草业学报 ›› 2020, Vol. 29 ›› Issue (2): 172-185.DOI: 10.11686/cyxb2019207
高金龙, 刘洁, 殷建鹏, 葛静, 侯蒙京, 冯琦胜, 梁天刚*
收稿日期:
2019-03-25
修回日期:
2019-07-08
出版日期:
2020-02-20
发布日期:
2020-02-20
通讯作者:
E-mail: tgliang@lzu.edu.cn
作者简介:
高金龙(1991-),男,甘肃永昌人,在读博士。E-mail: gaojl16@lzu.edu.cn
基金资助:
GAO Jin-long, LIU Jie, YIN Jian-peng, GE Jing, HOU Meng-jing, FENG Qi-sheng, LIANG Tian-gang*
Received:
2019-03-25
Revised:
2019-07-08
Online:
2020-02-20
Published:
2020-02-20
Contact:
E-mail: tgliang@lzu.edu.cn
摘要: 天然草地牧草营养品质的优劣不仅影响家畜的生长发育,同时也影响畜产品的品质,对草牧业的发展具有至关重要的意义。高光谱遥感技术的飞速发展使深入研究天然草地牧草品质的动态变化成为可能。本研究综述了目前可利用的高光谱遥感数据以及天然草地牧草营养品质遥感反演的主要成果、常用方法和最新研究动态,分析了我国在天然草地牧草营养品质监测与评价方面尚存在数据获取困难、相关研究缺乏、软硬件性能不足等问题;在多种观测平台及相关技术不断革新背景下,探索星载、机载和地面高光谱数据的有机结合,强化高光谱遥感仪器性能,提高关键营养成分的反演精度是未来研究的重点。
高金龙, 刘洁, 殷建鹏, 葛静, 侯蒙京, 冯琦胜, 梁天刚. 天然草地牧草营养品质的高光谱遥感研究进展[J]. 草业学报, 2020, 29(2): 172-185.
GAO Jin-long, LIU Jie, YIN Jian-peng, GE Jing, HOU Meng-jing, FENG Qi-sheng, LIANG Tian-gang. Hyperspectral remote sensing progress for forage nutritional quality and quantity in natural grassland[J]. Acta Prataculturae Sinica, 2020, 29(2): 172-185.
[1] Xu P. Grassland resource survey and planning. Beijing: China Agriculture Press, 2000. 许鹏. 草地资源调查规划学. 北京: 中国农业出版社, 2000. [2] Ren J Z. Research methods of grassland science. Beijing: China Agriculture Press, 1998: 319-322. 任继周. 草业科学研究方法. 北京: 中国农业出版社, 1998: 319-322. [3] Pu R L, Gong P. Hyperspectral remote sensing and aplication. Beijing: Higher Education Press, 2000. 浦瑞良, 宮鹏. 高光谱遥感及其应用. 北京: 高等教育出版社, 2000. [4] Tong Q X, Xue Y Q, Zhang L F. Progress in hyperspectral remote sensing science and technology in China over the past three decades. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 70-91. [5] Guo Y J, Long R J, Zhang D G, 郭彦军, 龙瑞军, 张德罡, 等. 东部祁连山高寒草甸灌木和牧草营养成分含量季节变化动态. 草业科学, 2001, 18(6): 36-39. [6] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 2003, 40(3): 523-534. [7] Houborg R, Fisher J B, Skidmore A K. Advances in remote sensing of vegetation function and traits. International Journal of Applied Earth Observation and Geoinformation, 2015, 43: 1-6. [8] Thenkabail P S, Enclona E A, Ashton M S, [9] Jafari R, Lewis M M. Arid land characterisation with EO-1 Hyperion hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2012, 19: 298-307. [10] Blanco P D, Valle H F, Bouza P J, [11] Christian B, Joshi N, Saini M, [12] Marshall M, Thenkabail P. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108: 205-218. [13] Zhang C Y. Multiscale quantification of urban composition from EO-1/Hyperion data using object-based spectral unmixing. International Journal of Applied Earth Observation and Geoinformation, 2016, 47: 153-162. [14] Cheng Q, Huang J F, Wang R C, 程乾, 黄敬峰, 王人潮, 等. 水稻叶面积指数与MODIS植被指数、红边位置之间的相关分析. 农业工程学报, 2003, 19(5): 104-108. [15] Wang X Z, Huang J F, Li Y M, 王秀珍, 黄敬峰, 李云梅, 等. 水稻叶面积指数的高光谱遥感估算模型. 遥感学报, 2004, 8(1): 81-88. [16] Yi Q X, Huang J F, Wang X Z. Hyperspectral estimation models for crude fiber concentration of corn. Journal of Infrared and Millimeter Waves, 2007, 26(5): 393-395. 易秋香, 黄敬峰, 王秀珍. 玉米粗纤维含量高光谱估算模型研究. 红外与毫米波学报, 2007, 26(5): 393-395. [17] Mirik M, Norland J E, Crabtree R L, [18] Beeri O, Phillips R, Hendrickson J, [19] Skidmore A K, Ferwerda J G, Mutanga O. Forage quality of savannas-simultaneously mapping foliar protein and polyphenols for trees and grass using hyperspectral imagery. Remote Sensing of Environment, 2010, 114(1): 64-72. [20] Ferner J, Linstadter A, Südekum K H, [21] Wu F L, Wang Z S, Yang Q, 吴发莉, 王之盛, 杨勤, 等. 甘南碌曲和合作地区冬夏季高寒天然牧草生产特性、营养成分和饲用价值分析. 草业学报, 2014, 23(4): 31-38. [22] Tong Q X, Zhang B, Zheng L F. Hyperspectral remote sensing theory, technology and application. Beijing: Higher Education Press, 2006. 童庆禧, 张兵, 郑兰芬. 高光谱遥感: 原理, 技术与应用. 北京: 高等教育出版社, 2006. [23] Grossman Y L, Ustin S L, Jacquemoud S, [24] Dawson T P, Curran P J, North P R J, [25] Feng Y, Miller J R. Vegetation green reflectance at high spectral resolution as a measure of leaf chlorophyll content. Calgary Alberta: Proceedings of the 14th Canadian Symposium on Remote Sensing, 1991: 351-355. [26] Mutanga O. Hyperspectral remote sensing of tropical grass quality and quantity. Wageningen, the Netherlands: International Institute for Geoinformation Science and Earth Observation and Wageningen University, 2004. [27] Mutanga O, Skidmore A K. Red edge shift and biochemical content in grass canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(1): 34-42. [28] Tian Q, Tong Q, Pu R, [29] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environmental, 2002, 81(2/3): 337-354. [30] Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment, 2002, 81(1): 45-47. [31] Haboudane D, Miller J R, Tremblay N, [32] Gitelson A, Merzlyak M N. Spectral reflectance changes associated with autumn senescence of [33] Datt B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using eucalyptus leaves. Journal of Plant Physiology, 1999, 154(1): 30-36. [34] Clevers J G P W. Imaging Spectrometry in agriculture-plant vitality and yield indicators//Imaging spectrometry—a tool for environmental observations. Springer Netherlands, 1994: 193-219. [35] Vogelmann J E, Rock B N, Moss D M. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 1993, 14(8): 1563-1575. [36] Fourty T, Baret F, Jacquemoud S. Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems. Remote Sensing of Environment, 1996, 56(2): 104-117. [37] Serrano L, Peñuelas J, Ustin S L. Remote sensing of nitrogen and lignin in mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sensing of Environment, 2002, 81(2/3): 355-364. [38] Gamon J A, Penuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 1992, 41(1): 35-44. [39] Gamon J A, Serrano L, Surfus J S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 1997, 112(4): 492-501. [40] Penuelas J, Baret F, Filella I. Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica, 1995, 31(2): 221-230. [41] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996, 55(2): 95-107. [42] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information (by gray mapping of Landsat MSS data). Photogrammetric Engineering and Remote Sensing, 1997, 43(12): 1541-1552. [43] Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 1996, 148(supplement 3/4): 494-500. [44] Marshak A, Knyazikhin Y, Davis A B, [45] Huete A R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environmental, 1988, 25(3): 295-309. [46] Huete A, Didan K, Miura T, [47] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 2003, 86(4): 542-553. [48] Schleicher T D, Bausch W C, Delgado J A, [49] Inoue Y, Sakaiya E, Zhu Y, [50] Nagler P L, Inoue Y, Glenn E P, [51] Galvao L S, Formaggio A R, Tisot D A. Discrimination of surface varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing of Environment, 2005, 94(4): 523-534. [52] Baret F, Fourty T. Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements. Agronomie, 1997, 17(9/10): 455-464. [53] Colombo R, Merom M, Marchesi A, [54] Darvishzadeh R, Skidmore A, Schlerf M, [55] Feret J B, Francois C, Asner G P, [56] Omari K, White H P, Staenz K, [57] Riano D, Vaughan P, Chuvieco E, [58] Malenovsky Z, Albrechtova J, Lhotakova Z, [59] Moorthy I, Miller J R, Noland T L. Estimating chlorophyll concentration in conifer needles with hyperspectral data: An assessment at the needle and canopy level. Remote Sensing of Environment, 2008, 112(6): 2824-2838. [60] Zarco-Tejada P J, Miller J R, Harron J, [61] Fourty T, Baret F, Jacquemoud S, [62] Jacquemoud S, Ustin S L, Verdebout J, [63] Mutanga O, Skidmore A K, Kumar L, [64] Mutanga O, Skidmore A K. Continuum-removed absorption features estimate tropical savanna grass quality in situ. Earsel Workshop on Imaging Spectroscopy, 2003, (3): 13-16. [65] Thulin S, Hill M J, Held A, [66] Mutanga O, Skidmore A K. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sensing of Environment, 2004b, 90(1): 104-115. [67] Ramoelo A, Wolff E. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. International Journal of Applied Earth Observation and Geoinformation, 2015, 43: 43-54. [68] Ramoelo A, Cho M A, Mathieu R, [69] Capolupo A, Kooistra L, Berendonk C, [70] Villamuelas M, Fernández N, Albanell E, [71] Gao J L, Meng B P, Liang T G, [72] Douman S, Tohuta sheng, Zheng F L, 塞里克. 都曼, 托乎塔生, 郑逢令, 等. 高分遥感在新疆草地资源与生态研究中的应用前景. 草食家畜, 2009, (4): 12-14. [73] Lin Y, Li Q, Wang H B, 林毅, 李倩, 王宏博, 等. 高光谱反演植被水分含量研究综述. 中国农学通报, 2015, 31(3): 167-172. [74] Thomas J R, Namken L N, Oerther G F, [75] Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment, 1989, 30(3): 271-278. [76] Carter G A. Primary and secondary effects of water content of the spectral reflectance of leaves. American Journal of Botany, 1996, 78(7): 916-924. [77] Dobrowski S Z, Pushnik J C, Zarco-Tejada P J, [78] Feng X W, Chen X, Bao A M, 冯先伟, 陈曦, 包安明, 等. 水分胁迫条件下棉花生理变化及其高光谱响应分析. 干旱区地理, 2004, 27(2): 250-255. [79] Zhou S L, Xie R Z, Jiang H R, 周顺利, 谢瑞芝, 蒋海荣, 等. 用反射率、透射率和吸收率分析玉米叶片水分含量时的峰值波长选择. 农业工程学报, 2006, 22(5): 28-31. [80] Fu Y B, Fan Y M, Sheng J D, 付彦博, 范燕敏, 盛建东, 等. 紫花苜蓿冠层反射光谱与叶片含水率关系研究. 光谱学与光谱分析, 2013, 33(3): 766-769. [81] Liu L Y, Wang J H, Zhang Y J, 刘良云, 王纪华, 张永江, 等. 叶片辐射等效水厚度计算与叶片水分定量反演研究. 遥感学报, 2007, 11(3): 289-295. [82] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999, 67(3): 267-287. [83] Wang X, Liu S J, Jia H F, 王迅, 刘书杰, 贾海峰, 等. 基于高光谱数据的高寒草地营养状况的研究. 光谱学与光谱分析, 2012, 32(10): 2780-2784. [84] Ma W W, Gong C L, Hu Y, 马维维, 巩彩兰, 胡勇, 等. 牧草品质的高光谱遥感监测模型研究. 光谱学与光谱分析, 2015, 35(10): 2851-2855. [85] Zhang A W, Yan W Y, Guo C F. Inversion model of pasture crude protein content based on hyperspectral image. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 188-194. 张爱武, 鄢文艳, 郭超凡. 基于高光谱图像的牧草粗蛋白含量反演模型. 农业工程学报, 2018, 34(3): 188-194. [86] Mutanga O, Skidmore A K. Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrusciliaris) measured under controlled laboratory conditions. International Journal of Applied Earth Observation and Geoinformation, 2004, 5(2): 87-96. [87] Ramoelo A, Skidmore A K, Cho M A, [88] Knox N M, Skidmore A K, Prins H H T, [89] Na Q. Hyperspectral and nutrition of 纳钦. 紫花苜蓿和缘毛雀麦高光谱与营养成分的相关性研究. 呼和浩特: 内蒙古农业大学, 2010. [90] Gao J L, Hou Y C, Bai Y F, 高金龙, 侯尧宸, 白彦福, 等. 基于高光谱数据的高寒草甸氮磷钾含量估测方法研究—以青海省贵南县及玛沁县高寒草甸为例. 草业学报, 2016, 25(3): 9-21. [91] Gao J L, Meng B P, Yang S X, 高金龙, 孟宝平, 杨淑霞, 等. 基于HJ-1A卫星数据的高寒草地氮素评估-以青海省贵南县及玛沁县高寒草地为例. 草业学报, 2016, 25(10): 11-20. [92] Xiong Y, Liu B, Yue Y M. Inversion of nitrogen content of plant leaves based on ASD and FISS. Ecology and Environmental Sciences, 2013, 22(4): 582-587. 熊鹰, 刘波, 岳跃民. 基于ASD和FISS的植被叶片氮素含量反演研究. 生态环境学报, 2013, 22(4): 582-587. [93] Fan Y M, Wu H Q, Jin G L. Hyperspectral properties analysis of grassland types in Xinjiang. Pratacultural Sinence, 2006, 23(6): 15-18. 范燕敏, 武红旗, 靳瑰丽. 新疆草地类型高光谱特征分析. 草业科学, 2006, 23(6): 15-18. [94] Zhang K, Guo N, Wang R Y, 张凯, 郭铌, 王润元, 等. 西北荒漠草甸植被光谱反射特征研究. 地球科学进展, 2006, 21(10): 1063-1069. [95] Zhang K, Guo N, Wang R Y, 张凯, 郭铌, 王润元, 等. 甘肃省两种主要草地类型的光谱反射特征比较. 农业工程学报, 2009, 25(S2): 142-148. [96] Gai Y Y, Fan W J, Xu X R, 盖颖颖, 范闻捷, 徐希孺, 等. 基于高光谱数据的呼伦贝尔草原花期物种识别和覆盖度估算. 光谱学与光谱分析, 2011, 31(10): 2778-2783. [97] Liu B, Sheng W S, Li R, 刘波, 沈渭寿, 李儒, 等. 雅鲁藏布江源区高寒草地退化光谱响应变化研究. 光谱学与光谱分析, 2013, 33(6): 1598-1602. [98] Xu L H, Xie D T, Wei C F, 徐丽华, 谢德体, 魏朝富, 等. 紫色土土壤全氮和全磷含量的高光谱遥感预测. 光谱学与光谱分析, 2013, (3): 723-727. [99] Hu Y N, Cui X, Meng B P, 胡远宁, 崔霞, 孟宝平, 等. 甘南高寒草甸主要毒杂草光谱特征分析. 草业科学, 2015, 32(2): 160-167. [100] Hu X B. Correlation analysis of grass spectrum and forage yield. Grass-feeding Livestock, 1996, 93(4): 43-47. 胡新博. 草地光谱与牧草产量的相关分析. 草食家畜, 1996, 93(4): 43-47. [101] Liu Z Y, Huang J F, Wu X H, 刘占宇, 黄敬峰, 吴新宏, 等. 草地生物量的高光谱遥感估算模型. 农业工程学报, 2006, 22(2): 111-115. [102] Xu H, Bao Y H, Bao G, 胥慧, 包玉海, 包刚, 等. 内蒙古典型草原干草生物量高光谱遥感估算研究. 阴山学刊(自然科学版), 2014, 28(4): 22-27. |
[1] | 王辛有, 曹文侠, 王小军, 刘玉祯, 高瑞, 王世林, 安海涛, 邓秀霞, 王文虎. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应[J]. 草业学报, 2021, 30(4): 99-110. |
[2] | 贾雨雷, 廖真, 汪丽芳, 卜建超, 林标声, 林辉, 苏德伟, 鲁国东, 林占熺. 化肥减量配施菌草固氮菌肥对巨菌草生长、营养品质及土壤养分的影响[J]. 草业学报, 2021, 30(3): 215-223. |
[3] | 张生伟, 王小平, 张展海, 马友记, 滚双宝, 杨巧丽, 高小莉, 张保军. 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响[J]. 草业学报, 2021, 30(3): 89-99. |
[4] | 沙栢平, 谢应忠, 高雪芹, 蔡伟, 伏兵哲. 地下滴灌水肥耦合对紫花苜蓿草产量及品质的影响[J]. 草业学报, 2021, 30(2): 102-114. |
[5] | 王继卿, 沈继源, 刘秀, 李少斌, 罗玉柱, 赵孟丽, 郝志云, 柯娜, 宋宜泽, 乔莉蓉. 子午岭黑山羊与辽宁绒山羊产肉性能、肉品质、肌肉营养成分和脂肪酸含量比较[J]. 草业学报, 2021, 30(2): 166-177. |
[6] | 姜慧新, 柏杉杉, 吴波, 宋静怡, 王国良. 22个燕麦品种在黄淮海地区的农艺性状与饲草品质综合评价[J]. 草业学报, 2021, 30(1): 140-149. |
[7] | 吴爽, 周玉香, 贾柔, 金亚东, 杨万宗. 纤维素酶处理荞麦秸秆对其纤维结构和滩羊肉品质的影响[J]. 草业学报, 2021, 30(1): 170-180. |
[8] | 项洪涛, 郑殿峰, 何宁, 李琬, 王曼力, 王诗雅. 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展[J]. 草业学报, 2021, 30(1): 208-219. |
[9] | 季波, 何建龙, 吴旭东, 王占军, 谢应忠, 蒋齐. 宁夏典型天然草地土壤有机碳及其活性组分变化特征[J]. 草业学报, 2021, 30(1): 24-35. |
[10] | 陆姣云, 熊军波, 张鹤山, 田宏, 杨惠敏, 刘洋. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响[J]. 草业学报, 2020, 29(8): 126-133. |
[11] | 张梨梨, 史敏, 李彦忠. 炭疽病对沙尔沁地区苜蓿产量和品质的影响[J]. 草业学报, 2020, 29(6): 117-126. |
[12] | 娄芬, 李小冬, 尚以顺, 吴佳海, 张蓉, 甘小波, 熊俊, 陈光吉, 李世歌, 裴成江. 毕节地区适宜青贮玉米品种(系)筛选及营养价值评价[J]. 草业学报, 2020, 29(6): 214-224. |
[13] | 杨勤, 官久强, 柴志欣, 李华德, 曹诗晓, 张翔飞, 柏琴, 钟金城, 罗晓林. 低海拔舍饲对牦牛肌肉品质的影响研究[J]. 草业学报, 2020, 29(5): 33-42. |
[14] | 董文成, 林语梵, 朱鸿福, 张欢, 张桂杰. 不同品种葡萄渣对苜蓿青贮品质和有氧稳定性的影响[J]. 草业学报, 2020, 29(4): 129-137. |
[15] | 于浩然, 格根图, 王志军, 贾玉山, 连植, 贾鹏飞. 甲酸添加剂及青贮时间对紫花苜蓿青贮品质的影响[J]. 草业学报, 2020, 29(3): 89-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||