草业学报 ›› 2022, Vol. 31 ›› Issue (8): 199-210.DOI: 10.11686/cyxb2021234
• 研究论文 • 上一篇
孙禄娟1,2(), 何建军1,2, 汪军成1,2, 姚立蓉1,2, 司二静1,2, 杨轲1,2, 李葆春1,3, 马小乐1,2, 尚勋武2, 孟亚雄1,2(), 王化俊1,2()
收稿日期:
2021-06-17
修回日期:
2021-10-29
出版日期:
2022-08-20
发布日期:
2022-07-01
通讯作者:
孟亚雄,王化俊
作者简介:
E-mail: whuajun@yahoo.com基金资助:
Lu-juan SUN1,2(), Jian-jun HE1,2, Jun-cheng WANG1,2, Li-rong YAO1,2, Er-jing SI1,2, Ke YANG1,2, Bao-chun LI1,3, Xiao-le MA1,2, Xun-wu SHANG2, Ya-xiong MENG1,2(), Hua-jun WANG1,2()
Received:
2021-06-17
Revised:
2021-10-29
Online:
2022-08-20
Published:
2022-07-01
Contact:
Ya-xiong MENG,Hua-jun WANG
摘要:
以盐生草全长转录组数据为基础,用MISA在线软件对盐生草转录组水平SSR位点进行搜索,共鉴定到29640个SSR位点,每SSR的发生频率为4.93 kb。SSR种类包含1~6核苷酸重复类型,重复次数主要为4~20次,其中,三核苷酸重复单位最多,占38.25%;四核苷酸重复单位类型最少,仅占3.26%。鉴定到的327种SSR重复类型中,A/T、AG/CT、ATC/GAT、AAG/CTT重复类型出现次数较多。进一步地,对甘肃18个不同生态点盐生草材料进行SSR标记位点的开发及遗传多样性分析。从检测到的29640个SSR标记中选择218对标记进行多态性筛选,共筛选到多态性较高的33对标记,这些标记共检测得到199个等位基因位点,等位基因数(AN)为3~13个,平均为6.03个;基因多样性指数(GD)为0.583~0.869,平均为0.698;基因型数量(GN)为2~13,平均值为5.88;多态性信息含量(PIC)值为0.527~0.856,平均值为0.623。聚类分析结果表明,18个不同生态点盐生草的遗传相似系数(GS)为0.528~0.859,平均值为0.683。在GS为0.68处,可将供试材料划分为四大类。本研究为盐生草种质资源开发及利用提供了参考依据。
孙禄娟, 何建军, 汪军成, 姚立蓉, 司二静, 杨轲, 李葆春, 马小乐, 尚勋武, 孟亚雄, 王化俊. 基于全长转录组测序的盐生草SSR标记开发及其遗传多样性分析[J]. 草业学报, 2022, 31(8): 199-210.
Lu-juan SUN, Jian-jun HE, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Ke YANG, Bao-chun LI, Xiao-le MA, Xun-wu SHANG, Ya-xiong MENG, Hua-jun WANG. Development of SSR markers based on full-length transcriptome sequencing and genetic diversity analysis of Halogeton glomeratus[J]. Acta Prataculturae Sinica, 2022, 31(8): 199-210.
编号Number | 地点Site | 编号Number | 地点Site | 编号Number | 地点Site |
---|---|---|---|---|---|
1 | 平川区Pingchuan | 7 | 山丹县Shandan | 13 | 永昌县Yongchang |
2 | 酒泉市Jiuquan | 8 | 临泽县Linze | 14 | 兰州新区Lanzhou New Area |
3 | 武威市Wuwei | 9 | 靖远县Jingyuan | 15 | 甘州区Ganzhou |
4 | 肃南县Sunan | 10 | 景泰县Jingtai | 16 | 兰州市Lanzhou |
5 | 金昌市Jinchang | 11 | 民乐县Minle | 17 | 民勤县-收成镇Shoucheng, Minqin |
6 | 会宁县Huining | 12 | 高台县Gaotai | 18 | 民勤县-重兴镇Chongxing, Minqin |
表1 盐生草采样点信息
Table 1 Information about the sampled sites of H. glomeratus
编号Number | 地点Site | 编号Number | 地点Site | 编号Number | 地点Site |
---|---|---|---|---|---|
1 | 平川区Pingchuan | 7 | 山丹县Shandan | 13 | 永昌县Yongchang |
2 | 酒泉市Jiuquan | 8 | 临泽县Linze | 14 | 兰州新区Lanzhou New Area |
3 | 武威市Wuwei | 9 | 靖远县Jingyuan | 15 | 甘州区Ganzhou |
4 | 肃南县Sunan | 10 | 景泰县Jingtai | 16 | 兰州市Lanzhou |
5 | 金昌市Jinchang | 11 | 民乐县Minle | 17 | 民勤县-收成镇Shoucheng, Minqin |
6 | 会宁县Huining | 12 | 高台县Gaotai | 18 | 民勤县-重兴镇Chongxing, Minqin |
重复次数 Repeat time | 单核苷酸 Mono-nucleotide | 二核苷酸 Di-nucleotide | 三核苷酸 Tri-nucleotide | 四核苷酸 Quad-nucleotide | 五核苷酸 Penta-nucleotide | 六核苷酸 Hexa-nucleotide | 合计 Total | 比例 Percentage (%) |
---|---|---|---|---|---|---|---|---|
4 | 0 | 0 | 0 | 0 | 795 | 1004 | 1799 | 6.07 |
5 | 0 | 0 | 5699 | 579 | 255 | 284 | 6817 | 23.00 |
6 | 0 | 1917 | 2754 | 206 | 61 | 64 | 5002 | 16.87 |
7 | 0 | 1043 | 1261 | 84 | 21 | 50 | 2459 | 8.30 |
8 | 0 | 566 | 670 | 38 | 12 | 10 | 1296 | 4.37 |
9 | 0 | 367 | 364 | 27 | 12 | 6 | 776 | 2.62 |
10 | 0 | 234 | 213 | 10 | 1 | 4 | 462 | 1.56 |
11 | 0 | 166 | 113 | 0 | 2 | 2 | 283 | 0.95 |
12 | 2398 | 102 | 73 | 2 | 2 | 1 | 2578 | 8.70 |
13 | 1576 | 60 | 59 | 2 | 3 | 1 | 1701 | 5.74 |
14 | 1144 | 38 | 34 | 3 | 3 | 1 | 1223 | 4.13 |
15 | 883 | 46 | 23 | 0 | 0 | 0 | 952 | 3.21 |
16 | 666 | 40 | 15 | 3 | 1 | 0 | 725 | 2.45 |
17 | 519 | 17 | 16 | 3 | 0 | 0 | 555 | 1.87 |
18 | 358 | 9 | 9 | 1 | 0 | 2 | 379 | 1.28 |
19 | 290 | 11 | 13 | 2 | 0 | 0 | 316 | 1.07 |
20 | 212 | 6 | 5 | 0 | 0 | 0 | 223 | 0.75 |
>20 | 2017 | 55 | 16 | 5 | 0 | 1 | 2094 | 7.06 |
表2 盐生草转录组SSR重复类型和重复次数
Table 2 SSR repeat types and repeat times of transcriptome in H. glomeratus
重复次数 Repeat time | 单核苷酸 Mono-nucleotide | 二核苷酸 Di-nucleotide | 三核苷酸 Tri-nucleotide | 四核苷酸 Quad-nucleotide | 五核苷酸 Penta-nucleotide | 六核苷酸 Hexa-nucleotide | 合计 Total | 比例 Percentage (%) |
---|---|---|---|---|---|---|---|---|
4 | 0 | 0 | 0 | 0 | 795 | 1004 | 1799 | 6.07 |
5 | 0 | 0 | 5699 | 579 | 255 | 284 | 6817 | 23.00 |
6 | 0 | 1917 | 2754 | 206 | 61 | 64 | 5002 | 16.87 |
7 | 0 | 1043 | 1261 | 84 | 21 | 50 | 2459 | 8.30 |
8 | 0 | 566 | 670 | 38 | 12 | 10 | 1296 | 4.37 |
9 | 0 | 367 | 364 | 27 | 12 | 6 | 776 | 2.62 |
10 | 0 | 234 | 213 | 10 | 1 | 4 | 462 | 1.56 |
11 | 0 | 166 | 113 | 0 | 2 | 2 | 283 | 0.95 |
12 | 2398 | 102 | 73 | 2 | 2 | 1 | 2578 | 8.70 |
13 | 1576 | 60 | 59 | 2 | 3 | 1 | 1701 | 5.74 |
14 | 1144 | 38 | 34 | 3 | 3 | 1 | 1223 | 4.13 |
15 | 883 | 46 | 23 | 0 | 0 | 0 | 952 | 3.21 |
16 | 666 | 40 | 15 | 3 | 1 | 0 | 725 | 2.45 |
17 | 519 | 17 | 16 | 3 | 0 | 0 | 555 | 1.87 |
18 | 358 | 9 | 9 | 1 | 0 | 2 | 379 | 1.28 |
19 | 290 | 11 | 13 | 2 | 0 | 0 | 316 | 1.07 |
20 | 212 | 6 | 5 | 0 | 0 | 0 | 223 | 0.75 |
>20 | 2017 | 55 | 16 | 5 | 0 | 1 | 2094 | 7.06 |
编号 No. | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) | 退火温度Annealing temperature (℃) | 重复数 Number of alleles |
---|---|---|---|---|
H2 | ACTGGGACAGTTAGATTCGTGAC | AGCGTTGGCAATTAGATATGATG | 59 | 20 |
H4 | CCAACTGTTGACGGAACTGAC | AAAAGCATACCGAGTTGTTTGC | 60 | 18 |
H12 | CAAACATCCAGCAATTCGTCTAC | GATCCGGTACAGATACAGATCCA | 60 | 20 |
H15 | AATTTCATGGTTAAATACCATTGC | AGAGACTTGGTCAACCAACTTAATG | 59 | 14 |
H17 | GTGTTGCAGGCTGACTTAGAGAT | TAGCCAACGGAAGAGATGAATAG | 59 | 12 |
H34 | GATGAAACAGAACAGGGTAATGC | AAGAGAGATGTATCAAGAGCTGAG | 58 | 25 |
H42 | TTGGCACCATAACAATCCTAGAC | ATATTTTGGAGGTAGTTGATGCG | 59 | 35 |
H87 | AGGGAACACACATAACAAACAGC | TTGACTTAGGTCTTAGGGCATGA | 60 | 24 |
H88 | AAGACATAAATTCCGATTCAGGC | GCCATGTATATCATTTTCCGAAC | 60 | 12 |
H94 | GCAGGAATTCATCAGGAAAGTAA | TTGTTTAGTCCTAACATGGCTCG | 60 | 25 |
H98 | CTTGAACGGGAATAATGTAGCAG | TCCTTCCCTGGGATTAGAGATAG | 59 | 21 |
H107 | TCCAGATGCAAATAGTTAGATGGA | TGGTGAAGCTTAAAAAGTGTGTG | 59 | 20 |
H125 | GGCATTCTTCAACAATTACTTCG | AGAATCCAATGAAAGTTAAGGACA | 59 | 16 |
H131 | GCCAAAATGGCAAAGTTGTATAG | CAAAATGGGAAAACGTATAAGGA | 59 | 24 |
H135 | CAACAAGTACGACCACCACC | TGCTTGTTGTAGTTGACGTGG | 59 | 15 |
H137 | TTGATGTGATGTGTTAGGCAATC | TTGGCTTCCTAAGAAGAAATGTG | 59 | 16 |
H140 | CTTGGTCATGAGCTGTTAGTGTG | CCAAATTTTATCAGTTGTCGAGC | 59 | 15 |
H147 | TTCAACTGAAGAATGTGAAGATCC | GTTGCTGAGCGAGTGAGAATAAC | 60 | 21 |
H148 | TTTTTATGGTGTCTTCTTCTATAGTTC | AATGTTTCATGGGAAATTGAGTG | 58 | 20 |
H153 | ATGAGGACTTCACTGATAGCGAG | TAGTCAGTCAGCCAGTCAGTCAG | 59 | 15 |
H155 | ATCAAACAAGTCCACAAGGAGTG | ATTCTTTAAAGGGCAGCTTCAGT | 60 | 15 |
H157 | GAGGGTGTATTTGGATCACTCG | AGTATCCTATACGACTCCTCGGC | 60 | 15 |
H158 | CAGAGAAAGAAGAGCCCAGAGAC | TTCTAATCTCCTTGATTGCCTCA | 60 | 21 |
H160 | GCAGAAGTTGCCAAATCACTTAG | GCAGTTTCACCTACACCAAAATC | 60 | 24 |
H163 | AATGGAGGTTAGAGAGAAGGACG | CCTCTAACATCAACAACTCACCA | 59 | 15 |
H167 | TTGGAAGTAACGATTCATATGGC | CCAATCCAAAATCTCTCAATCAC | 60 | 20 |
H173 | TTACTGCTGCTAATCCACAACAA | GTTGAAGGACCAGAAGTGTTGAC | 59 | 21 |
H177 | GTTGGAAGTCCATTCGTATTCAG | GTTGAGTTGATGTTAAAGGCCAG | 59 | 12 |
H181 | TGTAAGTGGAAGATGAAGCAATATG | CACATGACATATGATACGATGGC | 59 | 25 |
H187 | CACATCACATCACATCATGTAACAC | AAATCCTATAGGTACGGTGAATGG | 59 | 30 |
H200 | CATAGGCAACTAATCACGTTCG | CGAAGTGTAAGAATCTGCATGGT | 60 | 12 |
H203 | CATAGGCAACTAATCACGTTCG | CGAAGTGTAAGAATCTGCATGGT | 60 | 12 |
H208 | GTATTTGCCTTGTTAATCGTTGC | TCCAGCTAGATTAGCCCTTGTAG | 59 | 24 |
表3 多态性较高的33对引物
Table 3 Statistics of 33 pairs of primers with high polymorphism
编号 No. | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) | 退火温度Annealing temperature (℃) | 重复数 Number of alleles |
---|---|---|---|---|
H2 | ACTGGGACAGTTAGATTCGTGAC | AGCGTTGGCAATTAGATATGATG | 59 | 20 |
H4 | CCAACTGTTGACGGAACTGAC | AAAAGCATACCGAGTTGTTTGC | 60 | 18 |
H12 | CAAACATCCAGCAATTCGTCTAC | GATCCGGTACAGATACAGATCCA | 60 | 20 |
H15 | AATTTCATGGTTAAATACCATTGC | AGAGACTTGGTCAACCAACTTAATG | 59 | 14 |
H17 | GTGTTGCAGGCTGACTTAGAGAT | TAGCCAACGGAAGAGATGAATAG | 59 | 12 |
H34 | GATGAAACAGAACAGGGTAATGC | AAGAGAGATGTATCAAGAGCTGAG | 58 | 25 |
H42 | TTGGCACCATAACAATCCTAGAC | ATATTTTGGAGGTAGTTGATGCG | 59 | 35 |
H87 | AGGGAACACACATAACAAACAGC | TTGACTTAGGTCTTAGGGCATGA | 60 | 24 |
H88 | AAGACATAAATTCCGATTCAGGC | GCCATGTATATCATTTTCCGAAC | 60 | 12 |
H94 | GCAGGAATTCATCAGGAAAGTAA | TTGTTTAGTCCTAACATGGCTCG | 60 | 25 |
H98 | CTTGAACGGGAATAATGTAGCAG | TCCTTCCCTGGGATTAGAGATAG | 59 | 21 |
H107 | TCCAGATGCAAATAGTTAGATGGA | TGGTGAAGCTTAAAAAGTGTGTG | 59 | 20 |
H125 | GGCATTCTTCAACAATTACTTCG | AGAATCCAATGAAAGTTAAGGACA | 59 | 16 |
H131 | GCCAAAATGGCAAAGTTGTATAG | CAAAATGGGAAAACGTATAAGGA | 59 | 24 |
H135 | CAACAAGTACGACCACCACC | TGCTTGTTGTAGTTGACGTGG | 59 | 15 |
H137 | TTGATGTGATGTGTTAGGCAATC | TTGGCTTCCTAAGAAGAAATGTG | 59 | 16 |
H140 | CTTGGTCATGAGCTGTTAGTGTG | CCAAATTTTATCAGTTGTCGAGC | 59 | 15 |
H147 | TTCAACTGAAGAATGTGAAGATCC | GTTGCTGAGCGAGTGAGAATAAC | 60 | 21 |
H148 | TTTTTATGGTGTCTTCTTCTATAGTTC | AATGTTTCATGGGAAATTGAGTG | 58 | 20 |
H153 | ATGAGGACTTCACTGATAGCGAG | TAGTCAGTCAGCCAGTCAGTCAG | 59 | 15 |
H155 | ATCAAACAAGTCCACAAGGAGTG | ATTCTTTAAAGGGCAGCTTCAGT | 60 | 15 |
H157 | GAGGGTGTATTTGGATCACTCG | AGTATCCTATACGACTCCTCGGC | 60 | 15 |
H158 | CAGAGAAAGAAGAGCCCAGAGAC | TTCTAATCTCCTTGATTGCCTCA | 60 | 21 |
H160 | GCAGAAGTTGCCAAATCACTTAG | GCAGTTTCACCTACACCAAAATC | 60 | 24 |
H163 | AATGGAGGTTAGAGAGAAGGACG | CCTCTAACATCAACAACTCACCA | 59 | 15 |
H167 | TTGGAAGTAACGATTCATATGGC | CCAATCCAAAATCTCTCAATCAC | 60 | 20 |
H173 | TTACTGCTGCTAATCCACAACAA | GTTGAAGGACCAGAAGTGTTGAC | 59 | 21 |
H177 | GTTGGAAGTCCATTCGTATTCAG | GTTGAGTTGATGTTAAAGGCCAG | 59 | 12 |
H181 | TGTAAGTGGAAGATGAAGCAATATG | CACATGACATATGATACGATGGC | 59 | 25 |
H187 | CACATCACATCACATCATGTAACAC | AAATCCTATAGGTACGGTGAATGG | 59 | 30 |
H200 | CATAGGCAACTAATCACGTTCG | CGAAGTGTAAGAATCTGCATGGT | 60 | 12 |
H203 | CATAGGCAACTAATCACGTTCG | CGAAGTGTAAGAATCTGCATGGT | 60 | 12 |
H208 | GTATTTGCCTTGTTAATCGTTGC | TCCAGCTAGATTAGCCCTTGTAG | 59 | 24 |
编号No. | GN | AN | GD | PIC | 编号No. | GN | AN | GD | PIC | 编号No. | GN | AN | GD | PIC | 编号No. | GN | AN | GD | PIC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2 | 13 | 12 | 0.802 | 0.786 | H94 | 4 | 3 | 0.610 | 0.527 | H148 | 6 | 6 | 0.644 | 0.644 | H177 | 8 | 7 | 0.707 | 0.706 |
H4 | 13 | 13 | 0.869 | 0.856 | H98 | 3 | 4 | 0.653 | 0.588 | H153 | 8 | 6 | 0.714 | 0.713 | H181 | 2 | 4 | 0.646 | 0.645 |
H12 | 5 | 5 | 0.742 | 0.698 | H107 | 8 | 7 | 0.790 | 0.759 | H155 | 6 | 4 | 0.646 | 0.645 | H187 | 6 | 4 | 0.622 | 0.621 |
H15 | 8 | 11 | 0.855 | 0.838 | H125 | 4 | 6 | 0.711 | 0.711 | H157 | 4 | 6 | 0.603 | 0.603 | H200 | 5 | 6 | 0.639 | 0.639 |
H17 | 4 | 4 | 0.659 | 0.592 | H131 | 7 | 8 | 0.777 | 0.776 | H158 | 4 | 5 | 0.638 | 0.637 | H203 | 7 | 5 | 0.647 | 0.647 |
H34 | 7 | 7 | 0.769 | 0.735 | H135 | 7 | 6 | 0.723 | 0.723 | H160 | 9 | 9 | 0.781 | 0.780 | H208 | 8 | 9 | 0.820 | 0.819 |
H42 | 4 | 5 | 0.748 | 0.705 | H137 | 4 | 4 | 0.605 | 0.604 | H163 | 6 | 4 | 0.663 | 0.662 | |||||
H87 | 4 | 5 | 0.750 | 0.710 | H140 | 4 | 4 | 0.583 | 0.583 | H167 | 5 | 5 | 0.615 | 0.614 | |||||
H88 | 4 | 4 | 0.653 | 0.591 | H147 | 9 | 7 | 0.760 | 0.759 | H173 | 3 | 4 | 0.590 | 0.589 |
表4 盐生草多态性引物遗传信息含量
Table 4 Genetic information content of polymorphic primers in H. glomeratus
编号No. | GN | AN | GD | PIC | 编号No. | GN | AN | GD | PIC | 编号No. | GN | AN | GD | PIC | 编号No. | GN | AN | GD | PIC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2 | 13 | 12 | 0.802 | 0.786 | H94 | 4 | 3 | 0.610 | 0.527 | H148 | 6 | 6 | 0.644 | 0.644 | H177 | 8 | 7 | 0.707 | 0.706 |
H4 | 13 | 13 | 0.869 | 0.856 | H98 | 3 | 4 | 0.653 | 0.588 | H153 | 8 | 6 | 0.714 | 0.713 | H181 | 2 | 4 | 0.646 | 0.645 |
H12 | 5 | 5 | 0.742 | 0.698 | H107 | 8 | 7 | 0.790 | 0.759 | H155 | 6 | 4 | 0.646 | 0.645 | H187 | 6 | 4 | 0.622 | 0.621 |
H15 | 8 | 11 | 0.855 | 0.838 | H125 | 4 | 6 | 0.711 | 0.711 | H157 | 4 | 6 | 0.603 | 0.603 | H200 | 5 | 6 | 0.639 | 0.639 |
H17 | 4 | 4 | 0.659 | 0.592 | H131 | 7 | 8 | 0.777 | 0.776 | H158 | 4 | 5 | 0.638 | 0.637 | H203 | 7 | 5 | 0.647 | 0.647 |
H34 | 7 | 7 | 0.769 | 0.735 | H135 | 7 | 6 | 0.723 | 0.723 | H160 | 9 | 9 | 0.781 | 0.780 | H208 | 8 | 9 | 0.820 | 0.819 |
H42 | 4 | 5 | 0.748 | 0.705 | H137 | 4 | 4 | 0.605 | 0.604 | H163 | 6 | 4 | 0.663 | 0.662 | |||||
H87 | 4 | 5 | 0.750 | 0.710 | H140 | 4 | 4 | 0.583 | 0.583 | H167 | 5 | 5 | 0.615 | 0.614 | |||||
H88 | 4 | 4 | 0.653 | 0.591 | H147 | 9 | 7 | 0.760 | 0.759 | H173 | 3 | 4 | 0.590 | 0.589 |
编号No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0.859 | ||||||||||||||||
3 | 0.764 | 0.704 | |||||||||||||||
4 | 0.764 | 0.714 | 0.709 | ||||||||||||||
5 | 0.643 | 0.653 | 0.658 | 0.668 | |||||||||||||
6 | 0.663 | 0.683 | 0.678 | 0.719 | 0.678 | ||||||||||||
7 | 0.704 | 0.663 | 0.668 | 0.698 | 0.729 | 0.759 | |||||||||||
8 | 0.729 | 0.709 | 0.693 | 0.683 | 0.714 | 0.724 | 0.834 | ||||||||||
9 | 0.709 | 0.648 | 0.633 | 0.693 | 0.704 | 0.704 | 0.784 | 0.779 | |||||||||
10 | 0.663 | 0.643 | 0.608 | 0.618 | 0.658 | 0.668 | 0.769 | 0.734 | 0.784 | ||||||||
11 | 0.709 | 0.688 | 0.603 | 0.633 | 0.593 | 0.663 | 0.643 | 0.648 | 0.658 | 0.764 | |||||||
12 | 0.724 | 0.714 | 0.638 | 0.668 | 0.648 | 0.658 | 0.729 | 0.683 | 0.704 | 0.658 | 0.734 | ||||||
13 | 0.643 | 0.603 | 0.648 | 0.648 | 0.688 | 0.709 | 0.719 | 0.653 | 0.683 | 0.658 | 0.734 | 0.759 | |||||
14 | 0.648 | 0.608 | 0.613 | 0.643 | 0.663 | 0.683 | 0.754 | 0.688 | 0.719 | 0.724 | 0.729 | 0.724 | 0.794 | ||||
15 | 0.653 | 0.613 | 0.618 | 0.618 | 0.678 | 0.668 | 0.698 | 0.653 | 0.653 | 0.739 | 0.744 | 0.678 | 0.769 | 0.794 | |||
16 | 0.668 | 0.628 | 0.583 | 0.613 | 0.643 | 0.633 | 0.623 | 0.638 | 0.658 | 0.693 | 0.719 | 0.663 | 0.693 | 0.719 | 0.744 | ||
17 | 0.678 | 0.618 | 0.663 | 0.643 | 0.714 | 0.673 | 0.714 | 0.658 | 0.698 | 0.714 | 0.688 | 0.673 | 0.734 | 0.759 | 0.774 | 0.789 | |
18 | 0.598 | 0.528 | 0.633 | 0.623 | 0.623 | 0.633 | 0.653 | 0.608 | 0.709 | 0.623 | 0.578 | 0.613 | 0.704 | 0.719 | 0.683 | 0.678 | 0.739 |
表5 18个盐生草种间的遗传相似系数
Table 5 Genetic similarity coefficient among 18 halophyte species
编号No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0.859 | ||||||||||||||||
3 | 0.764 | 0.704 | |||||||||||||||
4 | 0.764 | 0.714 | 0.709 | ||||||||||||||
5 | 0.643 | 0.653 | 0.658 | 0.668 | |||||||||||||
6 | 0.663 | 0.683 | 0.678 | 0.719 | 0.678 | ||||||||||||
7 | 0.704 | 0.663 | 0.668 | 0.698 | 0.729 | 0.759 | |||||||||||
8 | 0.729 | 0.709 | 0.693 | 0.683 | 0.714 | 0.724 | 0.834 | ||||||||||
9 | 0.709 | 0.648 | 0.633 | 0.693 | 0.704 | 0.704 | 0.784 | 0.779 | |||||||||
10 | 0.663 | 0.643 | 0.608 | 0.618 | 0.658 | 0.668 | 0.769 | 0.734 | 0.784 | ||||||||
11 | 0.709 | 0.688 | 0.603 | 0.633 | 0.593 | 0.663 | 0.643 | 0.648 | 0.658 | 0.764 | |||||||
12 | 0.724 | 0.714 | 0.638 | 0.668 | 0.648 | 0.658 | 0.729 | 0.683 | 0.704 | 0.658 | 0.734 | ||||||
13 | 0.643 | 0.603 | 0.648 | 0.648 | 0.688 | 0.709 | 0.719 | 0.653 | 0.683 | 0.658 | 0.734 | 0.759 | |||||
14 | 0.648 | 0.608 | 0.613 | 0.643 | 0.663 | 0.683 | 0.754 | 0.688 | 0.719 | 0.724 | 0.729 | 0.724 | 0.794 | ||||
15 | 0.653 | 0.613 | 0.618 | 0.618 | 0.678 | 0.668 | 0.698 | 0.653 | 0.653 | 0.739 | 0.744 | 0.678 | 0.769 | 0.794 | |||
16 | 0.668 | 0.628 | 0.583 | 0.613 | 0.643 | 0.633 | 0.623 | 0.638 | 0.658 | 0.693 | 0.719 | 0.663 | 0.693 | 0.719 | 0.744 | ||
17 | 0.678 | 0.618 | 0.663 | 0.643 | 0.714 | 0.673 | 0.714 | 0.658 | 0.698 | 0.714 | 0.688 | 0.673 | 0.734 | 0.759 | 0.774 | 0.789 | |
18 | 0.598 | 0.528 | 0.633 | 0.623 | 0.623 | 0.633 | 0.653 | 0.608 | 0.709 | 0.623 | 0.578 | 0.613 | 0.704 | 0.719 | 0.683 | 0.678 | 0.739 |
1 | Sun H Y, Zhang X M, Li L, et al. Estimation on aboveground biomass and the characteristics of population families of the halophilous herbaceous plants in three different areas of South Tarim basin. Journal of Arid Land Resources and Environment, 2008, 22(4): 193-197. |
孙红叶, 张希明, 李利, 等. 塔里木盆地南缘不同生境盐生草种群分布特征及地上生物量初步估测. 干旱区资源与环境, 2008, 22(4): 193-197. | |
2 | Hu N, Li B C, Yao L R, et al. Effects of different heavy metals on the seed germination and establishment of Halogeton glomeratus. Acta Prataculturae Sinica, 2019, 28(6): 66-81. |
胡娜, 李葆春, 姚立蓉, 等. 不同重金属胁迫对盐生草种子萌发特性的影响. 草业学报, 2019, 28(6): 66-81. | |
3 | Lu Y, Li X R, He M Z, et al. Photosynthesis and physiological characteristics in Halogeton glomeratus with heavy metal treatments. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(2): 370-376. |
鲁艳, 李新荣, 何明珠, 等. 重金属对盐生草光合生理生长特性的影响. 西北植物学报, 2011, 31(2): 370-376. | |
4 | Song Z S. Preliminary study on cloning of Unigene 7547 gene in response to salt stress in Halogeton glomeratus and transformation of cloned gene in tobacco. Lanzhou: Gansu Agricultural University, 2016. |
宋展树. 盐生草盐胁迫响应基因Unigene7547的克隆及在烟草中转化的初步研究. 兰州: 甘肃农业大学, 2016. | |
5 | Wang J C, Yao L R, Li B C, et al. Single-molecule long-read transcriptome dataset of halophyte Halogeton glomeratus. Frontiers in Genetics, 2017, DOI: 10.3389/fgene.2017.00197. |
6 | Qiao R, Hu N, Zhou J, et al. Analysis and evaluation on seed nutrition of halophyte Halogeton glomeratus in arid region of Northwest China. Chinese Journal of Oil Crop Sciences, 2019, 41(6): 956-960. |
乔蕤, 胡娜, 周菁, 等. 西北旱区盐生植物盐生草籽营养成分分析与评价. 中国油料作物学报, 2019, 41(6): 956-960. | |
7 | Wang J C, Yang K, Yao L R, et al. Metabolomics analyses provide insights into nutritional value and abiotic stress tolerance in halophyte Halogeton glomeratus. Frontiers in Plant Science, 2021, DOI: 10.3389/FPLS.2021.703255. |
8 | Zhao W. Identification of salt stress response gene in tartary buckwheat seedings based on transcriptome. Chengdu: Chengdu University, 2019. |
赵威. 基于转录组挖掘苦荞幼苗盐胁迫响应基因. 成都: 成都大学, 2019. | |
9 | Gao H J, Lv X P, Wang R J, et al. Application of RNA-seq technology in research on herb, shrub and tree stress resistance. Acta Prataculturae Sinica, 2019, 28(12): 184-196. |
高慧娟, 吕昕培, 王润娟, 等. 转录组测序在林草植物抗逆性研究中的应用. 草业学报, 2019, 28(12): 184-196. | |
10 | Wang J C. Study on the salt tolerance mechanisms of ion compartmentation in halophyte Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2017. |
汪军成. 盐生草盐分区隔化耐盐机制研究. 兰州: 甘肃农业大学, 2017. | |
11 | Yao L R. Study on the salt uptake mechanisms of roots in halophyte Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2018. |
姚立蓉. 盐生草根系对盐分吸收机理的研究. 兰州: 甘肃农业大学, 2018. | |
12 | Zheng Y Y, Xie W G. Advances in the development of molecular markers of forage grasses based on RNA-seq. Chinese Journal of Grassland, 2020, 42(1): 154-162. |
郑玉莹, 谢文刚. 基于转录组测序的牧草分子标记开发研究进展. 中国草地学报, 2020, 42(1): 154-162. | |
13 | Li Y, Jiao X J, Geng J Z M, et al. Analysis of SSR and SNP in transcriptome of Saxifraga sinomontana and Saxifraga consanguinea. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(7): 1244-1253. |
李彦, 焦秀洁, 更吉卓玛, 等. 山地虎耳草和棒腺虎耳草转录组SSR和SNP分析. 西北植物学报, 2018, 38(7): 1244-1253. | |
14 | Zhao T, Chang S X, Leng Q Y, et al. Development of SSR molecular markers based on transcriptome sequencing of Bougainvillea. Molecular Plant Breeding, 2019, 17(13): 4331-4341. |
赵彤, 常圣鑫, 冷青云, 等. 基于三角梅转录组测序的SSR分子标记的开发. 分子植物育种, 2019, 17(13): 4331-4341. | |
15 | Jiang L F, Zhang X Q, Huang L K, et al. Construction of DNA fingerprinting of dominant orchardgrass (Dactylis glomerata) varieties of China. Journal of Plant Genetic Resources, 2014, 15(3): 604-614. |
蒋林峰, 张新全, 黄琳凯, 等. 中国鸭茅主栽品种DNA指纹图谱构建. 植物遗传资源学报, 2014, 15(3): 604-614. | |
16 | Xu L, Zhao G F. Microsatellite DNA marker and its application in genetic diversity research. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(3): 714-722. |
徐莉, 赵桂仿. 微卫星DNA标记技术及其在遗传多样性研究中的应用. 西北植物学报, 2002, 22(3): 714-722. | |
17 | Li N, Jiao Z, Qin G Y. DNA molecular marker techniques and their application in wheat breeding and genetic study. Journal of Nuclear Agricultural Sciences, 2005, 19(3): 322-327. |
李娜, 焦浈, 秦广雍. DNA分子标记技术及其在小麦育种及遗传研究中的应用. 核农学报, 2005, 19(3): 322-327. | |
18 | Wei B Q, Liu F Y, Ma Z H, et al. Distribution characteristics of EST-SSRs and their application on varieties genetic diversity analysis in pepper. Acta Horticulturae Sinica, 2013, 40(2): 265-274. |
魏兵强, 刘飞云, 马宗桓, 等. 辣椒EST-SSRs的分布特征及在品种多样性研究中的应用. 园艺学报, 2013, 40(2): 265-274. | |
19 | Liu H, Peng C Y, Wu Z L, et al. Development and application of SSR markers in plants. Scientific and Technological Innovation, 2018(36): 18-20. |
刘会, 彭春钰, 武忠亮, 等. 植物SSR标记开发及应用研究进展. 科学技术创新, 2018(36): 18-20. | |
20 | Hou J J, Li B C, Wang J C, et al. Germination characteristics of Halogeton glomeratus under different heavy metals treatments with NaCl stress. Acta Agrestia Sinica, 2019, 27(1): 112-122. |
侯静静, 李葆春, 汪军成, 等. NaCl胁迫下盐生草在不同重金属处理下的萌发特性分析. 草地学报, 2019, 27(1): 112-122. | |
21 | He J J, Yao L R, Wang J C, et al. Effects of drought and salt stress on seed germination characteristics of Halogeton glomeratus. Acta Prataculturae Sinica, 2020, 29(11): 129-140. |
何建军, 姚立蓉, 汪军成, 等. 干旱和盐胁迫对盐生植物盐生草种子萌发特性的影响. 草业学报, 2020, 29(11): 129-140. | |
22 | Xu X L. Cloning of tonoplast and plasma membrane Na+/H+ antiporter gene and isolating of 5′ flanking sequence of HgNHX1 from Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2014. |
徐先良. 盐生草Na+/H+逆向转运蛋白基因的克隆及HgNHX1基因5'端侧翼序列的分离. 兰州: 甘肃农业大学, 2014. | |
23 | Ma Y H. Chromsome numbers and karyotypes of halogeton, cloning of salt-tolerant gene and genetic transformation of Halogeton glomeratus. Lanzhou: Gansu Agricultural University, 2016. |
马艳红. 盐生草属染色体核型分析及盐生草相关耐盐基因的克隆和遗传转化. 兰州: 甘肃农业大学, 2016. | |
24 | Yao L R, Wang J C, Li B C, et al. Transcriptome sequencing and comparative analysis of differentially-expressed isoforms in the roots of Halogeton glomeratus under salt stress. Gene, 2018, 646, DOI: 10.1016/j.gene.2017.12.058. |
25 | Wang J C, Li B C,Yao L R, et al. Comparative transcriptome analysis of genes involved in Na+ transport in the leaves of halophyte Halogeton glomeratus. Gene, 2018, 678, DOI: 10.1016/j.gene.2018.08.025. |
26 | Liu N X, Liu R, Wu Y M, et al. Comparison of SSR and InDel markers amplified with three kinds of PCR programs in sugar beet. Chinese Agricultural Science Bulletin, 2018, 34(30): 76-80. |
刘乃新, 刘蕊, 吴玉梅, 等. 3种PCR程序扩增甜菜SSR及InDel标记的比较. 中国农学通报, 2018, 34(30): 76-80. | |
27 | Meng Y X, Zhang H J, Ma X L, et al. Genetic diversity and screening of SSR markers associated with net blotch resistance in 89 barley (Hordeum vulgare) cultivars. Journal of Agricultural Biotechnology, 2016, 24(12): 1820-1830. |
孟亚雄, 张海娟, 马小乐, 等. 89份大麦遗传多样性分析及其网斑病抗性位点相关SSR标记筛选. 农业生物技术学报, 2016, 24(12): 1820-1830. | |
28 | Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(10): 5269-5273. |
29 | Lai Y, Jia J L, Wang J M, et al. Analysis of genetic diversity and association with agronomic traits in barley (Hordeum vulgare L.) introduced from abroad using SSR markers. Journal of Triticeae Crops, 2017, 37(2): 197-204. |
赖勇, 贾建磊, 王晋民, 等. 外引大麦SSR标记遗传多样性及其与农艺性状的关联分析. 麦类作物学报, 2017, 37(2): 197-204. | |
30 | Liu K J, Muse S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21(9) : 2128-2129. |
31 | Lai Y, Meng Y X, Wang J, et al. Genetic diversity and linkage disequilibrium analysis in barley. Acta Agronomica Sinica, 2013, 39(12): 2154-2161. |
赖勇, 孟亚雄, 王晋, 等. 大麦遗传多样性及连锁不平衡分析. 作物学报, 2013, 39(12): 2154-2161. | |
32 | Zuo L H, Zhang S, Liang H Y, et al. EST-SSR primer development of elm transcriptome and genetic diversity analysis. Journal of Plant Genetic Resources, 2018, 19(1): 157-166. |
左力辉, 张双, 梁海永, 等. 榆树转录组EST-SSR引物开发及遗传多样性分析. 植物遗传资源学报, 2018, 19(1): 157-166. | |
33 | Shangguan L F, Li X Y, Ning N, et al. Development of EST-SSR markers in apricot. Acta Horticulturae Sinica, 2011, 38(1): 43-54. |
上官凌飞, 李晓颖, 宁宁, 等. 杏EST-SSR标记的开发. 园艺学报, 2011, 38(1): 43-54. | |
34 | Wang H B, Qi S T, Chen S Q, et al. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar. Acta Agronomica Sinica, 2020, 46(4): 631-642. |
王恒波, 祁舒婷, 陈姝琦, 等. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用. 作物学报, 2020, 46(4): 631-642. | |
35 | He C, Yang J C, Yu N, et al. Development of SSR molecular markers based on transcriptome sequencing of Sindora glabra. Molecular Plant Breeding, 2020, 18(7): 2280-2289. |
何畅, 杨锦昌, 余纽, 等. 基于油楠(Sindora glabra)转录组测序的SSR分子标记的开发. 分子植物育种, 2020, 18(7): 2280-2289. | |
36 | Liu J Q, Fang Y, Chen Y X. Analysis of SSR distribution characteristics and primer development of Cornus florida transcriptome. Molecular Plant Breeding, 2020, 18(20): 6769-6775. |
刘佳奇, 方彦, 陈云霞. 基于大花四照花转录组的SSR分布特征分析及引物开发. 分子植物育种, 2020, 18(20): 6769-6775. | |
37 | Qian Z W, Chen H L, Cui Y L. Analysis of the SSR loci and development of molecular markers in Spinacia oleracea transcriptome. Journal of Agricultural Biotechnology, 2016, 24(11): 1688-1697. |
潜宗伟, 陈海丽, 崔彦玲. 菠菜转录组SSR位点分析及其分子标记的开发. 农业生物技术学报, 2016, 24(11): 1688-1697. | |
38 | Zhang L J, Liu L L, Chang Z J, et al. Development and functional verification of cSSR markers for recessive genetic male sterility in oats. Acta Prataculturae Sinica, 2015, 24(7): 146-154. |
张丽君, 刘龙龙, 畅志坚, 等. 燕麦隐性核不育cSSR标记的开发及其验证. 草业学报, 2015, 24(7): 146-154. | |
39 | Lan M J, Wu W S, Wang R Z, et al. Analysis of SSR information in EST resource of Ipomoea batatas (L.) Lam. and Ipomoea nil (L.) Roth. Journal of Plant Genetic Resources, 2013, 14(5): 954-959. |
兰孟焦, 吴问胜, 王瑞珍, 等. 甘薯与牵牛EST资源的SSR信息分析. 植物遗传资源学报, 2013, 14(5): 954-959. | |
40 | He R L, Yin G F, Li C H, et al. Development of molecular markers and SSR loci information analysis of transcriptome in tartary buckwheat seed coat. Molecular Plant Breeding, 2020, 18(18): 6085-6092. |
贺润丽, 尹桂芳, 李春花, 等. 苦荞种皮转录组SSR位点信息分析及其分子标记的开发. 分子植物育种, 2020, 18(18): 6085-6092. | |
41 | Jia B G, Lin Q, Tan X F, et al. Development of EST-SSR markers and their use for genetic diversity analysis in tung tree [Vernicia fordii (Hemsl.) Airy Shaw]. Journal of Plant Genetic Resources, 2016, 17(4): 625-636. |
贾宝光, 林青, 谭晓风, 等. 三年桐EST-SSR标记的开发与种质遗传多样性分析. 植物遗传资源学报, 2016, 17(4): 625-636. | |
42 | Hao G J, Qi Y Y, Zhang D F, et al. Analysis of SSR distribution characteristics and primer design of Lycium ruthenicum Murr. based on transcriptome. Molecular Plant Breeding, 2019, 17(13): 4342-4350. |
郝广婧, 祁银燕, 张得芳, 等. 基于转录组的黑果枸杞SSR分布特征分析及引物设计. 分子植物育种, 2019, 17(13): 4342-4350. | |
43 | Thao D V, Yamashita M, Watanabe A, et al. Development of tetranucleotide microsatellite markers in Pinus kesiya Royle ex Gordon. Conservation Genetics Resources, 2013, 5(2): 405-407. |
44 | Svetlana T, Genevieve D C, Angelika L, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 2001, 11(8): 1441-1452. |
45 | Wei M M, Chen Y H, Liu F Z, et al. Development of SSR markers for eggplant with transcriptome sequencing data. Journal of Plant Genetic Resources, 2016, 17(6): 1082-1091. |
魏明明, 陈钰辉, 刘富中, 等. 基于转录组测序的茄子SSR标记开发. 植物遗传资源学报, 2016, 17(6): 1082-1091. | |
46 | Li Y L, Yang X X, Zhang J Y, et al. Studies on SSR molecular markers based on transcriptome of Taxus chinensis var. mairei. Acta Horticulturae Sinica, 2014, 41(4): 735-745. |
李炎林, 杨星星, 张家银, 等. 南方红豆杉转录组SSR挖掘及分子标记的研究. 园艺学报, 2014, 41(4): 735-745. | |
47 | Zhang Q T, Li X Y, Yang Y M, et al. Analysis on SSR information in transcriptome and development of molecular markers in Lonicera caerulea. Acta Horticulturae Sinica, 2016, 43(3): 557-563. |
张庆田, 李晓艳, 杨义明, 等. 蓝靛果忍冬转录组SSR信息分析及其分子标记开发. 园艺学报, 2016, 43(3): 557-563. | |
48 | Yan X Q, Lu M, An H M. Analysis on SSR information in transcriptome and development of molecular markers in Rosa roxburghii. Acta Horticulturae Sinica, 2015, 42(2): 341-349. |
鄢秀芹, 鲁敏, 安华明. 刺梨转录组SSR信息分析及其分子标记开发. 园艺学报, 2015, 42(2): 341-349. | |
49 | Yang D D, Ma L L, Li Y, et al. Development of EST-SSR marker and genetic diversity of germplasm resources in Catalpa bungei. Molecular Plant Breeding, 2020, 18(4): 1216-1223. |
杨丹丹, 马玲玲, 李亚, 等. 楸树EST-SSR标记开发及种质资源的遗传多样性分析. 分子植物育种, 2020, 18(4): 1216-1223. | |
50 | Kimaro D, Melis R, Sibiya J, et al. Analysis of genetic diversity and population structure of pigeonpea [Cajanus cajan(L.)Millsp] accessions using SSR markers. Plants (Basel, Switzerland), 2020, 9(12), DOI: 10.3390/PLANTS9121643. |
51 | Oh J S, Sa K J, Hyun D Y, et al. Assessment of genetic diversity and population structure among a collection of Korean Perilla germplasms based on SSR markers. Genes & Genomics, 2020, 42(12): 1419-1430. |
52 | Zhang Z H, Yang X F, Chen C H, et al. Genetic diversity analysis of 82 bottle gourd germplasm resources by SSR markers. Molecular Plant Breeding, 2021, 19(10): 3358-3366. |
张兆辉, 杨晓峰, 陈春宏, 等. 82份瓠瓜种质资源遗传多样性的SSR分析. 分子植物育种, 2021, 19(10): 3358-3366. | |
53 | Xue Y, Song J K, Li D L, et al. SSR analysis of genetic diversity in pear rootstock germplasm. Journal of Plant Genetic Resources, 2013, 14(6): 1190-1195. |
薛杨, 宋健坤, 李鼎立, 等. 梨砧木种质资源的SSR遗传多样性分析. 植物遗传资源学报, 2013, 14(6): 1190-1195. | |
54 | Song X E, Li Y H, Chang R Z, et al. Population structure and genetic diversity of mini core collection of cultivated soybean [Glycine max (L.)Merr.] in China. Scientia Agricultura Sinica, 2010, 43(11): 2209-2219. |
宋喜娥, 李英慧, 常汝镇, 等. 中国栽培大豆(Glycine max (L.) Merr.)微核心种质的群体结构与遗传多样性. 中国农业科学, 2010, 43(11): 2209-2219. |
[1] | 任文静, 吕玉虎, 周国朋, 常单娜, 向春阳, 曹卫东. 一个紫云英F4重组自交系群体的农艺性状与养分吸收评价[J]. 草业学报, 2022, 31(2): 101-110. |
[2] | 陈子英, 常单娜, 韩梅, 李正鹏, 严清彪, 张久东, 周国朋, 孙小凤, 曹卫东. 47份箭筈豌豆品种(系)在青海作秋绿肥的能力评价[J]. 草业学报, 2022, 31(2): 39-51. |
[3] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
[4] | 蔺豆豆, 赵桂琴, 琚泽亮, 宫文龙. 15份燕麦材料苗期抗旱性综合评价[J]. 草业学报, 2021, 30(11): 108-121. |
[5] | 雷雄, 游明鸿, 白史且, 陈丽丽, 邓培华, 熊毅, 熊艳丽, 余青青, 马啸, 杨建, 张昌兵. 川西北高原50份燕麦种质农艺性状遗传多样性分析及综合评价[J]. 草业学报, 2020, 29(7): 131-142. |
[6] | 郭志鹏, 冯长松, 张靖雪, 王苗利, 曲根, 刘建宇, 管永卓, 张晓婷, 郭玉霞, 严学兵. 30个紫花苜蓿品种对苜蓿花叶病毒病的田间抗性初步研究[J]. 草业学报, 2019, 28(4): 157-167. |
[7] | 王建丽, 马利超, 申忠宝, 刘杰淋, 朱瑞芬, 韩微波, 钟鹏, 邸桂俐, 韩贵清, 郭长虹. 基于遗传多样性评估燕麦品种的农艺性状[J]. 草业学报, 2019, 28(2): 133-141. |
[8] | 柴艳, 孙宗玖, 李培英, 巴德木其其格, 张向向, 杨静. 新疆狗牙根种质芽期耐盐性综合评价[J]. 草业学报, 2017, 26(8): 154-167. |
[9] | 涂明月, 李杰, 何亚丽, 李醒, 李俊, 袁晓君. 利用RAPD标记鉴定草地早熟禾种质资源的遗传多样性[J]. 草业学报, 2017, 26(7): 71-81. |
[10] | 耿帆, 周青平, 梁国玲, 贾志锋, 刘文辉, 丁成翔, 刘勇, 颜红波. 8个大粒裸燕麦品种核型研究[J]. 草业学报, 2016, 25(3): 120-125. |
[11] | 孟丽娟,赵桂琴. 国外引进红三叶种质在甘肃中部地区的生长特性及生产性能初步评价[J]. 草业学报, 2015, 24(9): 30-42. |
[12] | 周青平, 颜红波, 梁国玲, 贾志峰, 刘文辉, 田莉华, 陈有军, 陈仕勇. 不同燕麦品种饲草和籽粒生产性能分析[J]. 草业学报, 2015, 24(10): 120-130. |
[13] | 高兴祥,李美,房锋,张悦丽,孙作文,齐军山. 山东省小麦田杂草组成及群落特征[J]. 草业学报, 2014, 23(5): 92-98. |
[14] | 孙红,于应文,马向丽,牟晓明,廖加法. 黔西北岩溶区九种灌木综合营养价值评价[J]. 草业学报, 2014, 23(5): 99-106. |
[15] | 孔德晶,王月,孙万仓,曾秀存,方彦,鲁美宏,杨宁宁. 北方白菜型冬油菜F2主要生理生化特性的变异与抗寒性相关分析[J]. 草业学报, 2014, 23(4): 79-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||