草业学报 ›› 2022, Vol. 31 ›› Issue (7): 76-84.DOI: 10.11686/cyxb2021245
收稿日期:
2021-06-17
修回日期:
2021-09-16
出版日期:
2022-07-20
发布日期:
2022-06-01
通讯作者:
张建国
作者简介:
E-mail: zhangjg@scau.edu.cn基金资助:
Jing TIAN(), Xiang YIN, Yang FAN, Xin-qin LI, Jian-guo ZHANG()
Received:
2021-06-17
Revised:
2021-09-16
Online:
2022-07-20
Published:
2022-06-01
Contact:
Jian-guo ZHANG
摘要:
华南地区气候潮湿多雨,象草收获时水分含量高,单独青贮发酵品质较差。通过晾晒(水分含量由83.19%降至75.11%)、添加10%玉米粉或2%蔗糖,探究象草在不同温度(20、30和40 ℃)下青贮的发酵特性和微生物组成。研究结果表明:温度对象草各处理的青贮饲料的发酵品质有显著影响。晾晒后原材料的水溶性碳水化合物含量显著降低,青贮后发酵品质变差,尤其在30 ℃,pH达到5.85,乳酸含量只有1.56% DM,乙酸含量为2.10% DM,NH3-N含量高达25.09% TN。对照和添加物处理的青贮饲料均随青贮温度升高,乙酸含量增加。晾晒后在20和30 ℃时青贮,产气量显著高于40 ℃或未晾晒处理。此外,象草青贮前的细菌多样性较丰富,青贮后主要是肠杆菌属和乳球菌属,尤其是20 ℃青贮的相对丰度较高,且晾晒处理在20和30 ℃青贮肠球菌属的相对丰度高于40 ℃。因此,在华南地区,象草原料中添加玉米粉或蔗糖可以降低环境温度对象草青贮发酵品质的不良影响,阴湿条件下晾晒未发挥积极效果。
田静, 尹祥, 樊杨, 李鑫琴, 张建国. 晾晒、添加物及不同温度对象草青贮发酵品质和微生物的影响[J]. 草业学报, 2022, 31(7): 76-84.
Jing TIAN, Xiang YIN, Yang FAN, Xin-qin LI, Jian-guo ZHANG. Effects of wilting and additives on the fermentation quality and dominant microbial genera in Napier grass silage at different temperatures[J]. Acta Prataculturae Sinica, 2022, 31(7): 76-84.
项目 Items | 鲜样 Fresh | 晾晒 Wilting |
---|---|---|
干物质 Dry matter (DM,% FM) | 16.81b | 24.89a |
粗蛋白 Crude protein (CP,% DM) | 11.35 | 12.39 |
中性洗涤纤维 Neutral detergent fiber (NDF,% DM) | 69.30 | 67.60 |
酸性洗涤纤维 Acid detergent fiber (ADF,% DM) | 48.88 | 49.70 |
可溶性碳水化合物 Water-soluble carbohydrate (WSC,% DM) | 6.96a | 6.03b |
pH | 5.85b | 6.01a |
缓冲能Buffering capacity (mE·kg-1 DM) | 172.86b | 192.88a |
乳酸菌 Lactic acid bacteria (log10 cfu·g-1 FM) | 4.21b | 7.36a |
好氧细菌 Aerobic bacteria (log10 cfu·g-1 FM) | 6.41b | 8.74a |
酵母 Yeasts (log10 cfu·g-1 FM) | 3.75b | 5.12a |
霉菌 Molds (log10 cfu·g-1 FM) | 3.57b | 4.32a |
梭菌 Clostridia (log10 cfu·g-1 FM) | 1.80 | 1.84 |
表1 象草晾晒前后的化学特性和微生物数量
Table 1 The characteristic and microbial composition of fresh and wilting napier grass
项目 Items | 鲜样 Fresh | 晾晒 Wilting |
---|---|---|
干物质 Dry matter (DM,% FM) | 16.81b | 24.89a |
粗蛋白 Crude protein (CP,% DM) | 11.35 | 12.39 |
中性洗涤纤维 Neutral detergent fiber (NDF,% DM) | 69.30 | 67.60 |
酸性洗涤纤维 Acid detergent fiber (ADF,% DM) | 48.88 | 49.70 |
可溶性碳水化合物 Water-soluble carbohydrate (WSC,% DM) | 6.96a | 6.03b |
pH | 5.85b | 6.01a |
缓冲能Buffering capacity (mE·kg-1 DM) | 172.86b | 192.88a |
乳酸菌 Lactic acid bacteria (log10 cfu·g-1 FM) | 4.21b | 7.36a |
好氧细菌 Aerobic bacteria (log10 cfu·g-1 FM) | 6.41b | 8.74a |
酵母 Yeasts (log10 cfu·g-1 FM) | 3.75b | 5.12a |
霉菌 Molds (log10 cfu·g-1 FM) | 3.57b | 4.32a |
梭菌 Clostridia (log10 cfu·g-1 FM) | 1.80 | 1.84 |
项目 Item | 温度 Temperature (℃) | 晾晒和添加物处理Wilting and additives | 平均值 Means | 标准差 SE | 显著性Significance | |||||
---|---|---|---|---|---|---|---|---|---|---|
CK | WS | CS | SS | T | WA | T×WA | ||||
干物质 Dry matter (% FM) | 20 | 16.29bB | 25.50a | 22.00a | 17.56b | 20.34 | 1.217 | NS | ** | NS |
30 | 17.33bA | 23.85a | 23.28a | 17.84b | 20.58 | 0.969 | ||||
40 | 16.17cB | 25.93a | 23.07b | 17.47c | 20.66 | 1.248 | ||||
pH | 20 | 4.37b | 5.44aB | 4.24b | 3.96cB | 4.61 | 0.222 | ** | ** | ** |
30 | 4.28b | 5.85aA | 4.14c | 4.00dAB | 4.47 | 0.174 | ||||
40 | 4.33b | 5.00aC | 4.22bc | 4.11cA | 4.42 | 0.106 | ||||
乳酸 Lactic acid (% DM) | 20 | 7.55bB | 2.55cB | 6.84b | 10.35aA | 6.82 | 0.867 | ** | ** | ** |
30 | 10.00aA | 1.56cC | 7.86b | 11.72aA | 7.78 | 1.188 | ||||
40 | 8.25aAB | 4.05cA | 6.35b | 7.86aB | 6.63 | 0.531 | ||||
乙酸 Acetic acid (% DM) | 20 | 0.99bB | 1.35aB | 0.71cC | 0.56cB | 0.90 | 0.093 | ** | ** | ** |
30 | 1.16bB | 2.10aA | 0.90bcB | 0.74cB | 1.23 | 0.163 | ||||
40 | 1.76aA | 1.63aB | 1.30bA | 0.95cA | 1.38 | 0.105 | ||||
丁酸 Butyric acid (% DM) | 20 | 0.82a | 0.54bB | 0.71abC | 0.56abB | 0.66 | 0.048 | ** | ** | ** |
30 | 0.83b | 1.01aA | 0.90abB | 0.74bB | 0.87 | 0.036 | ||||
40 | 0.86a | 0.46bB | 0.93aA | 0.95aA | 0.80 | 0.068 | ||||
氨态氮 Ammonia nitrogen (% TN) | 20 | 14.78a | 11.98abB | 8.35b | 10.37ab | 11.37 | 1.053 | * | ** | * |
30 | 11.39b | 25.09aA | 14.42b | 10.45b | 15.34 | 2.045 | ||||
40 | 15.72 | 13.83B | 12.32 | 8.88 | 12.69 | 1.158 |
表2 不同处理下青贮象草的发酵品质比较
Table 2 The fermentation quality comparison of napier grass silage at different treatments
项目 Item | 温度 Temperature (℃) | 晾晒和添加物处理Wilting and additives | 平均值 Means | 标准差 SE | 显著性Significance | |||||
---|---|---|---|---|---|---|---|---|---|---|
CK | WS | CS | SS | T | WA | T×WA | ||||
干物质 Dry matter (% FM) | 20 | 16.29bB | 25.50a | 22.00a | 17.56b | 20.34 | 1.217 | NS | ** | NS |
30 | 17.33bA | 23.85a | 23.28a | 17.84b | 20.58 | 0.969 | ||||
40 | 16.17cB | 25.93a | 23.07b | 17.47c | 20.66 | 1.248 | ||||
pH | 20 | 4.37b | 5.44aB | 4.24b | 3.96cB | 4.61 | 0.222 | ** | ** | ** |
30 | 4.28b | 5.85aA | 4.14c | 4.00dAB | 4.47 | 0.174 | ||||
40 | 4.33b | 5.00aC | 4.22bc | 4.11cA | 4.42 | 0.106 | ||||
乳酸 Lactic acid (% DM) | 20 | 7.55bB | 2.55cB | 6.84b | 10.35aA | 6.82 | 0.867 | ** | ** | ** |
30 | 10.00aA | 1.56cC | 7.86b | 11.72aA | 7.78 | 1.188 | ||||
40 | 8.25aAB | 4.05cA | 6.35b | 7.86aB | 6.63 | 0.531 | ||||
乙酸 Acetic acid (% DM) | 20 | 0.99bB | 1.35aB | 0.71cC | 0.56cB | 0.90 | 0.093 | ** | ** | ** |
30 | 1.16bB | 2.10aA | 0.90bcB | 0.74cB | 1.23 | 0.163 | ||||
40 | 1.76aA | 1.63aB | 1.30bA | 0.95cA | 1.38 | 0.105 | ||||
丁酸 Butyric acid (% DM) | 20 | 0.82a | 0.54bB | 0.71abC | 0.56abB | 0.66 | 0.048 | ** | ** | ** |
30 | 0.83b | 1.01aA | 0.90abB | 0.74bB | 0.87 | 0.036 | ||||
40 | 0.86a | 0.46bB | 0.93aA | 0.95aA | 0.80 | 0.068 | ||||
氨态氮 Ammonia nitrogen (% TN) | 20 | 14.78a | 11.98abB | 8.35b | 10.37ab | 11.37 | 1.053 | * | ** | * |
30 | 11.39b | 25.09aA | 14.42b | 10.45b | 15.34 | 2.045 | ||||
40 | 15.72 | 13.83B | 12.32 | 8.88 | 12.69 | 1.158 |
项目 Items | 温度 Temperature (℃) | 晾晒和添加物处理Wilting and additives | 平均值 Means | 标准差 SE | 显著性Significance | |||||
---|---|---|---|---|---|---|---|---|---|---|
CK | WS | CS | SS | T | WA | T×WA | ||||
乳酸菌 Lactic acid bacteria (log10 cfu·g-1 FM) | 20 | 5.91bA | 7.44aA | 4.01cA | 4.18c | 5.39 | 0.428 | ** | ** | ** |
30 | 4.10abB | 5.14aB | 2.84bB | <2 | 3.02 | 0.613 | ||||
40 | 3.00bC | 4.49aC | <2 | <2 | - | - | ||||
好氧细菌 Aerobic bacteria (log10 cfu·g-1 FM) | 20 | 4.99bA | 7.43aA | 4.49bA | 4.09bA | 5.05 | 0.397 | ** | ** | NS |
30 | 3.85bAB | 5.93aB | 3.31bB | 3.04bB | 4.05 | 0.395 | ||||
40 | 3.59bB | 4.68aC | 2.10cC | 2.26cC | 3.16 | 0.323 | ||||
酵母 Yeasts (log10 cfu·g-1 FM) | 20 | <2 | <2 | <2 | <2 | - | - | - | - | - |
30 | <2 | <2 | <2 | <2 | - | - | ||||
40 | <2 | <2 | <2 | <2 | - | - | ||||
霉菌 Molds (log10 cfu·g-1 FM) | 20 | <2 | <2 | <2 | <2 | - | - | - | - | - |
30 | <2 | <2 | <2 | <2 | - | - | ||||
40 | <2 | <2 | <2 | <2 | - | - |
表3 晾晒、添加物和贮藏温度对青贮象草微生物数量的影响
Table 3 Effects of wilting, additives and storage temperature on microbial composition of napier grass silage in 60 days
项目 Items | 温度 Temperature (℃) | 晾晒和添加物处理Wilting and additives | 平均值 Means | 标准差 SE | 显著性Significance | |||||
---|---|---|---|---|---|---|---|---|---|---|
CK | WS | CS | SS | T | WA | T×WA | ||||
乳酸菌 Lactic acid bacteria (log10 cfu·g-1 FM) | 20 | 5.91bA | 7.44aA | 4.01cA | 4.18c | 5.39 | 0.428 | ** | ** | ** |
30 | 4.10abB | 5.14aB | 2.84bB | <2 | 3.02 | 0.613 | ||||
40 | 3.00bC | 4.49aC | <2 | <2 | - | - | ||||
好氧细菌 Aerobic bacteria (log10 cfu·g-1 FM) | 20 | 4.99bA | 7.43aA | 4.49bA | 4.09bA | 5.05 | 0.397 | ** | ** | NS |
30 | 3.85bAB | 5.93aB | 3.31bB | 3.04bB | 4.05 | 0.395 | ||||
40 | 3.59bB | 4.68aC | 2.10cC | 2.26cC | 3.16 | 0.323 | ||||
酵母 Yeasts (log10 cfu·g-1 FM) | 20 | <2 | <2 | <2 | <2 | - | - | - | - | - |
30 | <2 | <2 | <2 | <2 | - | - | ||||
40 | <2 | <2 | <2 | <2 | - | - | ||||
霉菌 Molds (log10 cfu·g-1 FM) | 20 | <2 | <2 | <2 | <2 | - | - | - | - | - |
30 | <2 | <2 | <2 | <2 | - | - | ||||
40 | <2 | <2 | <2 | <2 | - | - |
图1 象草青贮的产气量CK:对照青贮饲料;WS:晾晒青贮饲料;CS:添加10%玉米粉的青贮饲料;SS:添加2%蔗糖的青贮饲料。不同小写字母表示差异显著(P<0.05)。CK:Control silage;WS:Wilting silage;CS:Silage with 10% corn flour;SS:Silage with 2% sucrose;Values with different lowercase letters differ significantly from each other at P<0.05.
Fig.1 Gas production of napier grass silage in 60 days
样品 Samples | 有效读数 Reads | 分类单元 OTUs | Chao 1指数 Chao 1 index | Simpson指数 Simpson index | Shannon指数 Shannon index | 覆盖度 Coverage |
---|---|---|---|---|---|---|
FG | 150228 | 771 | 1098 | 0.99 | 8.46 | 0.99 |
WG | 151714 | 529 | 879 | 0.70 | 2.78 | 0.99 |
CK20 | 154751 | 557 | 931 | 0.85 | 4.70 | 0.99 |
CK30 | 152831 | 493 | 757 | 0.98 | 6.80 | 0.99 |
CK40 | 146541 | 679 | 1024 | 0.99 | 7.61 | 0.99 |
WS20 | 146425 | 405 | 558 | 0.80 | 2.94 | 0.99 |
WS30 | 119619 | 334 | 569 | 0.94 | 5.04 | 0.99 |
WS40 | 148728 | 632 | 815 | 0.87 | 5.33 | 0.99 |
CS20 | 152403 | 496 | 641 | 0.66 | 2.46 | 0.99 |
CS30 | 153913 | 443 | 506 | 0.80 | 3.75 | 0.99 |
CS40 | 152021 | 541 | 744 | 0.99 | 7.98 | 0.99 |
SS20 | 147691 | 477 | 827 | 0.81 | 3.08 | 0.99 |
SS30 | 143097 | 701 | 947 | 0.97 | 6.55 | 0.99 |
SS40 | 155361 | 524 | 812 | 0.99 | 7.13 | 0.99 |
表4 新鲜象草和青贮饲料的细菌群落多样性统计
Table 4 Diversity statistics of bacterial community of fresh napier grass and its silage
样品 Samples | 有效读数 Reads | 分类单元 OTUs | Chao 1指数 Chao 1 index | Simpson指数 Simpson index | Shannon指数 Shannon index | 覆盖度 Coverage |
---|---|---|---|---|---|---|
FG | 150228 | 771 | 1098 | 0.99 | 8.46 | 0.99 |
WG | 151714 | 529 | 879 | 0.70 | 2.78 | 0.99 |
CK20 | 154751 | 557 | 931 | 0.85 | 4.70 | 0.99 |
CK30 | 152831 | 493 | 757 | 0.98 | 6.80 | 0.99 |
CK40 | 146541 | 679 | 1024 | 0.99 | 7.61 | 0.99 |
WS20 | 146425 | 405 | 558 | 0.80 | 2.94 | 0.99 |
WS30 | 119619 | 334 | 569 | 0.94 | 5.04 | 0.99 |
WS40 | 148728 | 632 | 815 | 0.87 | 5.33 | 0.99 |
CS20 | 152403 | 496 | 641 | 0.66 | 2.46 | 0.99 |
CS30 | 153913 | 443 | 506 | 0.80 | 3.75 | 0.99 |
CS40 | 152021 | 541 | 744 | 0.99 | 7.98 | 0.99 |
SS20 | 147691 | 477 | 827 | 0.81 | 3.08 | 0.99 |
SS30 | 143097 | 701 | 947 | 0.97 | 6.55 | 0.99 |
SS40 | 155361 | 524 | 812 | 0.99 | 7.13 | 0.99 |
图2 象草青贮前和青贮后的科(a)和属(b)水平的细菌多样性“c_”: 未鉴定到科的目Unidentified family as the class; “f_”:未鉴定到属的科Unidentified genus as the family.
Fig.2 Family- (a) and genus- (b) level microbiota analysis of fresh napier grass and its silage
1 | Ashbell G, Weinberg Z G, Hen Y, et al. The effects of temperature on the aerobic stability of wheat and corn silages. Journal of Industrial Microbiology & Biotechnology, 2002, 28(5): 261-263. |
2 | Feng L, Kristensen E F, Moset V, et al. Ensiling of tall fescue for biogas production: Effect of storage time, additives and mechanical pretreatment. Energy Sustainable Development, 2018, 47: 143-148. |
3 | Bernardes T F, Daniel J L P, Adesogan A T, et al. Silage review: Unique challenges of silages made in hot and cold regions. Journal of Dairy Science, 2018, 101(5): 4001-4019. |
4 | Moura Z A D, Mauro S E, Dórea J R R, et al. Evaluation of elephant grass silage with the addition of cassava scrapings. Revista Brasileira De Zootecnia, 2010, 39(12): 2611-2616. |
5 | Dunière L, Sindou J, Chaucheyras-Durand F, et al. Silage processing and strategies to prevent persistence of undesirable microorganisms. Animal Feed Science and Technology, 2013, 182(1/2/3/4): 1-15. |
6 | Oliveira A C, Garcia R, Pires A J V, et al. Farelo de mandioca na ensilagem de capim-elefante: Fracionamento de carboidratos e proteínas e características fermentativas. Revista Brasileira De Saúde E Produção Animal, 2012, 13(4): 1020-1031. |
7 | Li D X, Ni K K, Zhang Y C, et al. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australasian Journal of Animal Science, 2019, 32(5): 665-674. |
8 | Danner H, Holzer M, Mayrhuber E, et al. Acetic acid increases stability of silage under aerobic conditions. Applied and Environmental Microbiology, 2003, 69(1): 562-567. |
9 | Desta S T, Yuan X J, Li J F, et al. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of napier grass ensiled with additives. Bioresource Technology, 2016, 221: 447-454. |
10 | Chen L, Cai Y, Li P, et al. Inoculation of exogenous lactic acid bacteria exerted a limited influence on the silage fermentation and bacterial community compositions of reed canary grass straw on the Qinghai-Tibetan Plateau. Journal of Applied Microbiology, 2020, 129(5): 1163-1172. |
11 | Liu Q H, Shao T, Bai Y F. The effect of fibrolytic enzyme, Lactobacillus plantarum and two food antioxidants on the fermentation quality, alpha-tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures. Animal Feed Science and Technology, 2016, 221: 1-11. |
12 | Ren H, Feng Y, Pei J, et al. Effects of Lactobacillus plantarum additive and temperature on the ensiling quality and microbial community dynamics of cauliflower leaf silages. Bioresource Technology, 2020, 307: 123238. |
13 | Zhang Q, Yu Z, Wang X G, et al. Effects of inoculants and environmental temperature on fermentation quality and bacterial diversity of alfalfa silage. Animal Science Journal, 2018, 89(8): 1085-1092. |
14 | Gulfam A, Guo G, Tajebe S, et al. Characteristics of lactic acid bacteria isolates and their effect on the fermentation quality of napier grass silage at three high temperatures. Journal of the Science of Food and Agriculture, 2017, 97(6): 1931-1938. |
15 | Mcdonald P, Playne M J. The buffering constituents of herbage and of silage. Journal of the Science of Food and Agriculture, 1966, 17(6): 264-265. |
16 | AOAC (Association of Offcial Analytical Chemistry). Official methods of analysis (15th edtion). Arlington (VA): Association of Official Analytical Chemists, 1990. |
17 | van Soest P J, Robertsom J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
18 | Murphy R P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. Journal of the Science of Food and Agriculture, 1958, 9: 714-717. |
19 | Yin X, Tian J, Zhang J G. Effects of re-ensiling on the fermentation quality and microbial community of napier grass (Pennisetum purpureum) silage. Journal of the Science of Food and Agriculture, 2021, 101(12): 5028-5037. |
20 | Tao X X, Ji C W, Chen S F, et al. Fermentation quality and aerobic stability of napier grass ensiled with citric acid residue and lactic acid bacteria. Tropical Grasslands-Forrajes Tropicales, 2021, 9(1): 52-59. |
21 | McDonald P, Henderson A R, Heron S J E. The biochemistry of silage. Marlow: Chalcombe Publications, 1991. |
22 | van Soest P J, Mertens D R, Deinum B. Preharvest factors influencing quality of conserved forage. Journal of Animal Science, 1978, 47(3): 712-720. |
23 | Li X M, Chen F, Wang X K, et al. Impacts of low temperature and ensiling period on the bacterial community of oat silage by SMRT. Microorganisms, 2021, 9(2): 274. |
24 | Liu Q H, Zhang J G, Shi S L, et al. The effects of wilting and storage temperatures on the fermentation quality and aerobic stability of stylo silage. Animal Science Journal, 2011, 82(4): 549-553. |
25 | Wang C, Nishino N. Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage. Journal of Applied Microbiology, 2013, 114(6): 1687-1695. |
26 | Weinberg Z G, Szakacs G, Ashbell G, et al. The effect of temperature on the ensiling process of corn and wheat. Journal of Applied Microbiology, 2001, 90(4): 561-566. |
27 | Zhang J G, Kawamoto H, Cai Y M. Relationships between the addition rates of cellulase or glucose and silage fermentation at different temperatures. Animal Science Journal, 2010, 81(3): 325-330. |
28 | Yang H Y, Wang X F, Liu J B, et al. Effects of water-soluble carbohydrate content on silage fermentation of wheat straw. Journal of Bioscience and Bioengineer, 2006, 101: 232-237. |
29 | Chen D K, Zheng M Y, Guo X, et al. Altering bacterial community: A possible way of lactic acid bacteria inoculants reducing CO2 production and nutrient loss during fermentation. Bioresource Technology, 2021, 329: 124915. |
[1] | 蒋紫薇, 刘桂宇, 安昊云, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 种植密度与施氮对玉米/秣食豆间作系统饲草产量、品质和氮肥利用的影响[J]. 草业学报, 2022, 31(7): 157-171. |
[2] | 戈建珍, 傅文慧, 张露, 蔺宝珺, 赵帅, 白玛噶翁, 寇建村. 多菌灵在果园白三叶青贮中的降解及其对微生物群落的影响[J]. 草业学报, 2022, 31(7): 64-75. |
[3] | 蔺豆豆, 琚泽亮, 柴继宽, 赵桂琴. 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定[J]. 草业学报, 2022, 31(5): 103-114. |
[4] | 周迪, 杨帅, 张欣欣, 袁婧, 高艳霞, 李建国, 汪波, 周广生, 傅廷栋, 叶俊, 杨利国, 滑国华. 添加剂种类和组合对晾晒后全株油菜青贮效果的影响[J]. 草业学报, 2022, 31(4): 124-135. |
[5] | 张欢, 牟怡晓, 张桂杰. 添加枸杞副产物对紫花苜蓿青贮发酵品质及微生物多样性的影响[J]. 草业学报, 2022, 31(4): 136-144. |
[6] | 杨德智, 王晨, 侯明杰, 王虎成. 饲用甜高粱和全株玉米青贮对肉羊前胃微生态的影响[J]. 草业学报, 2022, 31(4): 145-154. |
[7] | 陈德奎, 吴硕, 邹璇, 周玮, 陈晓阳, 张庆. 邻苯二酚对香椿叶青贮营养品质及抗氧化性的影响[J]. 草业学报, 2022, 31(3): 207-213. |
[8] | 高莉娟, 张正社, 文裕, 宗西方, 闫启, 卢丽燕, 易显凤, 张吉宇. 象草全基因组bHLH转录因子家族鉴定及表达分析[J]. 草业学报, 2022, 31(3): 47-59. |
[9] | 吴欣明, 方志红, 池惠武, 贾会丽, 刘建宁, 石永红, 王学敏. 30个青贮玉米在雁门关地区品种评比试验[J]. 草业学报, 2022, 31(1): 205-216. |
[10] | 温媛媛, 张美琦, 刘桃桃, 沈宜钊, 高艳霞, 李秋凤, 曹玉凤, 李建国. 体外产气法评价生薯条加工副产品-稻草混贮与全株玉米青贮组合效应的研究[J]. 草业学报, 2021, 30(8): 154-163. |
[11] | 杨冬梅, 李俊年, 陶双伦. 添加单宁酸对青贮葛藤有氧稳定性和霉菌毒素含量的影响[J]. 草业学报, 2021, 30(8): 164-170. |
[12] | 郭香, 陈德奎, 陈娜, 李云, 陈晓阳, 张庆. 含水量和添加剂对黄梁木叶青贮发酵品质的影响[J]. 草业学报, 2021, 30(8): 199-205. |
[13] | 邹诗雨, 陈思葵, 唐启源, 陈东, 陈元伟, 邓攀, 黄胥莱, 李付强. 青贮剂对再生稻头季全株青贮品质和体外瘤胃发酵特性的影响[J]. 草业学报, 2021, 30(7): 122-132. |
[14] | 尹祥, 王咏琪, 李鑫琴, 田静, 王晓亚, 张建国. 不同水分吸附材料对象草青贮发酵品质及好氧稳定性的影响[J]. 草业学报, 2021, 30(7): 133-138. |
[15] | 张丹丹, 张元庆, 程景, 靳光, 李博, 王栋才, 徐芳, 孙锐锋. 不同粗饲料组合对晋南牛瘤胃体外发酵特性的研究[J]. 草业学报, 2021, 30(7): 93-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||