草业学报 ›› 2022, Vol. 31 ›› Issue (8): 49-60.DOI: 10.11686/cyxb2020475
彭艳1(), 孙晶远2, 马素洁3, 王向涛3, 魏学红3(), 孙磊3()
收稿日期:
2020-10-20
修回日期:
2020-12-24
出版日期:
2022-08-20
发布日期:
2022-07-01
通讯作者:
魏学红,孙磊
作者简介:
E-mail: xizangsunlei@163.com基金资助:
Yan PENG1(), Jing-yuan SUN2, Su-jie MA3, Xiang-tao WANG3, Xue-hong WEI3(), Lei SUN3()
Received:
2020-10-20
Revised:
2020-12-24
Online:
2022-08-20
Published:
2022-07-01
Contact:
Xue-hong WEI,Lei SUN
摘要:
为探究藏北不同退化阶段高寒草甸的植物群落特征、土壤养分特性及其相关性,以那曲县那玛切村的轻度退化(lightly degraded,LD)、中度退化(moderately degraded,MD)和重度退化(severely degraded,SD)高寒草甸为研究对象,采用冗余分析(RDA)试图揭示不同退化阶段高寒草甸土壤环境因子与植被因子之间的关系。结果表明:1)研究区植物共有9科20属25种,莎草科、禾本科、菊科和蔷薇科植物适应性较强,不同退化草甸植被类型分别为高山嵩草+斑唇马先蒿,弱小火绒草+高山嵩草,二裂委陵菜+白苞筋骨草,其中高山嵩草是轻、中度退化草甸的优势种,不同退化阶段高寒草甸杂类草均占据重要地位,生活型以多年生草本为主。2)从轻度退化草甸到重度退化草甸,植物群落特征(地上生物量、高度、密度、频度、总盖度)整体呈递减趋势,且差异显著(P<0.05),Shannon-Wiener多样性指数、Margalef物种丰富度指数、Simpson优势度指数、Pielou均匀度指数随着退化加重呈降低的趋势。3)随退化程度加重,土壤有机质、速效氮、全氮、全磷、速效磷、速效钾、全钾均呈降低的趋势,土壤pH值逐步增加。4)不同退化草甸速效磷、全磷与物种多样性指数呈正相关关系,群落植被地上生物量与土壤全氮密切相关,且土壤环境因子含量对植被生长贡献率最高的分别为速效氮、有机质和pH。说明退化草甸的植被群落特征与土壤养分具有协同性,因此研究和治理西藏高寒草地退化必须重视土壤中氮磷元素的含量。
彭艳, 孙晶远, 马素洁, 王向涛, 魏学红, 孙磊. 藏北不同退化阶段高寒草甸植物群落特征与土壤养分特性[J]. 草业学报, 2022, 31(8): 49-60.
Yan PENG, Jing-yuan SUN, Su-jie MA, Xiang-tao WANG, Xue-hong WEI, Lei SUN. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet[J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60.
退化阶段 Degradation level | 海拔 Altitude (m) | 地理坐标 Geography coordinate | 样地特点 Sample features | 优势种 Dominant species |
---|---|---|---|---|
轻度退化LD | 4470 | 29°54′41″ N 92°22′23″ E | 植被生长良好,无放牧等干扰。 The vegetation grows well, no disturbance such as grazing. | 高山嵩草 K. pygmaea |
中度退化MD | 4290 | 30°25′17″ N 90°58′32″ E | 植被生长较弱,有围栏保护。 Vegetation growth is weak, protected by fences. | 弱小火绒草 Leontopodium pusillum |
重度退化SD | 4570 | 30°44′49″ N 91°34′23″ E | 有裸地,植被矮小。 Dwarf vegetation, bare land. | 二裂委陵菜 Potentilla bifurca |
表1 样地设置
Table 1 Sample plots settings
退化阶段 Degradation level | 海拔 Altitude (m) | 地理坐标 Geography coordinate | 样地特点 Sample features | 优势种 Dominant species |
---|---|---|---|---|
轻度退化LD | 4470 | 29°54′41″ N 92°22′23″ E | 植被生长良好,无放牧等干扰。 The vegetation grows well, no disturbance such as grazing. | 高山嵩草 K. pygmaea |
中度退化MD | 4290 | 30°25′17″ N 90°58′32″ E | 植被生长较弱,有围栏保护。 Vegetation growth is weak, protected by fences. | 弱小火绒草 Leontopodium pusillum |
重度退化SD | 4570 | 30°44′49″ N 91°34′23″ E | 有裸地,植被矮小。 Dwarf vegetation, bare land. | 二裂委陵菜 Potentilla bifurca |
退化阶段 Degradation level | 地上生物量 Aboveground biomass (g·m-2) | 高度 Height (cm) | 密度 Density (individual·m-2) | 频度 Frequency (%) | 总盖度 Vegetation coverage (%) |
---|---|---|---|---|---|
轻度退化LD | 102.53±6.52Aa | 89.60±4.25Aa | 2528.33±124.49Aa | 12.90±0.32Aa | 63.00±4.92Aa |
中度退化MD | 93.28±8.35Bb | 42.73±2.95Bb | 1887.33±170.70Aa | 9.67±0.39Bb | 45.67±4.20Bb |
重度退化SD | 58.02±6.75Cc | 10.26±0.89Cc | 533.00±72.70Bb | 3.53±0.30Cc | 30.67±3.16Bb |
表2 不同退化草甸植被特征
Table 2 Characteristics of vegetation at different degraded meadows
退化阶段 Degradation level | 地上生物量 Aboveground biomass (g·m-2) | 高度 Height (cm) | 密度 Density (individual·m-2) | 频度 Frequency (%) | 总盖度 Vegetation coverage (%) |
---|---|---|---|---|---|
轻度退化LD | 102.53±6.52Aa | 89.60±4.25Aa | 2528.33±124.49Aa | 12.90±0.32Aa | 63.00±4.92Aa |
中度退化MD | 93.28±8.35Bb | 42.73±2.95Bb | 1887.33±170.70Aa | 9.67±0.39Bb | 45.67±4.20Bb |
重度退化SD | 58.02±6.75Cc | 10.26±0.89Cc | 533.00±72.70Bb | 3.53±0.30Cc | 30.67±3.16Bb |
退化阶段 Degradation level | 总科数 Total number of families (No.) | 总属数 Total number of genera (No.) | 总种数 Total number of species (No.) | 豆科 Leguminosae (No.) | 禾本科 Gramineae (No.) | 菊科 Compositae (No.) | 莎草科 Cyperaceae (No.) | 蔷薇科 Rosaceae (No.) | 合计 Total (No.) | 占本群落比率 Rate in total (%) |
---|---|---|---|---|---|---|---|---|---|---|
轻度退化LD | 8 | 18 | 22 | 1 | 5 | 6 | 3 | 2 | 17 | 77.27 |
中度退化MD | 8 | 14 | 16 | 1 | 3 | 4 | 2 | 2 | 12 | 75.00 |
重度退化SD | 5 | 6 | 6 | 0 | 1 | 2 | 0 | 1 | 4 | 66.67 |
表3 不同退化草甸群落主要植物科、属、种的组成
Table 3 Composition of plant families, genera and species of community at different degraded meadows
退化阶段 Degradation level | 总科数 Total number of families (No.) | 总属数 Total number of genera (No.) | 总种数 Total number of species (No.) | 豆科 Leguminosae (No.) | 禾本科 Gramineae (No.) | 菊科 Compositae (No.) | 莎草科 Cyperaceae (No.) | 蔷薇科 Rosaceae (No.) | 合计 Total (No.) | 占本群落比率 Rate in total (%) |
---|---|---|---|---|---|---|---|---|---|---|
轻度退化LD | 8 | 18 | 22 | 1 | 5 | 6 | 3 | 2 | 17 | 77.27 |
中度退化MD | 8 | 14 | 16 | 1 | 3 | 4 | 2 | 2 | 12 | 75.00 |
重度退化SD | 5 | 6 | 6 | 0 | 1 | 2 | 0 | 1 | 4 | 66.67 |
项目 Item | 轻度退化LD | 中度退化MD | 重度退化SD | |||
---|---|---|---|---|---|---|
物种Species | 重要值IV (%) | 物种Species | 重要值IV (%) | 物种Species | 重要值IV (%) | |
优势种Dominant species | 高山嵩草Kobresia pygmaea | 14.54 | 弱小火绒草L. pusillum | 22.96 | 二裂委陵菜P. bifurca | 44.57 |
亚优势种 Sub-dominant species | 斑唇马先蒿Pedicularis longiflora | 11.63 | 高山嵩草K. pygmaea | 18.61 | 白苞筋骨草A. lupulina | 21.03 |
白苞筋骨草Ajuga lupulina | 10.36 | 青藏狗娃花H. bowerii | 11.44 | 三毛草T. bifidum | 18.11 | |
主要伴生种 Companion species | 羊茅Festuca ovina | 7.95 | 紫花针茅 S. purpurea | 11.16 | 肉果草Lancea tibetica | 8.04 |
紫花针茅 Stipa purpurea | 7.11 | 披碱草E. dahuricus | 8.10 | 川西风毛菊S.dzeurensis | 4.98 | |
矮生嵩草Kobresia humilis | 5.90 | 矮生嵩草K. humilis | 6.28 | 无茎黄鹌菜Youngia simulatrix | 3.40 | |
弱小火绒草Leontopodium pusillum | 4.95 | 纤杆蒿A. demissa | 4.15 | |||
三毛草Trisetum bifidum | 4.93 | 三毛草T. bifidum | 3.52 | |||
早熟禾Poa annua | 4.22 | 钉柱委陵菜P. saundersiana | 3.36 | |||
披碱草Elymus dahuricus | 3.69 | 斑唇马先蒿P. longiflora | 2.85 | |||
青藏狗娃花Heteropappus bowerii | 3.28 | 短穗兔耳草L. brachystachya | 2.24 | |||
白花枝子花Dracocephalum heterophy | 3.07 | 团垫黄耆A. arnoldii | 1.73 | |||
青藏苔草Carex moorcroftii | 3.02 | 二裂委陵菜P. bifurca | 1.53 | |||
纤杆蒿Artemisia demissa | 2.99 | 圆齿褶龙胆Gentiana crenulatotruncata | 1.04 | |||
木根香青Anaphalis xylorhiza | 2.61 | 木根香青A. xylorhiza | 0.99 | |||
昆仑蒿Artemisia nanschanica | 2.14 | 葶苈D. nemorosa | 0.83 | |||
短穗兔耳草Lagotis brachystachya | 2.14 | |||||
川西风毛菊Saussurea dzeurensis | 1.52 | |||||
钉柱委陵菜Potentilla saundersiana | 1.10 | |||||
团垫黄耆Astragalus arnoldii | 1.06 | |||||
二裂委陵菜Potentilla bifurca | 0.90 | |||||
葶苈Draba nemorosa | 0.63 |
表4 不同退化高寒草甸群落优势种、亚优势种及其主要伴生种重要值的变化
Table 4 Important value of dominant,sub-dominant and companion species under different degraded meadows
项目 Item | 轻度退化LD | 中度退化MD | 重度退化SD | |||
---|---|---|---|---|---|---|
物种Species | 重要值IV (%) | 物种Species | 重要值IV (%) | 物种Species | 重要值IV (%) | |
优势种Dominant species | 高山嵩草Kobresia pygmaea | 14.54 | 弱小火绒草L. pusillum | 22.96 | 二裂委陵菜P. bifurca | 44.57 |
亚优势种 Sub-dominant species | 斑唇马先蒿Pedicularis longiflora | 11.63 | 高山嵩草K. pygmaea | 18.61 | 白苞筋骨草A. lupulina | 21.03 |
白苞筋骨草Ajuga lupulina | 10.36 | 青藏狗娃花H. bowerii | 11.44 | 三毛草T. bifidum | 18.11 | |
主要伴生种 Companion species | 羊茅Festuca ovina | 7.95 | 紫花针茅 S. purpurea | 11.16 | 肉果草Lancea tibetica | 8.04 |
紫花针茅 Stipa purpurea | 7.11 | 披碱草E. dahuricus | 8.10 | 川西风毛菊S.dzeurensis | 4.98 | |
矮生嵩草Kobresia humilis | 5.90 | 矮生嵩草K. humilis | 6.28 | 无茎黄鹌菜Youngia simulatrix | 3.40 | |
弱小火绒草Leontopodium pusillum | 4.95 | 纤杆蒿A. demissa | 4.15 | |||
三毛草Trisetum bifidum | 4.93 | 三毛草T. bifidum | 3.52 | |||
早熟禾Poa annua | 4.22 | 钉柱委陵菜P. saundersiana | 3.36 | |||
披碱草Elymus dahuricus | 3.69 | 斑唇马先蒿P. longiflora | 2.85 | |||
青藏狗娃花Heteropappus bowerii | 3.28 | 短穗兔耳草L. brachystachya | 2.24 | |||
白花枝子花Dracocephalum heterophy | 3.07 | 团垫黄耆A. arnoldii | 1.73 | |||
青藏苔草Carex moorcroftii | 3.02 | 二裂委陵菜P. bifurca | 1.53 | |||
纤杆蒿Artemisia demissa | 2.99 | 圆齿褶龙胆Gentiana crenulatotruncata | 1.04 | |||
木根香青Anaphalis xylorhiza | 2.61 | 木根香青A. xylorhiza | 0.99 | |||
昆仑蒿Artemisia nanschanica | 2.14 | 葶苈D. nemorosa | 0.83 | |||
短穗兔耳草Lagotis brachystachya | 2.14 | |||||
川西风毛菊Saussurea dzeurensis | 1.52 | |||||
钉柱委陵菜Potentilla saundersiana | 1.10 | |||||
团垫黄耆Astragalus arnoldii | 1.06 | |||||
二裂委陵菜Potentilla bifurca | 0.90 | |||||
葶苈Draba nemorosa | 0.63 |
图3 高寒草甸不同退化程度群落物种多样性变化不同小写字母表示差异显著(P<0.05),不同大写字母表示差异极显著(P<0.01)。Different small letters indicate significant difference at P<0.05 level, different capital letters indicate extremely significant difference at P<0.01 level.
Fig.3 Plant species diversity variation of different degraded meadows
退化阶段 Degradation level | 有机质 Organic matter (g·kg-1) | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|---|
轻度退化LD | 27.36±1.84Aa | 594.06±38.57Aa | 3.83±0.43Aa | 9.12±0.33Aa | 1.05±0.21Aa | 10.45±0.51Aa | 331.09±18.91Aa | 8.55±0.17Aa |
中度退化MD | 23.81±0.99Bb | 320.69±106.30Bb | 3.28±0.14ABab | 9.01±1.95Aa | 0.83±0.06Aa | 9.88±0.20Aa | 265.33±12.35Bb | 8.60±0.53Aa |
重度退化SD | 21.61±0.57Cc | 275.21±19.93Bb | 2.35±0.57Bb | 7.42±0.12Aa | 0.79±0.10Aa | 9.81±0.91Aa | 238.56±16.63Bb | 8.90±0.20Aa |
表5 不同退化草甸的土壤特征
Table 5 Characteristics of soil at different degraded meadows
退化阶段 Degradation level | 有机质 Organic matter (g·kg-1) | 速效氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | pH |
---|---|---|---|---|---|---|---|---|
轻度退化LD | 27.36±1.84Aa | 594.06±38.57Aa | 3.83±0.43Aa | 9.12±0.33Aa | 1.05±0.21Aa | 10.45±0.51Aa | 331.09±18.91Aa | 8.55±0.17Aa |
中度退化MD | 23.81±0.99Bb | 320.69±106.30Bb | 3.28±0.14ABab | 9.01±1.95Aa | 0.83±0.06Aa | 9.88±0.20Aa | 265.33±12.35Bb | 8.60±0.53Aa |
重度退化SD | 21.61±0.57Cc | 275.21±19.93Bb | 2.35±0.57Bb | 7.42±0.12Aa | 0.79±0.10Aa | 9.81±0.91Aa | 238.56±16.63Bb | 8.90±0.20Aa |
图4 植被因子与土壤环境因子的 RDA分析H: 高度Height; VC: 盖度Vegetation coverage; D: 密度Density; F: 频度Frequency; B: 地上生物量Aboveground biomass; OM: 有机质Organic matter; TN: 全氮Total nitrogen; TP: 全磷Total phosphorus; TK: 全钾Total potassium; AN: 速效氮Available nitrogen; AP: 速效磷Available phosphorus; AK: 速效钾Available potassium; pH: pH值 pH value.
Fig.4 RDA analysis of vegetation factors and soil environmental factors
退化阶段 Degradation level | 环境因子 Environmental factors | 解释力度排序 Rank ordering of explanatory power | 环境因子所占解释量 Variance explains of environmental factors (%) | F值 F value | P值 P value |
---|---|---|---|---|---|
轻度退化LD | 全氮TN | 7 | 42.1 | 0.7 | 0.684 |
全磷TP | 4 | 63.2 | 1.7 | 0.308 | |
全钾TK | 8 | 31.3 | 0.5 | 0.828 | |
速效氮AN | 1 | 71.6 | 2.5 | 0.326 | |
速效磷AP | 6 | 52.4 | 1.1 | 0.640 | |
速效钾AK | 2 | 71.2 | 2.5 | 0.330 | |
有机质OM | 5 | 52.4 | 1.1 | 0.630 | |
pH | 3 | 63.7 | 1.7 | 0.345 | |
中度退化 MD | 全氮TN | 2 | 76.3 | 3.2 | 0.174 |
全磷TP | 8 | 20.7 | 0.3 | 1.000 | |
全钾TK | 7 | 21.9 | 0.3 | 0.818 | |
速效氮AN | 5 | 56.9 | 1.3 | 0.482 | |
速效磷AP | 6 | 29.2 | 0.4 | 0.816 | |
速效钾AK | 3 | 75.9 | 3.2 | 0.182 | |
有机质OM | 1 | 76.7 | 3.3 | 0.344 | |
pH | 4 | 66.4 | 2.0 | 0.502 | |
重度退化SD | 全氮TN | 8 | 16.3 | 0.2 | 1.000 |
全磷TP | 7 | 33.9 | 0.5 | 0.688 | |
全钾TK | 5 | 47.8 | 0.9 | 0.482 | |
速效氮AN | 3 | 73.3 | 2.7 | 0.346 | |
速效磷AP | 2 | 73.8 | 2.8 | 0.326 | |
速效钾AK | 6 | 40.2 | 0.7 | 0.692 | |
有机质OM | 4 | 50.3 | 1.0 | 0.502 | |
pH | 1 | 83.0 | 4.9 | 0.330 |
表6 不同退化草地环境解释力度和显著性检验
Table 6 Explanatory power and significance level of soil environmental factors in different degraded grasslands
退化阶段 Degradation level | 环境因子 Environmental factors | 解释力度排序 Rank ordering of explanatory power | 环境因子所占解释量 Variance explains of environmental factors (%) | F值 F value | P值 P value |
---|---|---|---|---|---|
轻度退化LD | 全氮TN | 7 | 42.1 | 0.7 | 0.684 |
全磷TP | 4 | 63.2 | 1.7 | 0.308 | |
全钾TK | 8 | 31.3 | 0.5 | 0.828 | |
速效氮AN | 1 | 71.6 | 2.5 | 0.326 | |
速效磷AP | 6 | 52.4 | 1.1 | 0.640 | |
速效钾AK | 2 | 71.2 | 2.5 | 0.330 | |
有机质OM | 5 | 52.4 | 1.1 | 0.630 | |
pH | 3 | 63.7 | 1.7 | 0.345 | |
中度退化 MD | 全氮TN | 2 | 76.3 | 3.2 | 0.174 |
全磷TP | 8 | 20.7 | 0.3 | 1.000 | |
全钾TK | 7 | 21.9 | 0.3 | 0.818 | |
速效氮AN | 5 | 56.9 | 1.3 | 0.482 | |
速效磷AP | 6 | 29.2 | 0.4 | 0.816 | |
速效钾AK | 3 | 75.9 | 3.2 | 0.182 | |
有机质OM | 1 | 76.7 | 3.3 | 0.344 | |
pH | 4 | 66.4 | 2.0 | 0.502 | |
重度退化SD | 全氮TN | 8 | 16.3 | 0.2 | 1.000 |
全磷TP | 7 | 33.9 | 0.5 | 0.688 | |
全钾TK | 5 | 47.8 | 0.9 | 0.482 | |
速效氮AN | 3 | 73.3 | 2.7 | 0.346 | |
速效磷AP | 2 | 73.8 | 2.8 | 0.326 | |
速效钾AK | 6 | 40.2 | 0.7 | 0.692 | |
有机质OM | 4 | 50.3 | 1.0 | 0.502 | |
pH | 1 | 83.0 | 4.9 | 0.330 |
1 | Gao Q Z, Jiangcun W Z, Li Y E, et al. Remote sensing monitoring and ecological function regionalization of grassland degradation in Northern Tibet. Beijing: Meteorological Press, 2006. |
高清竹, 江村旺扎, 李玉娥, 等. 藏北地区草地退化遥感监测与生态功能区划. 北京: 气象出版社, 2006. | |
2 | Zhang Z H, Zhou H K, Zhao X Q, et al. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau. Biodiversity, 2018, 26(2): 111-129. |
张中华, 周华坤, 赵新全, 等. 青藏高原高寒草地生物多样性与生态系统功能的关系. 生物多样性, 2018, 26(2): 111-129. | |
3 | Wang J B, Zhang D G, Cao G M, et al. Regional characteristics of the alpine meadow degradation succession on the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2013, 22(2): 1-10. |
王建兵, 张德罡, 曹广民, 等. 青藏高原高寒草甸退化演替的分区特征. 草业学报, 2013, 22(2): 1-10. | |
4 | Zhou L, Zhang D G, Yun X J, et al. The vegetation and soil characteristics of degraded alpine meadow. Pratacultural Science, 2016, 33(11): 2196-2201. |
周丽, 张德罡, 贠旭江, 等. 退化高寒草甸植被与土壤特征. 草业科学, 2016, 33(11): 2196-2201. | |
5 | Li J H, Yang G J, Wang S P. Vegetation and soil characteristics of degraded alpine meadows on the Qinghai-Tibet Plateau, China: A review. Chinese Journal of Applied Ecology, 2020, 31(6): 2109-2118. |
李军豪, 杨国靖, 王少平. 青藏高原区退化高寒草甸植被和土壤特征. 应用生态学报, 2020, 31(6): 2109-2118. | |
6 | Zhou H K, Zhou X Q, Wen J, et al. The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River Source Region. Acta Prataculturae Sinica, 2012, 21(5): 1-11. |
周华坤, 赵新全, 温军, 等. 黄河源区高寒草原的植被退化与土壤退化特征. 草业学报, 2012, 21(5): 1-11. | |
7 | Zhang J G, Wang L D, Yao T, et al. Plant community structure and species diversity differences in alpine grassland in the Qilian Mountains with different levels of degradation. Acta Prataculturae Sinica, 2019, 28(5): 15-25. |
张建贵, 王理德, 姚拓, 等. 祁连山高寒草地不同退化程度植物群落结构与物种多样性研究. 草业学报, 2019, 28(5): 15-25. | |
8 | Yang J, Liu Q R, Wang X T. Plant community and soil nutrient of alpine meadow in different degradation stages on the Tibetan Plateau, China. Chinese Journal of Applied Ecology, 2020, 31(8): 1-7. |
杨军, 刘秋蓉, 王向涛. 青藏高原高山嵩草高寒草甸不同退化阶段植物群落与土壤养分. 应用生态学报, 2020, 31(8): 1-7. | |
9 | Yang Y W, Li X L, Zhou X H, et al. Study on relationship between plant community degradation and soil environment in an alpine meadow. Acta Agrestia Sinica, 2016, 24(6): 1211-1217. |
杨元武, 李希来, 周旭辉, 等. 高寒草甸植物群落退化与土壤环境特征的关系研究. 草地学报, 2016, 24(6): 1211-1217. | |
10 | Zhou H S, Yang G W, Liu N, et al. Plant community and soil microbial characteristics in typical grasslands of different degradation degrees. Pratacultural Science, 2014, 31(1): 30-38. |
周翰舒, 杨高文, 刘楠, 等. 不同退化程度的草地植被和土壤特征. 草业科学, 2014, 31(1): 30-38. | |
11 | Zhan T Y, Hou G, Liu M, et al. Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau. Pratacultural Science, 2019, 36(4): 1010-1021. |
詹天宇, 侯阁, 刘苗, 等. 青藏高原不同退化梯度高寒草地植被与土壤属性分异特征. 草业科学, 2019, 36(4): 1010-1021. | |
12 | Zhao Y H, Wei X H, Miao Y J, et al. Plant community and reproductive allocation of alpine meadow with different degradation degrees in Northern Tibet. Acta Agrestia Sinica, 2012, 20(2): 221-228. |
赵玉红, 魏学红, 苗彦军, 等. 藏北高寒草甸不同退化阶段植物群落特征及其繁殖分配研究. 草地学报, 2012, 20(2): 221-228. | |
13 | Sun L, Liu Y, Wu G L, et al. The relationships between community biomass and soil nutrients in the northern Tibet degradation grassland. Pratacultural Science, 2016, 33(6): 1062-1069. |
孙磊, 刘玉, 武高林, 等. 藏北退化草地群落生物量与土壤养分的关系. 草业科学, 2016, 33(6): 1062-1069. | |
14 | Li Y M, Wang S P, Jiang L L, et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems and Environment, 2016, 222(1): 213-222. |
15 | Ren J Z. Scientific research methods of grass industry. Beijing: China Agriculture Press, 1998. |
任继周. 草业科学研究方法. 北京: 中国农业出版社, 1998. | |
16 | Zhang J T. Quantitative ecology. Beijing: Science Press, 2004. |
张金屯. 数量生态学. 北京: 科学出版社, 2004. | |
17 | Bao S D. Soil and agricultural chemistry analysis (3rd Edition). Beijing: China Agriculture Press, 2005. |
鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2005. | |
18 | Šmilauer P, Lepš J. Multivariate analysis of ecological data using Canoco5. Cambridge: Cambridge University Press, 2014. |
19 | Jin H X, He F L, Li C L, et al. Vegetation characteristics, abundance of soil microbes, and soil physico-chemical properties in desertified alpine meadows of Maqu. Acta Prataculturae Sinica, 2015, 24(11): 20-28. |
金红喜, 何芳兰, 李昌龙, 等. 玛曲沙化高寒草甸植被、土壤理化性质及土壤微生物数量研究. 草业学报, 2015, 24(11): 20-28. | |
20 | Yang X M, Yao T, Wang L D, et al. Community structure and plant diversity under different degrees of degraded grassland in Tianzhu, Gansu. Acta Agrestia Sinica, 2018, 26(6): 1290-1297. |
杨晓玫, 姚拓, 王理德, 等. 天祝不同退化程度草地植物群落结构与物种多样性研究. 草地学报, 2018, 26(6): 1290-1297. | |
21 | Wang T, Yang S W, Hua R, et al. Response characteristics of composition of plant functional groups to various grassland degradation conditions in alpine steppe on the Tibetan Plateau, China. Acta Ecologica Sinica, 2020, 40(7): 2225-2233. |
王婷, 杨思维, 花蕊, 等. 高寒草原植物功能群组成对退化程度的响应. 生态学报, 2020, 40(7): 2225-2233. | |
22 | Lu H, Yao T, Li J H, et al. Vegetation and soil microorganism characteristics of degraded grasslands. Acta Prataculturae Sinica, 2015, 24(5): 34-43. |
卢虎, 姚拓, 李建宏, 等. 高寒地区不同退化草地植被和土壤微生物特性及其相关性研究. 草业学报, 2015, 24(5): 34-43. | |
23 | Chen L L, Shi J J, Wang Y L, et al. Study on different degraded degrees grassland community structure characteristics of the alpine area. Acta Agrestia Sinica, 2016, 24(1): 210-213. |
陈乐乐, 施建军, 王彦龙, 等. 高寒地区不同退化程度草地群落结构特征研究. 草地学报, 2016, 24(1): 210-213. | |
24 | Li J H, Li X P, Lu H, et al. Characteristics of,and the correlation between,vegetation and N-fixing soil bacteria in alpine grassland showing various degrees of degradation. Acta Ecologica Sinica, 2017, 37(11): 3647-3654. |
李建宏, 李雪萍, 卢虎, 等. 高寒地区不同退化草地植被特性和土壤固氮菌群特性及其相关性. 生态学报, 2017, 37(11): 3647-3654. | |
25 | Chen N, Zhang Y J, Zhu J T, et al. Nonlinear responses of productivity and diversity of alpine meadow communities to degradation. Chinese Journal of Plant Ecology, 2018, 42(1): 50-65. |
陈宁, 张扬建, 朱军涛, 等. 高寒草甸退化过程中群落生产力和物种多样性的非线性响应机制研究. 植物生态学报, 2018, 42(1): 50-65. | |
26 | Sheng Z L. Plant community functional diversity along degradation gradients in alpine meadow.Kunming: Yunnan University, 2015. |
盛芝露. 退化梯度上高山草甸植物群落功能多样性研究.昆明: 云南大学, 2015. | |
27 | Liu Y, Ma Y S, Shi J J, et al. Community characteristics of alpine meadow under different degrees of degradation in the upper area of Daitong River. Pratacultural Science, 2013, 30(7): 1082-1088. |
刘玉, 马玉寿, 施建军, 等. 大通河上游高寒草甸植物群落的退化特征. 草业科学, 2013, 30(7): 1082-1088. | |
28 | Ning Z Y, Li Y L, Yang H L, et al. Stoichiometry and effects of carbon, nitrogen, and phosphorus in soil of desertified grasslands on community productivity and species diversity. Acta Ecologica Sinica, 2019, 39(10): 3537-3546. |
宁志英, 李玉霖, 杨红玲, 等. 沙化草地土壤碳氮磷化学计量特征及其对植被生产力和多样性的影响.生态学报, 2019, 39(10): 3537-3546. | |
29 | Yao Y J, Liang T, Ma Y, et al. Response of soil microbial community diversity to degradation degree of alpine meadow. Acta Agrestia Sinica, 2020, 28(6): 1489-1497. |
姚玉娇, 梁婷, 马源, 等. 土壤微生物群落多样性对高寒草甸退化程度的响应. 草地学报, 2020, 28(6): 1489-1497. | |
30 | Luo Y Y, Meng Q T, Zhang J H, et al. Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages. Journal of Glaciology and Geocryology, 2014, 36(5): 1298-1305. |
罗亚勇, 孟庆涛, 张静辉, 等. 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系. 冰川冻土, 2014, 36(5): 1298-1305. | |
31 | Wang X Y, Chen X S, Ding Q P, et al. Vegetation and soil environmental factor characteristics,and their relationship at different desertification stages: A case study in the Minqin desert-oasis ecotone. Acta Ecologica Sinica, 2018, 38(5): 1569-1580. |
王新源, 陈翔舜, 丁乾平, 等. 不同荒漠化阶段植被生态特征对土壤环境因子的响应——以民勤荒漠绿洲过渡带为例. 生态学报, 2018, 38(5): 1569-1580. | |
32 | Xiao Y, Chen M G, Zhou J, et al. Plant community features of Carex moorcroftii steppe at different degradation degrees in the interior of Qinghai-Tibetan Plateau. Chinese Journal of Applied and Environmental Biology, 2014, 20(4): 639-645. |
肖玉, 陈米贵, 周杰, 等. 青藏高原腹地青藏苔草草原不同退化程度的植物群落特征. 应用与环境生物学报, 2014, 20(4): | |
639-645. | |
33 | Chen Z Y, Xie Y X, Liu M. Responses of aboveground biomass and species richness to environmental factors in a fenced alpine grassland. Pratacultural Science, 2019, 36(4): 1000-1009. |
陈智勇, 谢迎新, 刘苗. 围栏封育高寒草地植物地上生物量和物种多样性对关键调控因子的响应. 草业科学, 2019, 36(4): 1000-1009. | |
34 | Shi H X, Hou X Y, Shi S L, et al. Relationships between plant diversity, soil property and productivity in an alpine meadow. Acta Prataculturae Sinica, 2015, 24(10): 40-47. |
石红霄, 侯向阳, 师尚礼, 等. 高山嵩草草甸初级生产力、多样性与土壤因子的关系. 草业学报, 2015, 24(10): 40-47. | |
35 | Du Y G, Ke X, Guo X W, et al. Soil and plant community characteristics under long term continuous grazing of different intensities in an alpine meadow on the Tibetan Plateau. Biochemical Systematics and Ecology, 2019, 85: 72-75. |
36 | Zhao Y, Chen W, Li C M, et al. Content of soil organic matter and its relationships with main nutrients on degraded alpine meadow in Eastern Qilian Mountains. Pratacultural Science, 2009, 26(5): 20-25. |
赵云, 陈伟, 李春鸣, 等. 东祁连山不同退化程度高寒草甸土壤有机质含量及其与主要养分的关系. 草业科学, 2009, 26(5): 20-25. |
[1] | 赵朋波, 邱开阳, 谢应忠, 刘王锁, 李小伟, 陈林, 王继飞, 孟文芬, 黄业芸, 李小聪, 杨浩楠. 海拔梯度对贺兰山岩羊主要活动区植物群落特征的影响[J]. 草业学报, 2022, 31(6): 79-90. |
[2] | 刘咏梅, 董幸枝, 龙永清, 朱志梅, 王雷, 盖星华, 赵樊, 李京忠. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11. |
[3] | 倪芳芳, 吕世杰, 屈志强, 白璐, 孟彪, 张博涵, 李治国. 不同载畜率下荒漠草原非生长季植物群落特征对近地面风沙通量的影响[J]. 草业学报, 2022, 31(3): 26-33. |
[4] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[5] | 刘慧霞, 董乙强, 崔雨萱, 刘星宏, 何盘星, 孙强, 孙宗玖. 新疆阿勒泰地区荒漠草地土壤有机碳特征及其环境影响因素分析[J]. 草业学报, 2021, 30(10): 41-52. |
[6] | 何周窈, 王勇, 苏正安, 杨鸿琨, 周涛. 干热河谷冲沟沟头活跃度对植物群落结构的影响[J]. 草业学报, 2020, 29(9): 28-37. |
[7] | 鲍根生, 宋梅玲, 王玉琴, 尹亚丽, 王宏生. 围封和防除狼毒对狼毒斑块土壤理化性质和微生物量影响的研究[J]. 草业学报, 2020, 29(9): 63-72. |
[8] | 徐绮雯, 马淑敏, 朱波, 张小短, 邢毅, 段美春, 王龙昌. 生物炭与化肥配施对紫色土肥力与微生物特征及油菜产量品质的影响[J]. 草业学报, 2020, 29(5): 121-131. |
[9] | 徐田伟, 赵炯昌, 毛绍娟, 耿远月, 刘宏金, 赵新全, 徐世晓. 青海省海北地区高寒草甸群落特征和生物量对短期休牧的响应[J]. 草业学报, 2020, 29(4): 1-8. |
[10] | 车力木格, 刘新平, 何玉惠, 孙姗姗, 王明明. 半干旱沙地草本植物群落特征对短期降水变化的响应[J]. 草业学报, 2020, 29(4): 19-28. |
[11] | 水宏伟, 干珠扎布, 吴红宝, 王子欣, 吕成文, 高清竹, 胡国铮, 严俊, 谢文栋, 王有侠. 禁牧对藏北高原狼毒型退化草地群落特征及生产力的影响[J]. 草业学报, 2020, 29(10): 14-21. |
[12] | 鲍根生, 王玉琴, 宋梅玲, 王宏生, 尹亚丽, 刘生财, 杨有武, 杨铭. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究[J]. 草业学报, 2019, 28(3): 51-61. |
[13] | 钱雅丽, 王先之, 来兴发, 李峻成, 沈禹颖. 多年生牧草种植对苹果园土壤真菌群落特征的影响[J]. 草业学报, 2019, 28(11): 124-132. |
[14] | 罗琰, 苏德荣, 纪宝明, 吕世海, 韩立亮, 李兴福. 辉河湿地不同草甸植被群落特征及其与土壤因子的关系[J]. 草业学报, 2018, 27(3): 33-43. |
[15] | 苏鑫,卢嫚,冯程程,郭迎岚,岳中辉. 松嫩平原盐碱草地土壤酶活性与植物群落特征的关系初探[J]. 草业学报, 2018, 27(12): 69-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||