草业学报 ›› 2022, Vol. 31 ›› Issue (2): 111-120.DOI: 10.11686/cyxb2020536
• 研究论文 • 上一篇
杨克彤1(), 陈国鹏1(), 鲜骏仁2, 俞筱押3, 张金武1, 王立1
收稿日期:
2020-12-02
修回日期:
2021-01-27
出版日期:
2022-02-20
发布日期:
2021-12-22
通讯作者:
陈国鹏
作者简介:
Corresponding author. E-mail: chgp1986@gmail.com基金资助:
Ke-tong YANG1(), Guo-peng CHEN1(), Jun-ren XIAN2, Xiao-ya YU3, Jin-wu ZHANG1, Li WANG1
Received:
2020-12-02
Revised:
2021-01-27
Online:
2022-02-20
Published:
2021-12-22
Contact:
Guo-peng CHEN
摘要:
高山植物在适应高海拔、低气压、短生长季等环境约束的过程中表现出独特的功能适应性,探究高山植物枝叶功能性状沿海拔梯度的变化特征对其资源获取与生存繁殖的认知有重要意义。于2019年8月对甘南高山海拔3400~3700 m范围内头花杜鹃23组主要枝叶功能性状进行了测定。研究发现: 随海拔上升,叶干物质含量、叶片密度、叶厚度和总叶干物质含量显著增大;叶长、叶宽、叶面积、叶体积、叶干重、茎长、茎干重、总叶干重、总叶面积、纤细率和茎体积在3600 m显著减小,在海拔梯度上整体呈“V”形变化;海拔会显著影响叶厚、叶长、叶干物质含量、叶密度、比叶面积、总叶干物质含量、总叶面积和总比叶面积,大部分性状间存在显著的相关关系;头花杜鹃枝叶性状在海拔内的方差分量明显大于海拔间,各性状的表型分化系数以茎干物质含量最小(3.19%),叶密度最大(57.73%),平均为20.65%。结果表明: 头花杜鹃部分性状对海拔变化不敏感,主要以少数核心性状变异结合功能性状组合共同适应高山异质生境,头花杜鹃在海拔间具有较低的表型变异,可能是对高山特殊环境的适应性策略。
杨克彤, 陈国鹏, 鲜骏仁, 俞筱押, 张金武, 王立. 甘肃省扎尕梁北坡头花杜鹃枝叶性状特征[J]. 草业学报, 2022, 31(2): 111-120.
Ke-tong YANG, Guo-peng CHEN, Jun-ren XIAN, Xiao-ya YU, Jin-wu ZHANG, Li WANG. Characteristics of stem and leaf functional traits of Rhododendron capitatum on the north slope of Zhagaliang, Gansu[J]. Acta Prataculturae Sinica, 2022, 31(2): 111-120.
图1 头花杜鹃叶性状随海拔的变化不同字母表示差异显著(P<0.05),下同。Different lowercase letters indicate significant differences (P<0.05), the same below.
Fig.1 Variation of R. capitatum leaf traits with altitude
图3 头花杜鹃枝叶性状间的相关关系LL:叶长; LW:叶宽; LT:叶厚; LA:叶面积; LV:叶体积; LDW:叶干重; LDMC:叶干物质含量; LSI:叶形指数; SLA:比叶面积; LDE:叶密度; SD:茎径; SL:茎长; SDW:茎干重; SDMC:茎干物质含量; TLDW:总叶干重; TLDMC:总叶干物质含量; TLSWR:总叶茎重比; TLA:总叶面积; LNO.:叶片数; TSLA:总比叶面积; SSR:纤细率; SV:茎体积; SDE:茎密度; 空白表示无显著差异,扇形表示差异显著(P<0.05),扇形大小表示相关性强弱。LL: Leaf length; LW: Leaf width; LT: Leaf thickness; LA: Leaf area; LV: Leaf volume; LDW: Leaf dry weight; LDMC: Leaf dry matter content; LSI: Leaf shape index; SLA: Specific leaf area; LDE: Leaf density; SD: Stem diameter; SL: Stem length; SDW: Stem dry weight; SDMC: Stem dry matter content; TLDW: Total leaf dry weight; TLDMC: Total leaf dry matter content; TLSWR: Total leaf and stem weight ratio; TLA: Total leaf area; LNO.: Leaf number; TSLA: Total specific leaf area; SSR: Stem slender ratio; SV: Stem volume; SDE: Stem density. Blank indicates insignificant difference, while fan indicates significant difference (P<0.05). The sector size indicates the strength of the correlation.
Fig.3 Relationship between stem and leaf traits of R. capitatum
枝叶性状 Stem-leaf traits | 方差分量Variance component | 方差分量百分比 Percentage of variance component (%) | 表型分化系数 Phenotype differentiation coefficient (%) | ||||
---|---|---|---|---|---|---|---|
海拔间 Among altitude | 海拔内 Within altitude | 随机误差 Random errors | 海拔间 Among altitude | 海拔内 Within altitude | 随机误差 Random errors | ||
LL | 143.011 | 609.681 | 136.987 | 16.07 | 68.53 | 15.40 | 19.00 |
LW | 39.049 | 114.645 | 37.957 | 20.38 | 59.82 | 19.81 | 25.41 |
LT | 0.009 | 0.022 | 0.003 | 26.47 | 64.71 | 8.82 | 30.00 |
LA | 0.945 | 3.303 | 0.837 | 18.58 | 64.96 | 16.46 | 22.25 |
LV | 0.001 | 0.004 | 0.001 | 16.67 | 66.67 | 16.67 | 25.00 |
LDW | 0.000 | 0.000 | 0.000 | 23.98 | 38.01 | 38.01 | 38.68 |
LDMC | 0.029 | 0.059 | 0.016 | 27.89 | 56.73 | 15.39 | 32.96 |
LSI | 0.699 | 12.017 | 0.699 | 5.21 | 89.58 | 5.21 | 5.50 |
SLA | 12943.759 | 10530.442 | 3953.805 | 47.19 | 38.39 | 14.42 | 55.14 |
LDE | 0.127 | 0.093 | 0.044 | 48.11 | 35.23 | 16.67 | 57.73 |
SD | 0.456 | 5.921 | 0.456 | 6.67 | 86.65 | 6.67 | 7.15 |
SL | 964.248 | 4494.216 | 945.091 | 15.06 | 70.19 | 14.76 | 17.67 |
SDW | 0.002 | 0.008 | 0.002 | 16.67 | 66.67 | 16.67 | 20.00 |
SDMC | 0.003 | 0.091 | 0.002 | 3.13 | 94.79 | 2.08 | 3.19 |
TLDW | 0.005 | 0.027 | 0.005 | 13.51 | 72.97 | 13.51 | 15.63 |
TLDMC | 0.018 | 0.144 | 0.005 | 10.78 | 86.23 | 2.99 | 11.11 |
TLA | 656721.350 | 2818816.985 | 382925.341 | 17.02 | 73.06 | 9.92 | 18.90 |
TLSWR | 8.292 | 43.497 | 7.454 | 14.00 | 73.42 | 12.58 | 16.01 |
LNO. | 23.800 | 316.133 | 17.920 | 6.65 | 88.34 | 5.01 | 7.00 |
TSLA | 30006.371 | 132296.387 | 1115.683 | 18.36 | 80.96 | 0.68 | 18.49 |
SSR | 272.912 | 1828.979 | 249.795 | 11.61 | 77.77 | 10.62 | 12.98 |
SV | 922.583 | 7295.199 | 909.918 | 10.11 | 79.92 | 9.97 | 11.23 |
SDE | 0.373 | 9.309 | 0.224 | 3.76 | 93.97 | 2.26 | 3.85 |
平均值 Mean | - | - | - | 17.30 | 70.76 | 11.94 | 20.65 |
表1 头花杜鹃枝叶性状的方差分量与表型分化系数
Table 1 Variance component and phenotype differentiation coefficient of stem-leaf traits of R. capitatum
枝叶性状 Stem-leaf traits | 方差分量Variance component | 方差分量百分比 Percentage of variance component (%) | 表型分化系数 Phenotype differentiation coefficient (%) | ||||
---|---|---|---|---|---|---|---|
海拔间 Among altitude | 海拔内 Within altitude | 随机误差 Random errors | 海拔间 Among altitude | 海拔内 Within altitude | 随机误差 Random errors | ||
LL | 143.011 | 609.681 | 136.987 | 16.07 | 68.53 | 15.40 | 19.00 |
LW | 39.049 | 114.645 | 37.957 | 20.38 | 59.82 | 19.81 | 25.41 |
LT | 0.009 | 0.022 | 0.003 | 26.47 | 64.71 | 8.82 | 30.00 |
LA | 0.945 | 3.303 | 0.837 | 18.58 | 64.96 | 16.46 | 22.25 |
LV | 0.001 | 0.004 | 0.001 | 16.67 | 66.67 | 16.67 | 25.00 |
LDW | 0.000 | 0.000 | 0.000 | 23.98 | 38.01 | 38.01 | 38.68 |
LDMC | 0.029 | 0.059 | 0.016 | 27.89 | 56.73 | 15.39 | 32.96 |
LSI | 0.699 | 12.017 | 0.699 | 5.21 | 89.58 | 5.21 | 5.50 |
SLA | 12943.759 | 10530.442 | 3953.805 | 47.19 | 38.39 | 14.42 | 55.14 |
LDE | 0.127 | 0.093 | 0.044 | 48.11 | 35.23 | 16.67 | 57.73 |
SD | 0.456 | 5.921 | 0.456 | 6.67 | 86.65 | 6.67 | 7.15 |
SL | 964.248 | 4494.216 | 945.091 | 15.06 | 70.19 | 14.76 | 17.67 |
SDW | 0.002 | 0.008 | 0.002 | 16.67 | 66.67 | 16.67 | 20.00 |
SDMC | 0.003 | 0.091 | 0.002 | 3.13 | 94.79 | 2.08 | 3.19 |
TLDW | 0.005 | 0.027 | 0.005 | 13.51 | 72.97 | 13.51 | 15.63 |
TLDMC | 0.018 | 0.144 | 0.005 | 10.78 | 86.23 | 2.99 | 11.11 |
TLA | 656721.350 | 2818816.985 | 382925.341 | 17.02 | 73.06 | 9.92 | 18.90 |
TLSWR | 8.292 | 43.497 | 7.454 | 14.00 | 73.42 | 12.58 | 16.01 |
LNO. | 23.800 | 316.133 | 17.920 | 6.65 | 88.34 | 5.01 | 7.00 |
TSLA | 30006.371 | 132296.387 | 1115.683 | 18.36 | 80.96 | 0.68 | 18.49 |
SSR | 272.912 | 1828.979 | 249.795 | 11.61 | 77.77 | 10.62 | 12.98 |
SV | 922.583 | 7295.199 | 909.918 | 10.11 | 79.92 | 9.97 | 11.23 |
SDE | 0.373 | 9.309 | 0.224 | 3.76 | 93.97 | 2.26 | 3.85 |
平均值 Mean | - | - | - | 17.30 | 70.76 | 11.94 | 20.65 |
1 | Chen J G, Yang Y, Sun H. Advances in the studies of responses of alpine plants to global warming. Chinese Journal of Applied and Environmental Biology, 2011, 17(3): 435-446. |
陈建国, 杨扬, 孙航. 高山植物对全球气候变暖的响应研究进展. 应用与环境生物学报, 2011, 17(3): 435-446. | |
2 | Shi Z, Bai D Z, Lei J P, et al. Advance on physioecological adaptation of alpine plants to mountainous environment. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(8): 1711-1718. |
施征, 白登忠, 雷静品, 等. 高山植物对其环境的生理生态适应性研究进展. 西北植物学报, 2011, 31(8): 1711-1718. | |
3 | Liu C C, Li Y, Xu L, et al. Variation in leaf morphological, stomatal, and anatomical traits and their relationships in temperate and subtropical forests. Scientific Reports, 2019, 9(1): 5803-5808. |
4 | Shen T, Yu H, Wang Y Z. Geographical distribution and bioclimatic characteristics of the wild Gentiana rigescens resources. Chinese Journal of Applied Ecology, 2019, 30(7): 2291-2300. |
沈涛, 虞泓, 王元忠. 滇龙胆草野生资源的地理分布与生物气候特征. 应用生态学报, 2019, 30(7): 2291-2300. | |
5 | Guo W W, Zhuo M C, Zhou Y Z. The Salix sclerophylla leaves to adapt to the cold and drought environment on the Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(5): 784-790. |
郭文文, 卓么草, 周尧治. 西藏高原硬叶柳叶片结构对寒旱环境的适应机制. 西北植物学报, 2019, 39(5): 784-790. | |
6 | Wang J, Zhu J, Ai X R, et al. Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei, China. Chinese Journal of Plant Ecology, 2019, 43(5): 447-457. |
王进, 朱江, 艾训儒, 等. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响. 植物生态学报, 2019, 43(5): 447-457. | |
7 | Yang J H, Li Y N, Bu H Y, et al. Responses of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2019, 43(10): 863-876. |
杨继鸿, 李亚楠, 卜海燕, 等. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应. 植物生态学报, 2019, 43(10): 863-876. | |
8 | Wang G X, Yu S L, Fang W W, et al. Research progress and prospects of correlation between plant community modules. Chinese Journal of Ecology, 2014, 33(10): 2824-2833. |
王国勋, 于顺利, 方伟伟, 等. 植物群落构件的协同性研究进展. 生态学杂志, 2014, 33(10): 2824-2833. | |
9 | Sun J, Wang M T, Cheng L, et al. Allometry between twig size and leaf size of typical bamboo species along an altitudinal gradient. Chinese Journal of Applied Ecology, 2019, 30(1): 165-172. |
孙俊, 王满堂, 程林, 等. 不同海拔典型竹种枝叶大小异速生长关系. 应用生态学报, 2019, 30(1): 165-172. | |
10 | Yang D M, Zhang J J, Zhou D, et al. Leaf and twig functional traits of woody plants and their relationships with environmental change: A review. Chinese Journal of Ecology, 2012, 31(3): 702-713. |
杨冬梅, 章佳佳, 周丹, 等. 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 2012, 31(3): 702-713. | |
11 | Sun S C, Jin D M, Shi P L. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: An invariant allometric scaling relationship. Annals of Botany, 2006, 97(1): 97-107. |
12 | Chai Y F, Zhang X F, Yue M, et al. Leaf traits suggest different ecological strategies for two Quercus species along an altitudinal gradient in the Qinling Mountains. Journal of Forest Research, 2017, 20(6): 501-513. |
13 | Cai J H, Xue L. Advances on photosynthesis characteristics of alpine plants. Chinese Journal of Ecology, 2018, 37(1): 245-254. |
蔡金桓, 薛立. 高山植物的光合生理特性研究进展. 生态学杂志, 2018, 37(1): 245-254. | |
14 | Guan X, Du L S, Zhai X M, et al. Cones and seeds characteristics of Larix chinensis in Qinling Mountains and their relationship with environmental factors. Chinese Bulletin of Botany, 2016, 51(5): 650-658. |
关潇, 杜乐山, 翟晓朦, 等. 秦岭太白红杉球果与种子特性及其与环境的关系. 植物学报, 2016, 51(5): 650-658. | |
15 | Xin F M, Liu J M, Yang X L, et al. Variation in leaf and fine root traits with altitude in Abies georgei var. smithii in Mt. Shergyla. Acta Ecologica Sinica, 2017, 37(8): 2719-2728. |
辛福梅, 刘济铭, 杨小林, 等. 色季拉山急尖长苞冷杉叶片及细根性状随海拔的变异特征. 生态学报, 2017, 37(8): 2719-2728. | |
16 | Sun X J, Chang S L, Zhang Y T, et al. The variations in plant functional traits and forest carbon content with altitudinal gradients in the Tianshan Mountains. Acta Ecologica Sinica, 2018, 38(14): 4994-5005. |
孙雪娇, 常顺利, 张毓涛, 等. 天山森林植物功能性状与碳库沿海拔梯度的变化. 生态学报, 2018, 38(14): 4994-5005. | |
17 | Zhao G S, Liu M, Shi P L, et al. Variation of leaf and root traits and ecological adaptive strategies along a precipitation gradient on Changtang Plateau. Acta Ecologica Sinica, 2020, 40(1): 295-309. |
赵广帅, 刘珉, 石培礼, 等. 羌塘高原降水梯度植物叶片、根系性状变异和生态适应对策. 生态学报, 2020, 40(1): 295-309. | |
18 | Körner C. Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philosophical Transactions of the Royal Society B, 2004, 359: 493-498. |
19 | Brooker R W. Plant-plant interactions and environmental change. New Phytologist, 2006, 171: 271-284. |
20 | Cui W, Cheng J J. Growing duckweed for biofuel production: A review. Plant Biology, 2015, 17: 16-23. |
21 | Pérez-Harguindeguy N, Díaz S, Garnier E, et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61(3): 167-234. |
22 | Yin M Y, Jiang Z M, Zhu X C, et al. High-level phenotypic variations in populations of Armeniaca sibirica in Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(10): 1090-1099. |
尹明宇, 姜仲茂, 朱绪春, 等. 内蒙古山杏种群表型变异. 植物生态学报, 2016, 40(10): 1090-1099. | |
23 | Liu G F, Zang R G, Guo Z J, et al. Species richness patterns of Picea schrenkiana var. tianschanica communities along an altitudinal gradient at different longitudes in Xinjiang of Northwest China. Chinese Journal of Applied Ecology, 2008, 19(7): 1407-1413. |
刘贵峰, 臧润国, 郭仲军, 等. 不同经度天山云杉群落物种丰富度随海拔梯度变化. 应用生态学报, 2008, 19(7): 1407-1413. | |
24 | Yu Y H, Zhong X P, Cheng W. Analysis of relationship among leaf functional traits and economics spectrum of dominant species in northwestern Guizhou Province. Journal of Forest and Environment, 2018, 38(2): 196-201. |
喻阳华, 钟欣平, 程雯. 黔西北地区优势树种叶片功能性状与经济谱分析. 森林与环境学报, 2018, 38(2): 196-201. | |
25 | Chen G P, Yang K T, Wang L, et al. Allometric relations for biomass partitioning of seven alpine Rhododendron species in south of Gansu. Chinese Journal of Plant Ecology, 2020, 44(10): 1040-1049. |
陈国鹏, 杨克彤, 王立, 等. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系. 植物生态学报, 2020, 44(10): 1040-1049. | |
26 | Duan Y Y, Song L J, Niu S Q, et al. Variation in leaf functional traits of different-aged Robinia pseudoacacia communities and relationships with soil nutrients. Chinese Journal of Applied Ecology, 2017, 28(1): 28-36. |
段媛媛, 宋丽娟, 牛素旗, 等. 不同林龄刺槐叶功能性状差异及其与土壤养分的关系. 应用生态学报, 2017, 28(1): 28-36. | |
27 | Li M, Zheng Y, Guo Y R, et al. Scaling relationships between twig size and leaf size of Pinus hwangshanensis along an altitudinal gradient in Wuyi Mountains, China. Chinese Journal of Applied Ecology, 2017, 28(2): 537-544. |
李曼, 郑媛, 郭英荣, 等. 武夷山不同海拔黄山松枝叶大小关系. 应用生态学报, 2017, 28(2): 537-544. | |
28 | Corner E. The durian theory or the origin of the modern tree. Annals of Botany, 1949, 13: 367-414. |
29 | Hou Y, Liu M X, Sun H R. Response of plant leaf traits to microhabitat change in a subalpine meadow on the eastern edge of Qinghai-Tibetan Plateau, China. Chinese Journal of Applied Ecology, 2017, 28(1): 71-79. |
侯媛, 刘旻霞, 孙辉荣. 青藏高原东缘亚高寒草甸植物叶性状对微生境变化的响应. 应用生态学报, 2017, 28(1): 71-79. | |
30 | Zhang L L, Zhao X Y, Yuan H. Advances in the effects of wind on plants. Advances in Earth Science, 2013, 28(12): 1349-1353. |
张琳琳, 赵晓英, 原慧. 风对植物的作用及植物适应对策研究进展. 地球科学进展, 2013, 28(12): 1349-1353. | |
31 | Diao S F, Shao W H, Jiang J M, et al. Phenotypic diversity in natural populations of Sapindus mukorossi based on fruit and seed traits. Acta Ecologica Sinica, 2014, 34(6): 1451-1460. |
刁松锋, 邵文豪, 姜景民, 等. 基于种实性状的无患子天然群体表型多样性研究. 生态学报, 2014, 34(6): 1451-1460. | |
32 | Li Y G, Liu X H, Ma J W, et al. Phenotypic variations on populations of Phoebe chekiangensis. Chinese Journal of Plant Ecology, 2014, 38(12): 1315-1324. |
李因刚, 柳新红, 马俊伟, 等. 浙江楠种群表型变异. 植物生态学报, 2014, 38(12): 1315-1324. | |
33 | Wang M, Liu G H, Jin T T, et al. Age-related changes of leaf traits and stoichiometry in an alpine shrub (Rhododendron agglutinatum) along altitudinal gradient. Journal of Mountain Science, 2017, 14(1): 106-118. |
34 | Zhang X, He X, Gao J, et al. Latitudinal and climate effects on key plant traits in Chinese forest ecosystems. Global Ecology and Conservation, 2019, 17: e00527. |
35 | Ruozha·Z E H, Li Q, Wang Y X, et al. A study of the correlation between altitude and Medicago falcata phenotypic traits. Acta Prataculturae Sinica, 2019, 28(1): 79-85. |
若扎·扎尔汗, 李倩, 王玉祥, 等. 海拔与黄花苜蓿表型性状的相关性研究. 草业学报, 2019, 28(1): 79-85. | |
36 | Wang X Y, Cao J J, Zhang X F, et al. Effects of topographic factors on leaf traits of apricot in the Loess Plateau, Northwest China. Chinese Journal of Applied Ecology, 2019, 30(8): 2591-2599. |
王雪艳, 曹建军, 张小芳, 等. 地形因子对黄土高原山杏叶片功能性状的影响. 应用生态学报, 2019, 30(8): 2591-2599. |
[1] | 吴廷美, 林慧龙, 范迪, 籍常婷, 赵玉婷, 魏靖琼. 冻原高山草地牧户家畜养殖规模影响因素分析——以青海省为例[J]. 草业学报, 2021, 30(9): 117-126. |
[2] | 马婧婧, 刘耘华, 盛建东, 李宁, 武红旗, 贾宏涛, 孙宗玖, 程军回. 新疆草地优势种植物相对生物量沿海拔梯度变化特征[J]. 草业学报, 2021, 30(8): 25-35. |
[3] | 贺国宝. 祁连山北坡植物群落空间分布格局与多样性研究[J]. 草业学报, 2021, 30(12): 194-201. |
[4] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
[5] | 杨勤, 官久强, 柴志欣, 李华德, 曹诗晓, 张翔飞, 柏琴, 钟金城, 罗晓林. 低海拔舍饲对牦牛肌肉品质的影响研究[J]. 草业学报, 2020, 29(5): 33-42. |
[6] | 许爱云, 曹兵, 谢云. 干旱风沙区煤炭基地12种草本植物对干旱胁迫的生理生态响应及抗旱性评价[J]. 草业学报, 2020, 29(10): 22-34. |
[7] | 王鑫, 罗雪萍, 字洪标, 杨文高, 胡雷, 王长庭. 青海森林凋落物生态化学计量特征及其影响因子[J]. 草业学报, 2019, 28(8): 1-14. |
[8] | 徐海鹏, 于成, 舒朝成, 金少红, 庞晓攀, 郭正刚. 高原鼠兔干扰对高寒草甸植物群落多样性和稳定性的影响[J]. 草业学报, 2019, 28(5): 90-99. |
[9] | 董雪, 郝玉光, 辛智鸣, 李新乐, 段瑞兵, 刘芳, 赵英铭, 黄雅茹. 平茬年限和林龄对沙冬青叶片功能性状及土壤化学计量特征的影响[J]. 草业学报, 2019, 28(10): 122-133. |
[10] | 若扎·扎尔汗, 李倩, 王玉祥, 张博. 海拔与黄花苜蓿表型性状的相关性研究[J]. 草业学报, 2019, 28(1): 79-85. |
[11] | 靳继鹏, 郭武君, 张筱艳, 张昌吉, 张勇, 王春辉, 张利平. 冷季放牧补饲对甘肃高山细毛后备母羊瘤胃代谢参数及瘤胃微生物数量的影响[J]. 草业学报, 2018, 27(7): 93-103. |
[12] | 高海宁, 李彩霞, 孙小妹, 陈年来, 张勇. 黑河上游冰沟流域土壤养分与微生物空间异质性研究[J]. 草业学报, 2018, 27(6): 23-33. |
[13] | 罗文蓉, 栗文瀚, 干珠扎布, 闫玉龙, 李钰, 曹旭娟, 何世丞, 旦久罗布, 高清竹, 胡国铮. 施氮对藏北垂穗披碱草人工草地叶片功能性状和种群特征的影响[J]. 草业学报, 2018, 27(5): 51-60. |
[14] | 何佳,胡玉福,舒向阳,王琴,贾安都,严星. 川西北高寒沙地不同年限高山柳土壤生态化学计量及储量变化特征[J]. 草业学报, 2018, 27(4): 27-33. |
[15] | 佘淑凤,胡玉福,舒向阳,严星,李智,王琴,何佳,贾安都. 川西北高寒沙地不同年限高山柳林下优势植物碳、氮、磷生态化学计量特征[J]. 草业学报, 2018, 27(4): 123-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||