Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (3): 92-100.DOI: 10.11686/cyxb2020565
Previous Articles Next Articles
Cheng-zhen ZHAO1,2(), Qiang LI1, Rong-zhen ZHONG1()
Received:
2020-12-09
Revised:
2021-01-06
Online:
2022-03-20
Published:
2022-01-15
Contact:
Rong-zhen ZHONG
Cheng-zhen ZHAO, Qiang LI, Rong-zhen ZHONG. Effect of mowing in different phenological growth stages on shoot regrowth, root morphology and forage yield of Leymus chinensis[J]. Acta Prataculturae Sinica, 2022, 31(3): 92-100.
性状 Trait | 根直径 RDC (mm) | 处理 Treatment | SEM | P值 P value | |||
---|---|---|---|---|---|---|---|
CON | ES | HS | FS | ||||
根长 Root length (cm) | 0.0~0.2 | 275.6a | 183.4b | 296.4a | 281.0a | 10.63 | <0.05 |
0.2~0.5 | 93.8a | 70.2b | 103.7a | 103.4a | 3.21 | <0.05 | |
0.5~1.0 | 41.5b | 42.0b | 58.8a | 58.0a | 1.98 | <0.05 | |
1.0~2.0 | 16.7a | 11.6b | 18.0a | 15.8ab | 0.90 | 0.07 | |
>2.0 | 4.5ab | 3.2b | 4.7a | 3.7ab | 0.25 | 0.13 | |
根表面积 Root surface area (cm2) | 0.0~0.2 | 10.8a | 6.9b | 11.2a | 10.9a | 0.41 | <0.05 |
0.2~0.5 | 8.7b | 7.2b | 10.7a | 10.7a | 0.37 | <0.05 | |
0.5~1.0 | 8.7b | 8.8b | 12.2a | 11.9a | 0.43 | <0.05 | |
1.0~2.0 | 7.1ab | 5.0b | 7.6a | 6.6ab | 0.38 | 0.09 | |
>2.0 | 4.6ab | 3.9b | 5.5a | 4.2ab | 0.38 | 0.15 | |
根体积 Root volume (cm3) | 0.0~0.2 | 0.04a | 0.02b | 0.04a | 0.04a | 0.002 | <0.05 |
0.2~0.5 | 0.08a | 0.06b | 0.09a | 0.09a | 0.003 | <0.05 | |
0.5~1.0 | 0.16bc | 0.15c | 0.21a | 0.20a | 0.008 | <0.05 | |
1.0~2.0 | 0.25ab | 0.18b | 0.26a | 0.23ab | 0.013 | 0.11 | |
>2.0 | 0.45b | 0.47ab | 0.64a | 0.46ab | 0.034 | 0.15 |
Table 1 Changes of root length, surface area and volume of L. chinensis under different phenological growth stages mowing (n=3)
性状 Trait | 根直径 RDC (mm) | 处理 Treatment | SEM | P值 P value | |||
---|---|---|---|---|---|---|---|
CON | ES | HS | FS | ||||
根长 Root length (cm) | 0.0~0.2 | 275.6a | 183.4b | 296.4a | 281.0a | 10.63 | <0.05 |
0.2~0.5 | 93.8a | 70.2b | 103.7a | 103.4a | 3.21 | <0.05 | |
0.5~1.0 | 41.5b | 42.0b | 58.8a | 58.0a | 1.98 | <0.05 | |
1.0~2.0 | 16.7a | 11.6b | 18.0a | 15.8ab | 0.90 | 0.07 | |
>2.0 | 4.5ab | 3.2b | 4.7a | 3.7ab | 0.25 | 0.13 | |
根表面积 Root surface area (cm2) | 0.0~0.2 | 10.8a | 6.9b | 11.2a | 10.9a | 0.41 | <0.05 |
0.2~0.5 | 8.7b | 7.2b | 10.7a | 10.7a | 0.37 | <0.05 | |
0.5~1.0 | 8.7b | 8.8b | 12.2a | 11.9a | 0.43 | <0.05 | |
1.0~2.0 | 7.1ab | 5.0b | 7.6a | 6.6ab | 0.38 | 0.09 | |
>2.0 | 4.6ab | 3.9b | 5.5a | 4.2ab | 0.38 | 0.15 | |
根体积 Root volume (cm3) | 0.0~0.2 | 0.04a | 0.02b | 0.04a | 0.04a | 0.002 | <0.05 |
0.2~0.5 | 0.08a | 0.06b | 0.09a | 0.09a | 0.003 | <0.05 | |
0.5~1.0 | 0.16bc | 0.15c | 0.21a | 0.20a | 0.008 | <0.05 | |
1.0~2.0 | 0.25ab | 0.18b | 0.26a | 0.23ab | 0.013 | 0.11 | |
>2.0 | 0.45b | 0.47ab | 0.64a | 0.46ab | 0.034 | 0.15 |
Fig.4 Changes of stem, leaf and sheath biomass of individual L. chinensis and their proportions under different phenological growth stages mowing (mean±SE, n=3)
Fig.5 Changes of net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate of L. chinensis under different phenological growth stages mowing (mean±SE, n=3)
1 | Foley J A, Ramankutty N, Brauman K A, et al. Solutions for a cultivated planet. Nature, 2011, 478: 337-342. |
2 | Dillon P, Hennessy T, Shalloo L, et al. Future outlook for the Irish dairy industry: A study of international competitiveness influence of international trade reform and requirement for change. International Journal of Dairy Technology, 2008, 61(1): 16-29. |
3 | Song Y, Wu Y N, Zhou D W. Effect of autumn cutting date on regrowth, turning green, yield and quality of Leymus chinensis grassland in Songnen Plain, Northeast China. American Journal of Plant Sciences, 2018, 9(2): 185-195. |
4 | Čop J, Vidrih M, Hacin J. Influence of cutting regime and fertilizer application on the botanical composition, yield and nutritive value of herbage of wet grasslands in Central Europe. Grass and Forage Science, 2009, 64(4): 454-465. |
5 | Harris R B. Rangeland degradation on the Qinghai-Tibetan Plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 2010, 74(1): 1-12. |
6 | Hennessy D, O’donovan M, French P, et al. Effects of date of autumn closing and timing of winter grazing on herbage production in winter and spring. Grass and Forage Science, 2006, 61(4): 363-374. |
7 | Sakaigaichi T, Tarumoto Y, Hattori I, et al. The growth and yield of forage sugarcane variety, "Shimanoushie", under the two harvests per year system with different harvest times in the Amami Region of Kagoshima Prefecture. Japanese Journal of Crop Science, 2017, 86(1): 56-61. |
8 | McIntosh D W, Bates G E, Keyser P D, et al. The impact of harvest timing on biomass yield from native warm-season grass mixtures. Agronomy Journal, 2015, 107(6): 2321-2326. |
9 | Baoyin T, Li F Y, Bao Q, et al. Effects of mowing regimes and climate variability on hay production of Leymus chinensis (Trin.) Tzvelev grassland in northern China. Rangeland Journal, 2014, 36(6): 593-600. |
10 | Bork E W, Broadbent T S, Willms W D. Intermittent growing season defoliation variably impacts herbage productivity in mixed grass prairie. Rangeland Ecology and Management, 2017, 70(3): 307-315. |
11 | Guo Y J, Han L, Li G D, et al. The effects of defoliation on plant community, root biomass and nutrient allocation and soil chemical properties on semi-arid steppes in northern China. Journal of Arid Environments, 2012, 78: 128-134. |
12 | Ren W, Hou X, Wu Z, et al. De novo transcriptomic profiling of the clonal Leymus chinensis response to long-term overgrazing induced memory. Scientific Reports, 2018, 8(1): 17912. |
13 | Gonzalez A P R, Chrtek J, Dobrev P I, et al. Stress-induced memory alters growth of clonal offspring of white clover (Trifolium repens). American Journal of Botany, 2016, 103(9): 1567-1574. |
14 | Zhao W, Chen S P, Han X G, et al. Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecological Research, 2009, 24(1): 99-108. |
15 | Lee J M, Sathish P, Donaghy D J, et al. Impact of defoliation severity on photosynthesis, carbon metabolism and transport gene expression in perennial ryegrass. Functional Plant Biology, 2011, 38(10): 808-817. |
16 | Thornton B, Millard P, Duff E I, et al. The relative contribution of remobilization and root uptake in supplying nitrogen after defoliation for regrowth of laminae in four grass species. New Phytologist, 1993, 124(4): 689-694. |
17 | Jones G B, Alpuerto J B, Tracy B F, et al. Physiological effect of cutting height and high temperature on regrowth vigor in orchard grass. Frontiers in Plant Science, 2017, 8: 805. |
18 | Kabeya D, Sakai S. The role of roots and cotyledons as storage organs in early stages of establishment in Quercus crispula: A quantitative analysis of the nonstructural carbohydrate in cotyledons and roots. Annals of Botany, 2003, 92(4): 537-545. |
19 | Snyder K A, Williams D G. Defoliation alters water uptake by deep and shallow roots of Prosopis velutina (Velvet Mesquite). Functional Ecology, 2003, 17(3): 363-374. |
20 | Yuan W, Zhou G, Wang Y, et al. Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem. Ecological Research, 2007, 22(5): 784-791. |
21 | Li X, Liu Z, Wang Z, et al. Pathways of Leymus chinensis individual aboveground biomass decline in natural semiarid grassland induced by overgrazing: A study at the plant functional trait scale. PLoS One, 2015, 10(5): e0124443. |
22 | IUSS Working Group. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, 2015, 106: 166-168. |
23 | Masuko T, Minami A, Iwasaki N, et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry, 2005, 339(1): 69-72. |
24 | Muthoni F K, Groen T A, Skidmore A K, et al. Ungulate herbivory overrides rainfall impacts on herbaceous regrowth and residual biomass in a key resource area. Journal of Arid Environments, 2014, 100: 9-17. |
25 | Zhao W, Chen S P, Lin G H. Compensatory growth responses to clipping defoliation in Leymus chinensis (Poaceae) under nutrient addition and water deficiency conditions. Plant Ecology, 2008, 196(1): 85-99. |
26 | Erbilgin N, Galvez D A, Zhang B, et al. Resource availability and repeated defoliation mediate compensatory growth in trembling aspen (Populus tremuloides) seedlings. PeerJ, 2014, 2(1): 1-23. |
27 | Liu H, Yu F, He W, et al. Are clonal plants more tolerant to grazing than co-occurring non-clonal plants in inland dunes? Ecological Research, 2007, 22(3): 502-506. |
28 | Donaghy D J, Turner L R, Adamczewski K A. Effect of defoliation management on water-soluble carbohydrate energy reserves, dry matter yields, and herbage quality of tall fescue. Agronomy Journal, 2008, 100(1): 122-127. |
29 | Wang S, Yang Y, Zhi H. Water-soluble carbohydrates of root components and activity rhythms at vegetative growth stage of Artemisia scoparia in northeastern grassland of China. PLoS One, 2017, 12(5): e0176667. |
30 | Baker B W, Ducharme H C, Mitchell D C S, et al. Interactions of beaver and elk herbivory reduces standing crop of willow. Ecological Applications, 2005, 15(1): 110-118. |
31 | King E G, Eckhart V M, Mohl E C. Magnitudes and mechanisms of shoot-damage compensation in annual species of Linum (Linaceae) in Iowa. American Midwest Naturalist, 2008, 159(1): 200-213. |
32 | Waddell H A, Simpson R J, Ryan M H, et al. Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass). Plant and Soil, 2017, 412(1/2): 7-19. |
33 | Anderson T M, Starmer W T, Thorne M. Bimodal root diameter distributions in Serengeti grasses exhibit plasticity in response to defoliation and soil texture: Implications for nitrogen uptake. Functional Ecology, 2007, 21(1): 50-60. |
34 | Agnusdei M G, Di M O N, Nenning F R, et al. Leaf blade nutritional quality of rhodes grass (Chloris gayana) as affected by leaf age and length. Crop and Pasture Science, 2011, 62: 1098-1105. |
35 | Gunn T C, Walton D W H. Storage carbohydrate production and overwintering strategy in a winter-green tussock grass on South Georgia (sub Antarctic). Polar Biology, 1985, 4(4): 237-242. |
36 | Janeček Š, Klimešová J. Carbohydrate storage in meadow plants and its depletion after disturbance: Do roots and stem-derived organs differ in their roles? Oecologia, 2014, 175(1): 51-61. |
37 | Han X, Sistla S A, Zhang Y H, et al. Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe. Plant and Soil, 2014, 382(1/2): 175-187. |
38 | Fulkerson W J, Slack K. Leaf number as a criterion for determining defoliation time for Lolium perenne: 2. Effect of defoliation frequency and height. Grass and Forage Science, 1995, 50: 16-20. |
39 | Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Functional Plant Biology, 2000, 27: 595-607. |
40 | Thorne M A, Frank D A. The effects of clipping and soil moisture on leaf and root morphology and root respiration in two temperate and two tropical grasses. Plant Ecology, 2009, 200(2): 205-215. |
41 | Niklas K J. Plant allometry: Is there a grand unifying theory? Biological Reviews, 2004, 79(4): 871-889. |
[1] | Feng-hui GUO, Yong DING, Wen-jing MA, Xian-song LI, Xi-liang LI, Xiang-yang HOU. Maternal grazing exposure altered the responses of Leymus chinensis cloned offspring to drought environment [J]. Acta Prataculturae Sinica, 2021, 30(8): 119-126. |
[2] | Li-xing ZHANG, Chun-xing HAI, Yao-wen CHANG, Xiao-mei GAO, Wen-bang GAO, Yun-hu XIE. Evaluation of soil quality in Leymus chinensis-Achnatherumsplendens grassland and in Stipa sareptana grassland [J]. Acta Prataculturae Sinica, 2021, 30(4): 68-79. |
[3] | Qian LI, Xiao-xia LI, Li-qin CHENG, Shuang-yan CHEN, Dong-mei QI, Wei-guang YANG, Li-jun GAO, Ba-yin XIN, Gong-she LIU. Expression characteristics and functional analysis of the LcCBF6 gene from Leymus chinensis [J]. Acta Prataculturae Sinica, 2021, 30(10): 105-115. |
[4] | SUN Xiao-fu, HUANG Li-juan, WANG Pu-chang, ZHAO Li-li, LIU Fang. Effects of different phosphorus supply levels on morphology and physiology of Paspalum wettsteinii [J]. Acta Prataculturae Sinica, 2020, 29(8): 58-69. |
[5] | Wu-yun BAI, Xiang-yang HOU, Zi-nian WU, Chun-yu TIAN, Yong DING. Phenotypic variations among Leymus chinensis populations from different geographical areas and effects of variations on clonal propagation of the rhizome [J]. Acta Prataculturae Sinica, 2020, 29(12): 86-94. |
[6] | Ying-kui WANG, Yu-rong YANG, De-li WANG. Effects of arbuscular mycorrhizal fungi on ion absorption and distribution in Leymus chinensis under saline-alkaline stress [J]. Acta Prataculturae Sinica, 2020, 29(12): 95-104. |
[7] | QING Yue, LI Ting-xuan, YE Dai-hua. Effects of inorganic N on the N accumulation and root morphology of a mining ecotype of Polygonum hydropiper [J]. Acta Prataculturae Sinica, 2020, 29(1): 203-210. |
[8] | GUO Xiong-fei. Effects of biochar and arbuscular mycorrhizal fungi on soil nutrients and growth of Cassia occidentalis under heavy metal contamination [J]. Acta Prataculturae Sinica, 2018, 27(11): 150-161. |
[9] | LI Shuai, ZHAO Guo-Jing, XU Wei-Zhou, GAO Zhi-Juan, WU Ai-Jiao, XU Bing-Cheng. Responses of old world bluestem root systems to changes in soil water conditions [J]. Acta Prataculturae Sinica, 2016, 25(2): 169-177. |
[10] | LI Xi-Ming, SONG Gui-Long. Cadmium uptake and root morphological changes in Medicago sativa under cadmium stress [J]. Acta Prataculturae Sinica, 2016, 25(2): 178-186. |
[11] | LIU Wan-Gou, LI Liang-Xian, XIE Hai-Rong, HE Yong-Yi, LIU Jin-Xiang. Effect of soil bulk density on root morphology and biomass of vetiver grass seedlings [J]. Acta Prataculturae Sinica, 2015, 24(4): 214-220. |
[12] | ZHAO Fengjie, WANG Zhenghao, WANG Huiping, WU Huihui, LIU Hangwei, WANG Guangjun, ZHANG Zehua. The effects of hyper spectral change on grassland biomass after damage by Calliptamus abbreviates populations of different densities [J]. Acta Prataculturae Sinica, 2015, 24(3): 195-203. |
[13] | CHEN Wei,ZHANG Miao-miao,SONG Yang-yang,CHEN Jian-gang,ZHANG De-gang. Impacts of heavy metals on the fluorescence characteristics and root morphology of 2 turfgrass species [J]. Acta Prataculturae Sinica, 2014, 23(3): 333-342. |
[14] | ZHANG Le-xin, SU Man, MA Tian, MA Xing-yong, YAN Xue-qing, PENG Xian-jun, CHEN Shuang-yan, CHENG Li-qin, LIU Gong-she. Cloning and analysis of the Δ1-pyrroline-5-carboxylate synthetase (LcP5CS1)from Leymus chinensis [J]. Acta Prataculturae Sinica, 2013, 22(4): 197-204. |
[15] |
LIU Shuang, LI Ting-xuan, JI Lin, ZHANG Shu-jin .
Phosphorus accumulation and root morphological difference of two ecotypes of Pilea sinofasciata grown in different phosphorus treatments [J]. Acta Prataculturae Sinica, 2013, 22(3): 211-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||