |
[4] | Zhi-xin YANG, Xu ZHENG, Lai-bao CHEN, Yong-xin YU, Feng-hua ZHANG, Lu-hua LI, Jia-ping WANG. Morphological adaptation strategies of Rumex hanus planted in saline-alkali land of arid areas [J]. Acta Prataculturae Sinica, 2022, 31(7): 15-27. |
[5] | Cheng-zhen ZHAO, Qiang LI, Rong-zhen ZHONG. Effect of mowing in different phenological growth stages on shoot regrowth, root morphology and forage yield of Leymus chinensis [J]. Acta Prataculturae Sinica, 2022, 31(3): 92-100. |
[6] | Peng ZHANG, Xi REN, Si-yu MENG, Xiao-xing WEI, Gen-sheng BAO. Effects of Epichloё endophyte on seed germination and seedling growth of Stipa purpurea under salt stress [J]. Acta Prataculturae Sinica, 2022, 31(10): 110-121. |
[7] | Mei-ling SONG, Yu-qin WANG, Hong-sheng WANG, Gen-sheng Bao. Effect of Epichloë endophyte on the litter decomposition of Stipa purpurea in alpine grassland [J]. Acta Prataculturae Sinica, 2021, 30(9): 150-158. |
[8] | SUN Xiao-fu, HUANG Li-juan, WANG Pu-chang, ZHAO Li-li, LIU Fang. Effects of different phosphorus supply levels on morphology and physiology of Paspalum wettsteinii [J]. Acta Prataculturae Sinica, 2020, 29(8): 58-69. |
[9] | QING Yue, LI Ting-xuan, YE Dai-hua. Effects of inorganic N on the N accumulation and root morphology of a mining ecotype of Polygonum hydropiper [J]. Acta Prataculturae Sinica, 2020, 29(1): 203-210. |
[10] | GUO Xiong-fei. Effects of biochar and arbuscular mycorrhizal fungi on soil nutrients and growth of Cassia occidentalis under heavy metal contamination [J]. Acta Prataculturae Sinica, 2018, 27(11): 150-161. |
[11] | LI Shuai, ZHAO Guo-Jing, XU Wei-Zhou, GAO Zhi-Juan, WU Ai-Jiao, XU Bing-Cheng. Responses of old world bluestem root systems to changes in soil water conditions [J]. Acta Prataculturae Sinica, 2016, 25(2): 169-177. |
[12] | LI Xi-Ming, SONG Gui-Long. Cadmium uptake and root morphological changes in Medicago sativa under cadmium stress [J]. Acta Prataculturae Sinica, 2016, 25(2): 178-186. |
[13] | LIU Wan-Gou, LI Liang-Xian, XIE Hai-Rong, HE Yong-Yi, LIU Jin-Xiang. Effect of soil bulk density on root morphology and biomass of vetiver grass seedlings [J]. Acta Prataculturae Sinica, 2015, 24(4): 214-220. |
[14] | CHEN Wei,ZHANG Miao-miao,SONG Yang-yang,CHEN Jian-gang,ZHANG De-gang. Impacts of heavy metals on the fluorescence characteristics and root morphology of 2 turfgrass species [J]. Acta Prataculturae Sinica, 2014, 23(3): 333-342. |
[15] |
LIU Shuang, LI Ting-xuan, JI Lin, ZHANG Shu-jin .
Phosphorus accumulation and root morphological difference of two ecotypes of Pilea sinofasciata grown in different phosphorus treatments [J]. Acta Prataculturae Sinica, 2013, 22(3): 211-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||