草业学报 ›› 2022, Vol. 31 ›› Issue (2): 88-100.DOI: 10.11686/cyxb2020525
陈金慧1,3(), 马慧燕2,3, 陈煜1,3, 何禾1,3()
收稿日期:
2020-11-30
修回日期:
2021-02-25
出版日期:
2022-02-20
发布日期:
2021-12-22
通讯作者:
何禾
作者简介:
Corresponding author. E-mail: graminese@126.com基金资助:
Jin-hui CHEN1,3(), Hui-yan MA2,3, Yu CHEN1,3, He HE1,3()
Received:
2020-11-30
Revised:
2021-02-25
Online:
2022-02-20
Published:
2021-12-22
Contact:
He HE
摘要:
五爪金龙是我国华南地区具有强入侵性的外来植物,其入侵机制与化感作用间的关系备受学者关注。通过模拟自然条件下五爪金龙挥发和淋溶两种途径的作用,发现这两种途径对三叶鬼针草和生菜种子发芽率、发芽速率表现出不同程度的抑制。继而采取顶空固相微萃取及树脂洗脱法分别收集这两种途径释放的物质,并用气相色谱与质谱联用法分析各自成分。结果表明,五爪金龙叶片挥发物被检测出18种萜烯类化合物,其中石竹烯(28.17%),β-罗勒烯(16.59%),α-蒎烯(13.65%)和β-柏木烯(9.43%)相对含量较多。淋溶水主要为酚酸类,肉桂酸(39.21%),琥珀酸(15.15%),丙酸(11.12%)及月桂酸(9.38%)相对含量居于前四。在定量得出上述主要物质实际浓度后,进一步处理受试植物发现,淋溶途径释放的肉桂酸和月桂酸显著抑制两种受体植物的种子发芽率和发芽速率,丙酸和琥珀酸则对两种受体植物大部分指标无显著影响。此外,4种主要叶片挥发物对受体植物种子萌发的影响也有明显差异,β-柏木烯和石竹烯的作用明显强于α-蒎烯和β-罗勒烯。综上所述,挥发与淋溶是五爪金龙重要的化感效应作用途径,它们分别产生以萜烯及酚酸类为代表的物质,且这两类物质对受体植物种子萌发能形成抑制,但不同物质对受体植物的抑制程度显著不同。由此可见外来植物五爪金龙产生的化感物质可以通过多种途径释放并发挥作用,其中的关键物质则对其化感作用效果产生决定性影响。
陈金慧, 马慧燕, 陈煜, 何禾. 五爪金龙两种化感作用途径释放的化学成分分析及其效应研究[J]. 草业学报, 2022, 31(2): 88-100.
Jin-hui CHEN, Hui-yan MA, Yu CHEN, He HE. A study of chemicals released as volatiles or by rain leaching from Ipomoea cairica and their allelopathic effects[J]. Acta Prataculturae Sinica, 2022, 31(2): 88-100.
图1 五爪金龙淋溶水(A)和挥发物(B)对三叶鬼针草和生菜种子发芽率的影响“*”表示处理组与对照组在P<0.05水平差异显著,“**”表示处理组与对照组在P<0.01水平差异显著,下同。“*”means that the treatment group and the control group are significantly different at the P<0.05 level, and "**" means the treatment group and the control group are significantly different at the P<0.01 level. The same below.
Fig.1 Effects of rain leachates and volatiles from I. cairica on the germination percentage of the seeds of B. pilosa and L. sativa
图2 五爪金龙淋溶水(A、B)和挥发物(C、D)对三叶鬼针草种子(A、C)和生菜种子(B、D)发芽速率的影响
Fig.2 Effects of rain leachates (A, B) and volatiles(C, D) from I. cairica on germination rate of the seeds of B. pilosa (A, C) and L. sativa (B, D)
化合物 Compounds | Kovats保留指数 Retention index(RI) | 定性方法 Basis of identification | 相对含量 Relative contents (%) | 绝对浓度 Real concentration (μg·L-1) |
---|---|---|---|---|
丙三醇 Glycerol | 967 | MS, RI | 0.21±0.03 | - |
苯甲酸甲酯 Methyl benzoate | 1103 | MS, RI, Std | 0.05±0.02 | - |
乙酸苄酯 Benzyl acetate | 1123 | MS, RI | 0.26±0.05 | - |
十二烷 Dodecane | 1199 | MS, RI, Std | 1.43±0.25 | - |
十四烷 Tetradecane | 1402 | MS, RI | 1.72±0.34 | - |
乙醇酸 Glycollic acid | 1441 | MS, RI | 1.45±0.36 | - |
2,4-二(1,1-二甲基乙基)-苯酚2,4-bis(1,1-dimethylethyl)-pheno | 1520 | MS, RI | 0.31±0.07 | - |
丙酸 Propionic acid | 1555 | MS, RI | 11.12±3.03 | 175.62±23.85 |
壬酸 Pelargonic acid | 1587 | MS, RI | 1.62±0.76 | - |
十六烷 Hexadecane | 1600 | MS, RI | 1.33±0.16 | - |
苯甲酸2-甲基苯基酯Benzoic acid,2-methylphenyl ester | 1653 | MS, RI | 1.67±0.53 | - |
琥珀酸 Succinic acid | 1755 | MS, RI | 15.15±1.78 | 263.17±28.38 |
十四烷 Tetradecane | 1785 | MS, RI, Std | 1.62±0.57 | - |
肉桂酸 Cinnamic acid | 1787 | MS, RI, Std | 39.21±8.13 | 378.59±31.71 |
正十八烷 N-octadecane | 1800 | MS, RI | 1.05±0.52 | - |
正十五烷酸 Pentadecanoic acid | 1856 | MS, RI | 2.97±1.02 | - |
月桂酸 Lauric acid | 1883 | MS, RI, Std | 9.38±1.97 | 166.73±22.36 |
1-十九碳烯 1-nonadecene | 1890 | MS, RI | 2.69±1.35 | - |
邻苯二甲酸二丁酯Dibutyl phthalate | 1916 | MS, RI | 1.30±0.28 | - |
十六酸 Palmitic acid | 1937 | MS, RI | 0.92±0.16 | - |
十八烷酸 Octadecanoic acid | 2003 | MS, RI | 0.53±0.27 | - |
正二十烷 N-eicosane | 2300 | MS, RI | 1.83±0.89 | - |
十四烷酸 Tetradecanoic acid | 2577 | MS, RI | 2.13±0.75 | - |
表1 五爪金龙淋溶水成分分析
Table 1 Chemicals compounds of the rain leachates from I. cairica
化合物 Compounds | Kovats保留指数 Retention index(RI) | 定性方法 Basis of identification | 相对含量 Relative contents (%) | 绝对浓度 Real concentration (μg·L-1) |
---|---|---|---|---|
丙三醇 Glycerol | 967 | MS, RI | 0.21±0.03 | - |
苯甲酸甲酯 Methyl benzoate | 1103 | MS, RI, Std | 0.05±0.02 | - |
乙酸苄酯 Benzyl acetate | 1123 | MS, RI | 0.26±0.05 | - |
十二烷 Dodecane | 1199 | MS, RI, Std | 1.43±0.25 | - |
十四烷 Tetradecane | 1402 | MS, RI | 1.72±0.34 | - |
乙醇酸 Glycollic acid | 1441 | MS, RI | 1.45±0.36 | - |
2,4-二(1,1-二甲基乙基)-苯酚2,4-bis(1,1-dimethylethyl)-pheno | 1520 | MS, RI | 0.31±0.07 | - |
丙酸 Propionic acid | 1555 | MS, RI | 11.12±3.03 | 175.62±23.85 |
壬酸 Pelargonic acid | 1587 | MS, RI | 1.62±0.76 | - |
十六烷 Hexadecane | 1600 | MS, RI | 1.33±0.16 | - |
苯甲酸2-甲基苯基酯Benzoic acid,2-methylphenyl ester | 1653 | MS, RI | 1.67±0.53 | - |
琥珀酸 Succinic acid | 1755 | MS, RI | 15.15±1.78 | 263.17±28.38 |
十四烷 Tetradecane | 1785 | MS, RI, Std | 1.62±0.57 | - |
肉桂酸 Cinnamic acid | 1787 | MS, RI, Std | 39.21±8.13 | 378.59±31.71 |
正十八烷 N-octadecane | 1800 | MS, RI | 1.05±0.52 | - |
正十五烷酸 Pentadecanoic acid | 1856 | MS, RI | 2.97±1.02 | - |
月桂酸 Lauric acid | 1883 | MS, RI, Std | 9.38±1.97 | 166.73±22.36 |
1-十九碳烯 1-nonadecene | 1890 | MS, RI | 2.69±1.35 | - |
邻苯二甲酸二丁酯Dibutyl phthalate | 1916 | MS, RI | 1.30±0.28 | - |
十六酸 Palmitic acid | 1937 | MS, RI | 0.92±0.16 | - |
十八烷酸 Octadecanoic acid | 2003 | MS, RI | 0.53±0.27 | - |
正二十烷 N-eicosane | 2300 | MS, RI | 1.83±0.89 | - |
十四烷酸 Tetradecanoic acid | 2577 | MS, RI | 2.13±0.75 | - |
化合物 Compounds | Kovats保留指数 RI | 定性方法 Basis of identification | 相对含量 Relative contents (%) | 绝对浓度 Real concentration (μg·L-1) |
---|---|---|---|---|
α-蒎烯 α-pinene | 939 | MS, RI, Std | 13.65±0.63 | 1.77±0.62 |
β-蒎烯 β-pinene | 988 | MS, RI, Std | 1.73±0.28 | - |
β-罗勒烯 β-ocimene | 1043 | MS, RI, Std | 16.59±0.39 | 1.86±0.89 |
γ-松油烯 γ-terpinene | 1056 | MS, RI, Std | 0.86±0.12 | - |
α-荜澄茄油烯 α-cubebene | 1347 | MS, RI | 2.31±2.86 | - |
α-古巴烯 α-copaene | 1380 | MS, RI | 3.08±0.95 | - |
β-荜澄茄油烯 β-cubebene | 1387 | MS, RI | 2.87±3.27 | |
β-柏木烯 (+)-β-cedrene | 1412 | MS, RI | 9.43±1.87 | 1.20±0.78 |
β-衣兰烯 β-ylangene | 1416 | MS, RI | 1.26±0.52 | - |
β-古巴烯 β-copaene | 1427 | MS, RI | 1.32±0.43 | - |
石竹烯 Caryophyllene | 1436 | MS, RI, Std | 28.17±5.98 | 3.62±1.15 |
香橙烯 Aromadendrene | 1439 | MS, RI, Std | 0.98±0.15 | - |
α-法尼烯 α-farnesene | 1445 | MS, RI | 1.02±0.31 | - |
α-愈创木烯 α-guaiene | 1448 | MS, RI | 0.78±0.16 | - |
α-蛇麻烯 Humulene | 1455 | MS, RI | 2.62±3.28 | - |
γ-衣兰油烯 γ-muurolene | 1472 | MS, RI | 2.23±2.78 | - |
大根香叶烯 α-farnesene | 1490 | MS, RI | 4.63±1.22 | - |
β-雪松烯 β-himachalene | 1491 | MS, RI | 2.59±1.08 | - |
表2 五爪金龙挥发物成分分析
Table 2 Chemicals of the volatiles from I. cairica leaves
化合物 Compounds | Kovats保留指数 RI | 定性方法 Basis of identification | 相对含量 Relative contents (%) | 绝对浓度 Real concentration (μg·L-1) |
---|---|---|---|---|
α-蒎烯 α-pinene | 939 | MS, RI, Std | 13.65±0.63 | 1.77±0.62 |
β-蒎烯 β-pinene | 988 | MS, RI, Std | 1.73±0.28 | - |
β-罗勒烯 β-ocimene | 1043 | MS, RI, Std | 16.59±0.39 | 1.86±0.89 |
γ-松油烯 γ-terpinene | 1056 | MS, RI, Std | 0.86±0.12 | - |
α-荜澄茄油烯 α-cubebene | 1347 | MS, RI | 2.31±2.86 | - |
α-古巴烯 α-copaene | 1380 | MS, RI | 3.08±0.95 | - |
β-荜澄茄油烯 β-cubebene | 1387 | MS, RI | 2.87±3.27 | |
β-柏木烯 (+)-β-cedrene | 1412 | MS, RI | 9.43±1.87 | 1.20±0.78 |
β-衣兰烯 β-ylangene | 1416 | MS, RI | 1.26±0.52 | - |
β-古巴烯 β-copaene | 1427 | MS, RI | 1.32±0.43 | - |
石竹烯 Caryophyllene | 1436 | MS, RI, Std | 28.17±5.98 | 3.62±1.15 |
香橙烯 Aromadendrene | 1439 | MS, RI, Std | 0.98±0.15 | - |
α-法尼烯 α-farnesene | 1445 | MS, RI | 1.02±0.31 | - |
α-愈创木烯 α-guaiene | 1448 | MS, RI | 0.78±0.16 | - |
α-蛇麻烯 Humulene | 1455 | MS, RI | 2.62±3.28 | - |
γ-衣兰油烯 γ-muurolene | 1472 | MS, RI | 2.23±2.78 | - |
大根香叶烯 α-farnesene | 1490 | MS, RI | 4.63±1.22 | - |
β-雪松烯 β-himachalene | 1491 | MS, RI | 2.59±1.08 | - |
图3 五爪金龙淋溶水4种主要成分对三叶鬼针草和生菜种子发芽率的影响不同大写字母表示三叶鬼针草处理组与对照组在P<0.05水平差异显著;不同小写字母表示生菜处理组与对照组在P<0.05水平差异显著。下同。Different capital letters indicate that there is a significant difference between B. pilosa treatment group and the control group at the P<0.05 level; the different lowercase letters indicate that the L. sativa treatment group and the control group have a significant difference at the P<0.05 level. The same below.
Fig.3 Effects of main components of rain leachates from I. cairica on the germination rate of B. pilosa and L. sativa seeds
受试植物 Recipient plants | 处理时间 Time (d) | 处理方式 Treatment | ||||
---|---|---|---|---|---|---|
对照Control | 肉桂酸Cinnamic acid | 丙酸Propionic acid | 琥珀酸Succinic acid | 月桂酸Lauric acid | ||
三叶鬼针草 B. pilosa | 1 | 0 | 0 | 0 | 0 | 0 |
2 | 0.04±0.01a | 0.01±0.01a | 0.02±0.00a | 0.03±0.00a | 0.01±0.01a | |
3 | 0.10±0.00a | 0.03±0.01c | 0.06±0.01b | 0.10±0.00a | 0.02±0.01c | |
4 | 0.17±0.01b | 0.08±0.01d | 0.13±0.00c | 0.20±0.01a | 0.06±0.01d | |
5 | 0.25±0.01b | 0.13±0.02d | 0.21±0.01c | 0.29±0.01a | 0.11±0.01d | |
6 | 0.34±0.01ab | 0.19±0.02c | 0.31±0.00b | 0.38±0.02a | 0.17±0.01c | |
生菜 L. sativa | 1 | 0.44±0.01a | 0.17±0.02b | 0.44±0.03a | 0.39±0.02a | 0.12±0.02b |
2 | 0.51±0.01a | 0.23±0.01b | 0.53±0.02a | 0.47±0.03a | 0.19±0.02b | |
3 | 0.58±0.01ab | 0.29±0.01c | 0.61±0.03a | 0.53±0.02b | 0.26±0.02c | |
4 | 0.65±0.01ab | 0.36±0.01c | 0.68±0.02a | 0.61±0.02b | 0.34±0.02c | |
5 | 0.71±0.01a | 0.43±0.02b | 0.72±0.02a | 0.67±0.02a | 0.41±0.02b | |
6 | 0.75±0.01a | 0.50±0.02b | 0.76±0.02a | 0.72±0.02a | 0.48±0.02b |
表3 五爪金龙淋溶水主要成分对三叶鬼针草和生菜种子Timson指数的影响
Table 3 Effects of main components of rain leachates from I. cairica on Timson index of the seeds of B. pilosa and L. sativa
受试植物 Recipient plants | 处理时间 Time (d) | 处理方式 Treatment | ||||
---|---|---|---|---|---|---|
对照Control | 肉桂酸Cinnamic acid | 丙酸Propionic acid | 琥珀酸Succinic acid | 月桂酸Lauric acid | ||
三叶鬼针草 B. pilosa | 1 | 0 | 0 | 0 | 0 | 0 |
2 | 0.04±0.01a | 0.01±0.01a | 0.02±0.00a | 0.03±0.00a | 0.01±0.01a | |
3 | 0.10±0.00a | 0.03±0.01c | 0.06±0.01b | 0.10±0.00a | 0.02±0.01c | |
4 | 0.17±0.01b | 0.08±0.01d | 0.13±0.00c | 0.20±0.01a | 0.06±0.01d | |
5 | 0.25±0.01b | 0.13±0.02d | 0.21±0.01c | 0.29±0.01a | 0.11±0.01d | |
6 | 0.34±0.01ab | 0.19±0.02c | 0.31±0.00b | 0.38±0.02a | 0.17±0.01c | |
生菜 L. sativa | 1 | 0.44±0.01a | 0.17±0.02b | 0.44±0.03a | 0.39±0.02a | 0.12±0.02b |
2 | 0.51±0.01a | 0.23±0.01b | 0.53±0.02a | 0.47±0.03a | 0.19±0.02b | |
3 | 0.58±0.01ab | 0.29±0.01c | 0.61±0.03a | 0.53±0.02b | 0.26±0.02c | |
4 | 0.65±0.01ab | 0.36±0.01c | 0.68±0.02a | 0.61±0.02b | 0.34±0.02c | |
5 | 0.71±0.01a | 0.43±0.02b | 0.72±0.02a | 0.67±0.02a | 0.41±0.02b | |
6 | 0.75±0.01a | 0.50±0.02b | 0.76±0.02a | 0.72±0.02a | 0.48±0.02b |
图4 五爪金龙挥发物主要成分对三叶鬼针草和生菜种子发芽率的影响
Fig.4 Effects of main components of volatiles from I. cairica on the germination rate of B. pilosa and L. sativa seeds
受试植物 Recipient plants | 处理时间 Time (d) | 处理方式 Treatment | ||||
---|---|---|---|---|---|---|
对照Control | α-蒎烯Alpha-pinene | β-罗勒烯Beta-ocimene | β-柏木烯Beta-cedrene | 石竹烯Caryophyllene | ||
三叶鬼针草 B. pilosa | 1 | 0 | 0.01±0.01 | 0 | 0 | 0 |
2 | 0.04±0.01a | 0.05±0.03a | 0.05±0.01a | 0.02±0.00a | 0.01±0.01a | |
3 | 0.10±0.00a | 0.10±0.03ab | 0.10±0.01ab | 0.03±0.00b | 0.02±0.01b | |
4 | 0.17±0.01a | 0.18±0.03a | 0.19±0.02a | 0.08±0.01b | 0.07±0.01b | |
5 | 0.25±0.01a | 0.27±0.03a | 0.27±0.02a | 0.14±0.01b | 0.13±0.01b | |
6 | 0.34±0.01a | 0.38±0.03a | 0.36±0.02a | 0.21±0.02b | 0.18±0.01b | |
生菜 L. sativa | 1 | 0.33±0.02a | 0.32±0.01a | 0.34±0.03a | 0.23±0.02b | 0.19±0.01b |
2 | 0.42±0.03a | 0.43±0.03a | 0.44±0.01a | 0.34±0.02b | 0.31±0.01b | |
3 | 0.52±0.03a | 0.54±0.03a | 0.55±0.01a | 0.42±0.03b | 0.41±0.01b | |
4 | 0.59±0.03a | 0.62±0.03a | 0.63±0.02a | 0.52±0.03b | 0.51±0.02b | |
5 | 0.66±0.03ab | 0.68±0.04a | 0.68±0.02a | 0.58±0.06b | 0.58±0.02b | |
6 | 0.70±0.02ab | 0.72±0.04a | 0.72±0.02a | 0.63±0.04b | 0.62±0.02b |
表4 五爪金龙挥发物主要成分对三叶鬼针草和生菜种子Timson指数的影响
Table 4 Effects of main components of volatiles from I. cairica on Timson index of the seeds of B. pilosa and L. sativa
受试植物 Recipient plants | 处理时间 Time (d) | 处理方式 Treatment | ||||
---|---|---|---|---|---|---|
对照Control | α-蒎烯Alpha-pinene | β-罗勒烯Beta-ocimene | β-柏木烯Beta-cedrene | 石竹烯Caryophyllene | ||
三叶鬼针草 B. pilosa | 1 | 0 | 0.01±0.01 | 0 | 0 | 0 |
2 | 0.04±0.01a | 0.05±0.03a | 0.05±0.01a | 0.02±0.00a | 0.01±0.01a | |
3 | 0.10±0.00a | 0.10±0.03ab | 0.10±0.01ab | 0.03±0.00b | 0.02±0.01b | |
4 | 0.17±0.01a | 0.18±0.03a | 0.19±0.02a | 0.08±0.01b | 0.07±0.01b | |
5 | 0.25±0.01a | 0.27±0.03a | 0.27±0.02a | 0.14±0.01b | 0.13±0.01b | |
6 | 0.34±0.01a | 0.38±0.03a | 0.36±0.02a | 0.21±0.02b | 0.18±0.01b | |
生菜 L. sativa | 1 | 0.33±0.02a | 0.32±0.01a | 0.34±0.03a | 0.23±0.02b | 0.19±0.01b |
2 | 0.42±0.03a | 0.43±0.03a | 0.44±0.01a | 0.34±0.02b | 0.31±0.01b | |
3 | 0.52±0.03a | 0.54±0.03a | 0.55±0.01a | 0.42±0.03b | 0.41±0.01b | |
4 | 0.59±0.03a | 0.62±0.03a | 0.63±0.02a | 0.52±0.03b | 0.51±0.02b | |
5 | 0.66±0.03ab | 0.68±0.04a | 0.68±0.02a | 0.58±0.06b | 0.58±0.02b | |
6 | 0.70±0.02ab | 0.72±0.04a | 0.72±0.02a | 0.63±0.04b | 0.62±0.02b |
1 | Chen B M, Liao H X, Chen W B, et al. Role of allelopathy in plant invasion and control of invasive plants. Allelopathy Journal, 2017, 41(2): 155-166. |
2 | Callaway R M, Cipollini D, Barto K, et al. Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology, 2008, 89 (4): 1043-1055. |
3 | Callaway R M, Ridenour W M. Novel weapons: Invasive success and the evolution of increased competitive ability. Frontiers in Ecology & the Environment, 2004, 2(8): 436-443. |
4 | Rice E L. Allelopathy (the 2nd edition). New York: Academic Press, 1984. |
5 | Li Y J, Chen S, Li C Y, et al. Isolation and identification of allelochemicals from Mikania micrantha. Journal of South China Agricultural University, 2008, 29(4): 26-30. |
李拥军, 陈实, 李春远, 等. 薇甘菊化感活性成分的分离与鉴定. 华南农业大学学报, 2008, 29(4): 26-30. | |
6 | Wu Y, Si C C, Sun J F, et al. Allelopathic effects of two chemicals in Wedelia trilobata root exudates. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(10): 170-178. |
吴易, 司春灿, 孙见凡, 等. 南美蟛蜞菊根系分泌物中2种化学物质的化感潜力. 西北农业学报, 2014, 23(10): 170-178. | |
7 | Kong C H, Xu T, Hu F. Study on interactions among allelochemicals of Ageratum conyzoides. Chinese Journal of Plant Ecology, 1998(5): 20-25. |
孔垂华, 徐涛, 胡飞. 胜红蓟化感物质之间相互作用的研究. 植物生态学报, 1998(5): 20-25. | |
8 | Liu S Q, Jia Z H. Biological activity of aqueous extract and volatile oil from the leaf of Lantana camara and its chemical constituents. Guihaia, 2002(2): 185-188. |
刘少群, 贾正晖. 马缨丹叶片水提物与挥发油的生物活性及化学成分研究. 广西植物, 2002(2): 185-188. | |
9 | Sun W H, Yu Z W, Tai G F, et al. Culture of Halerpestes cymbalaria aseptic seedling and effects. Plant Physiology Communications, 1990(3): 301-305. |
孙文浩, 俞子文, 邰根福, 等. 凤眼莲无菌苗培养及其克藻效应. 植物生理学报, 1990(3): 301-305. | |
10 | He H, Song Q M, Wang Y F, et al. Phytotoxic effects of volatile organic compounds in soil water taken from a Eucalyptus urophylla plantation. Plant and Soil, 2014, 377: 203-215. |
11 | Lin C. Damage, biological characteristics and risk analysis of Ipomoea cairica in Fuzhou district. Fuzhou: Fujian Agriculture and Forestry University, 2009. |
林淳. 福州市外来入侵植物五爪金龙的为害、生物学特性及风险分析. 福州: 福建农林大学, 2009. | |
12 | Song X, Shen Y D, Huang Q Q, et al. Effects of water extracts of Ipomoea cairica, Ipomoea triloba, Ipomoea digitata on seed germination and seedling growth of four kinds of plants in China. Journal of South China University of Tropical Agriculture, 2013, 4(1): 50-55. |
宋鑫, 沈奕德, 黄乔乔, 等. 五爪金龙、三裂叶薯和七爪龙水浸液对4种作物种子萌发与幼苗生长的影响. 热带生物学报, 2013, 4(1): 50-55. | |
13 | Wei C, Xu Y Y, Zhuang S Y, et al. Allelopathic effects of Ipomoea cairica water extracts and septics solution on rice seed germination. Jiangsu Agricultural Science, 2017(9): 67-70. |
魏聪, 徐玉茵, 庄斯宜, 等. 五爪金龙水浸液和腐化液对水稻种子萌发的化感作用. 江苏农业科学, 2017(9): 67-70. | |
14 | Deng Y C, Kong Z W, Luo H Y, et al. Allelopathic effect of invasive Ipomoea cairica on seed germination and seedling growth of five vegetables. Seed, 2010(7): 8-11. |
邓业成, 孔卓玮, 骆海玉, 等. 外来入侵植物五爪金龙对5种蔬菜种子萌发和幼苗生长的化感效应. 种子, 2010(7): 8-11. | |
15 | Liao Z Y, Hou Y P, Zhao Z H, et al. Study on allelopathic effect of Ipomoea cairica Ⅱ. allelopathic potential of litter. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2008, 47(4): 63-67. |
廖周瑜, 侯玉平, 赵则海, 等. 五爪金龙化感效应研究Ⅱ.凋落物的化感潜力. 中山大学学报(自然科学版), 2008, 47(4): 63-67. | |
16 | Liao Z Y, Zhao Z H, Hou Y P, et al. Study on allelopathic effect of Ipomoea cairica on Mikania micrantha. Ecology and Environment, 2007, 16(3): 939-943. |
廖周瑜, 赵则海, 侯玉平, 等. 五爪金龙对薇甘菊的化感效应研究. 生态环境学报, 2007, 16(3): 939-943. | |
17 | You C Y, Yang Y, Hu F, et al. Contents of two coumarins in Ipomoea cairica and their effects on Pomacea canaliculata,Orzya sativa, and Echinochloa crusgalli. Acta Ecologica Sinica, 2014, 34(7): 1716-1724. |
犹昌艳, 杨宇, 胡飞, 等. 五爪金龙中香豆素类物质含量及其对福寿螺、水稻和稗草的影响. 生态学报, 2014, 34(7): 1716-1724. | |
18 | Lin W P, Fang D D, Wu X M, et al. Invasion mechanisms of Ipomoea cairica based on ecological stoichiometry: A preliminary investigation. Ecology and Environment, 2014, 23(10): 1593-1599. |
林威鹏, 方丹丹, 吴夏明, 等. 从生态化学计量学的角度初探五爪金龙(Ipomoea cairica)的入侵机制. 生态环境学报, 2014, 23(10): 1593-1599. | |
19 | Zeng R S. Review on bioassay methods for allelopathy research. Chinese Journal of Applied Ecology, 1999 (1): 123-126. |
曾任森. 化感作用研究中的生物测定方法综述. 应用生态学报, 1999(1): 123-126. | |
20 | Song Q M, Qin F Q, He H, et al. Allelopathic potential of rain leachates from Eucalyptus urophylla on four tree species. Springer Netherlands, 2019, 93(4): 1307-1318. |
21 | Khan M A, Ungar I A. The effect of sallnity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis Willd. American Journal of Botany, 1984, 71(4): 481-489. |
22 | Williamson G B, Richardson D. Bioassays for allelopathy: Measuring treatment responses with independent controls. Journal of Chemical Ecology, 1988, 14(1): 181-187. |
23 | Lin S, Weng B Q. Review on allelopathy of exotic plants. Fujian Journal of Agricultural Sciences, 2005(3): 202-210. |
林嵩, 翁伯琦. 外来植物化感作用研究综述. 福建农业学报, 2005(3): 202-210. | |
24 | Li A R, Ma M, Su X T, et al. Allelopathic effects of Xanthium strumarium L. on the germination of oil sunflower seeds. Seed, 2020, 39(4): 35-40. |
李澳然, 马淼, 苏筱田, 等. 意大利苍耳的化感作用对油葵种子萌发的影响. 种子, 2020, 39(4): 35-40. | |
25 | Huang S, Ma D W, Lu X, et al. Morphological characteristics of leaf guard cells in six crops in response to the volatile stress of Chenopodium ambrosioides L. from different invaded habitats. Acta Ecologica Sinica, 2019, 39(5): 1517-1527. |
黄素, 马丹炜, 鲁昕, 等. 六种农作物叶保卫细胞形态特征对不同入侵地土荆芥挥发物胁迫的响应. 生态学报, 2019, 39(5): 1517-1527. | |
26 | Jiang G B, Gao W J, Lu Z H. Allelopathic potentials of volatiles from Ageratum conyzoides L. on weeds and vegetables. Journal of Henan Agricultural Sciences, 2014, 43(2): 92-95. |
江贵波, 高伟佳, 陆梓华. 胜红蓟挥发物对杂草和蔬菜的化感作用. 河南农业科学, 2014, 43(2): 92-95. | |
27 | Zhao H M. Releasiong mode and isolated and identified of main allelochemicals from Artemisia annua L. Lanzhou: Gansu Agricultural University, 2008. |
赵红梅. 黄花蒿(Artemisia annua L.)化感物质的释放途径及其主要化感物质的分离鉴定. 兰州: 甘肃农业大学, 2008. | |
28 | Zhang X Y, Zhang X H, Shen H M, et al. Study on allelopathy and allelochemicals release route of Hypecoum leptocarpum. Journal of Gansu Agricultural University, 2018, 53(5): 69-78, 86. |
张小云, 张新虎, 沈慧敏, 等. 节裂角茴香的化感作用及化感物质释放途径研究. 甘肃农业大学学报, 2018, 53(5): 69-78, 86. | |
29 | Xie X G, Chen Y, Bu Y Q, et al. A review of allelopathic researches on phenolic acids. Acta Ecologica Sinica, 2014, 34(22): 6417-6428. |
谢星光, 陈晏, 卜元卿, 等. 酚酸类物质的化感作用研究进展. 生态学报, 2014, 34(22): 6417-6428. | |
30 | Zhang Q J, Zhang A H, Sun J B, et al. Advances in research on allelopathic effects of terpenoids in plants. Ecology and Environment, 2012, 21(1): 187-193. |
张秋菊, 张爱华, 孙晶波, 等. 植物体中萜类物质化感作用的研究进展. 生态环境学报, 2012, 21(1): 187-193. | |
31 | Han J, Meng J, Huang S B. Pathways and mechanisms of biological allelopathy. Biological Bulletin, 2011, 46(9): 5-7. |
韩杰, 孟军, 黄收兵. 生物化感作用的途径与机制. 生物学通报, 2011, 46(9): 5-7. | |
32 | Baziramakenga R, Leroux G D, Simard R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology, 1995(21): 1271-1285. |
33 | Booker F L, Blum U, Fiscus E L. Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. Journal of Experimental Botany, 1992, 43(5): 649-655. |
34 | Li J, Li Y M, Gou Y N, et al. Research progress on the metabolism of phenolic acids and their allelopathy. Heilongjiang Agricultural Sciences, 2019(8): 175-182. |
李菊, 李玉梅, 苟亚妮, 等. 酚酸类物质代谢及其化感效应研究进展. 黑龙江农业科学, 2019(8): 175-182. | |
35 | Song L, Pan K W, Wang J C, et al. Effects of phenolic acids on seed germination and seedling antioxidant enzyme activity of alfalfa. Acta Ecologica Sinica, 2006, 26(10): 3393-3403. |
宋亮, 潘开文, 王进闯, 等. 酚酸类物质对苜蓿种子萌发及抗氧化物酶活性的影响. 生态学报, 2006, 26(10): 3393-3403. | |
36 | Chen Y, Maihemuti A Z G L, Ma L F. Effects of ferulic acid and syringic acid on seed germination and seedling growth of soybean. Seed, 2017(1): 108-111. |
陈芸, 阿则古丽·麦合木提, 马刘峰. 丁香酸和阿魏酸对大豆种子萌发及幼苗生长的影响. 种子, 2017(1): 108-111. | |
37 | Guo K, Yan Z Q, Jin H, et al. Allelopathic effect and mechanism of cinnamic acid and caffeic acid on the growth of Lettuce. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(1): 93-99. |
郭凯, 燕志强, 金辉, 等. 肉桂酸和咖啡酸对莴苣生长的化感作用及其机理研究. 西北植物学报, 2016, 36(1): 93-99. | |
38 | Li X X, Shen Y D, Fan Z W, et al. Chemical constituents and allelopathy of Tithonia diversifolia volatile oil. Guihaia, 2013(6): 81, 159-163. |
李晓霞, 沈奕德, 范志伟, 等. 肿柄菊挥发油的化学成分分析及其化感作用. 广西植物, 2013(6): 81, 159-163. | |
39 | Sun H J, Wang Q. Effect of benzoic acid and cinnamic acid on watermelon seeding root cell protective enzymes and membrane permeability. Acta Agriculturae Boreali-Occidentalis Sinica, 2007(6): 142-145. |
孙会军, 王倩. 苯甲酸、肉桂酸对西瓜根细胞保护酶及膜透性的影响.西北农业学报, 2007(6): 142-145. | |
40 | Nie C R, Zeng R S, Li H S, et al. Physiological and biochemical mechanism of allelopathy of Wedelia trilobata L. on peanut(Arachis hypogaea L.). Journal of Peanut Science, 2002, 31(3): 1-5. |
聂呈荣, 曾任森, 黎华寿, 等. 三裂叶蟛蜞菊对花生化感作用的生理生化机理. 花生学报, 2002, 31(3): 1-5. | |
41 | Zhang X F. Studies on the separation and identification of potential allelochemicals of Ttifolium repens L. Tai’an: Shandong Agricultural University, 2011. |
张晓芳. 白三叶草潜在化感物质的初步分离与鉴定. 泰安: 山东农业大学, 2011. | |
42 | Zhang Y H, Liu M F, Ling T J, et al. Allelopathic sesquiterpene lactones from Wedelia trilobata. Journal of Tropical and Subtropical Botany, 2004, 12(6): 533-537. |
张玉虎, 刘梅芳, 凌铁军, 等. 三裂蟛蜞菊中的倍半萜内酯成分及其化感作用. 热带亚热带植物学报, 2004, 12(6): 533-537. | |
43 | Wang H B, He H B, Zeng C M, et al. Allelopathic effect of oxygenic terpenoid on Echinochloacrusgalli L. Chinese Journal of Eco-Agriculture, 2009, 17(2): 307-311. |
王海斌, 何海斌, 曾聪明, 等. 含氧萜类化合物对稗草的化感抑制作用. 中国生态农业学报, 2009, 17(2): 307-311. | |
44 | Chen L, Li J D, Wang G J, et al. Allelopathy effect of several phenolic acids on seed germination of soybean. Seed, 2011, 30(5): 83-86. |
陈龙, 李建东, 王国骄, 等. 几种酚酸对大豆种子萌发的化感效应 .种子, 2011, 30(5): 83-86. | |
45 | Zheng L, Feng Y L. Allelopathic effects of Eupatorium adenophorum Spreng. on seed germination and seedling growth in ten herbaceous species. Acta Ecologica Sinica, 2005, 25(10): 2782-2787. |
郑丽, 冯玉龙. 紫茎泽兰叶片化感作用对10种草本植物种子萌发和幼苗生长的影响. 生态学报, 2005, 25(10): 2782-2787. | |
46 | Wang Y, Fu L, Long F L, et al. Allelopathic effects of water extractions from two Veronica species on 6 kinds of receiving crops. Journal of Northwest A & F University (Nature Science Edition), 2013, 41(4): 178-190. |
王云, 符亮, 龙凤玲, 等. 2种婆婆纳属植株水浸提液对6种受体植物的化感作用. 西北农林科技大学学报(自然科学版), 2013, 41(4): 178-190. | |
47 | Leather G R, Einhelig F A. Bioassays in the study of allelopathy. New York: John Wiley&Sons, 1986. |
48 | Zhang Z Z, Sun Z H, Chen W H, et al. Allelopathic effects of organic acid allelochemicals on melon. Acta Ecologica Sinica, 2013, 33(15): 4591-4598. |
张志忠, 孙志浩, 陈文辉, 等. 有机酸类化感物质对甜瓜的化感效应. 生态学报, 2013, 33(15): 4591-4598. | |
49 | He H Q, Shen L H, Song B Q, et al. Interactive effects between allelochemical substitutes. Chinese Journal of Applied Ecology, 2005, 16(5): 890-894. |
何华勤, 沈荔花, 宋碧清, 等. 几种化感物质替代物间的互作效应分析. 应用生态学报, 2005, 16(5): 890-894. | |
50 | Fischer N H, Williamson G B, Weidenhamer J D, et al. In search of allelopathy in the Florida scrub: The role of terpenoids. Journal of Chemical Ecology, 1994, 20(6): 1355-1380. |
51 | Yang L. Studies on allelopathy and bacteriostatic activity of Conyza canadensis. Changchun: Jilin Agricultural University, 2011. |
杨莉. 加拿大蓬化感作用及抑菌活性研究. 长春: 吉林农业大学, 2011. | |
52 | Yuan Z G. Study on allelopathy and active constituents of Xanthium spinosum. Yining: Yili Normal University, 2018. |
袁着耕. 刺苍耳化感作用及活性成分研究. 伊宁: 伊犁师范学院, 2018. | |
53 | Cao Z L, Wang Y Y, Wang X L, et al. Allelopathic effect of Eupatorium adenophorum on seed germination and seedling growth of Cunninghamia lanceolata. Seed, 2017(7): 32-36. |
曹子林, 王乙媛, 王晓丽, 等. 紫茎泽兰对杉木种子萌发及幼苗生长的化感作用. 种子, 2017(7): 32-36. | |
54 | Zhang H Y, Zhang M, Qi S S, et al. Allelopathy and active components of the invasive plant Conyza canadensis. Journal of Weeds, 2015, 33(4): 5-9. |
张海燕, 张敏, 祁珊珊, 等. 入侵植物小飞蓬化感作用及有效成分分析. 杂草学报, 2015, 33(4): 5-9. |
[1] | 包赛很那, 王向涛, 武俊喜, 苗彦军, 贾祥, 田彦婷. 苗期劲直黄芪根浸提液对8种西藏野生植物化感作用的研究[J]. 草业学报, 2021, 30(5): 211-220. |
[2] | 高玉莲, 常静, 王贻卉, 李锋, 李海平, 马崇勇. 瑞香狼毒根提取物对3种作物种子萌发和幼苗生长的化感作用[J]. 草业学报, 2021, 30(10): 83-91. |
[3] | 牛欢欢, 王森森, 贾宏定, 陈桂华. 光叶紫花苕子浸提液对4种牧草种子萌发过程的化感作用[J]. 草业学报, 2020, 29(9): 161-168. |
[4] | 李凤兰, 武佳文, 姚树宽, 赵梓颐, 赵潇璨, 贺付蒙, 朱元芳, 石奇海, 周磊, 徐永清. 假苍耳不同部位水浸提液对5种土著植物化感作用的研究[J]. 草业学报, 2020, 29(9): 169-178. |
[5] | 王桔红, 史生晶, 陈文, 李云, 崔现亮. 鬼针草与含羞草化感作用及其入侵性的研究[J]. 草业学报, 2020, 29(4): 81-91. |
[6] | 张金羽, 周忠泽, 叶晓馨. 陌上菅对三种禾本科植物的化感潜势研究[J]. 草业学报, 2020, 29(3): 103-111. |
[7] | 王宇轩, 唐宗寿, 曹梦琳, 李雅馨, 张天宝, 杜慧玲. 八宝景天花对三种杂草的化感作用及潜在化感物质鉴定[J]. 草业学报, 2020, 29(1): 175-182. |
[8] | 刘雅婧, 蒙仲举, 党晓宏, 宋文娟, 翟波. 狼毒浸提液对3种牧草种子萌发和幼苗生长的影响[J]. 草业学报, 2019, 28(8): 130-138. |
[9] | 司华哲, 李志鹏, 南韦肖, 金春爱, 李光玉, 刘晗璐. 添加植物乳杆菌对低水分稻秸青贮微生物组成影响研究[J]. 草业学报, 2019, 28(3): 184-192. |
[10] | 贺萍, 邓禹君, 胡潇尹, 潘慧敏, 邓洪平. 钻形紫菀对小麦与白菜潜在化感作用的研究[J]. 草业学报, 2019, 28(10): 101-109. |
[11] | 姚树宽, 李凤兰, 彭丽娜, 冯旭, 董佳敏, 冯哲, 张俊峰, 赵巧芩, 冯珊珊, 徐永清, 胡宝忠. 假苍耳不同部位水浸提液对五种十字花科植物化感作用的研究[J]. 草业学报, 2018, 27(9): 56-66. |
[12] | 平晓燕, 王铁梅. 植物化感作用的生态学意义及在草地生态系统中的研究进展[J]. 草业学报, 2018, 27(8): 175-184. |
[13] | 吉雪花, 王露洁, 庞胜群. 蛇麻黄浸提液对苔藓结皮生长的影响[J]. 草业学报, 2018, 27(3): 187-193. |
[14] | 葛莉, 姚园园, 康天兰, 李京耀, 何恒军, 杨德龙, 栗孟飞. 不同收获期贯叶连翘花中抗氧化能力、主要活性物质变化及挥发性组分分离鉴定[J]. 草业学报, 2017, 26(9): 66-74. |
[15] | 黄钰芳, 张恩和, 张新慧, 王惠珍, 王琦, 刘青林, 石雨仟. 兰州百合根及鳞茎水浸液自毒作用的研究[J]. 草业学报, 2017, 26(8): 93-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||