草业学报 ›› 2023, Vol. 32 ›› Issue (5): 106-117.DOI: 10.11686/cyxb2022351
• 研究论文 • 上一篇
何伟鹏1(), 胡夏嵩1, 刘昌义1(), 李璇1, 李希来2, 付江涛3, 卢海静2, 杨馥铖1, 李国荣1
收稿日期:
2022-08-31
修回日期:
2022-10-07
出版日期:
2023-05-20
发布日期:
2023-03-20
通讯作者:
刘昌义
作者简介:
E-mail: 1358128151@qq.com基金资助:
Wei-peng HE1(), Xia-song HU1, Chang-yi LIU1(), Xuan LI1, Xi-lai LI2, Jiang-tao FU3, Hai-jing LU2, Fu-cheng YANG1, Guo-rong LI1
Received:
2022-08-31
Revised:
2022-10-07
Online:
2023-05-20
Published:
2023-03-20
Contact:
Chang-yi LIU
摘要:
为研究黄河源区不同禁牧年限高寒草地植物根系力学特性及根系增强土体抗剪强度贡献特征,本研究以黄河源区河南县地区未禁牧、1 a禁牧、4 a禁牧、10 a禁牧4种工况下的高寒草地植物垂穗披碱草为研究对象,在野外调查、取样及室内单根拉伸试验和根-土复合体直剪试验的基础上,探讨了垂穗披碱草在不同禁牧年限下,单根抗拉力和根-土复合体抗剪强度指标变化特征及其影响因素。结果表明:1~4 a短期禁牧增加了垂穗披碱草生长量指标,而10 a长期禁牧其生长量指标则呈降低的变化特征。随着禁牧年限增加,垂穗披碱草单根抗拉力呈先增大后降低的变化规律,1和4 a禁牧单根抗拉力较未禁牧增幅分别为15.9%、14.8%;垂穗披碱草单根抗拉强度、根-土复合体黏聚力均呈降低趋势,其中10 a禁牧垂穗披碱草单根抗拉强度、根-土复合体黏聚力相对于未禁牧降低幅度最大,分别为57.3%、63.5%。进一步研究表明,根-土复合体黏聚力c值与根径、土体密度之间呈显著正相关关系,与含水率之间则呈显著负相关关系,且黏聚力c值随含根量的增加呈先增大后减小的变化规律。研究结果可为高寒地区开展草地退化、水土流失等灾害的有效防治提供理论支撑和实际指导。
何伟鹏, 胡夏嵩, 刘昌义, 李璇, 李希来, 付江涛, 卢海静, 杨馥铖, 李国荣. 黄河源区不同禁牧年限对垂穗披碱草单根及其根-土复合体力学强度特征的影响[J]. 草业学报, 2023, 32(5): 106-117.
Wei-peng HE, Xia-song HU, Chang-yi LIU, Xuan LI, Xi-lai LI, Jiang-tao FU, Hai-jing LU, Fu-cheng YANG, Guo-rong LI. Impact of the different duration years of grazing prohibition on the mechanical strength characteristics of Elymus nutans roots and its composite systems in the Yellow River source region[J]. Acta Prataculturae Sinica, 2023, 32(5): 106-117.
工况类型 Working conditions | 平均株高 Average plant height (cm) | 平均地径 Average plant diameter at ground surface (mm) |
---|---|---|
未禁牧No grazing prohibition | 50.99±9.86c | 1.45±0.37ab |
1 a禁牧1 a grazing prohibition | 52.67±10.84b | 1.64±0.40a |
4 a禁牧4 a grazing prohibition | 66.65±18.23a | 1.68±0.60a |
10 a禁牧10 a grazing prohibition | 34.65±9.62d | 1.18±0.42b |
表1 试验区4种不同禁牧工况下垂穗披碱草地上生长量指标
Table 1 Aboveground growth indexes of the E. nutans grassland under four different grazing prohibition conditions in the test area
工况类型 Working conditions | 平均株高 Average plant height (cm) | 平均地径 Average plant diameter at ground surface (mm) |
---|---|---|
未禁牧No grazing prohibition | 50.99±9.86c | 1.45±0.37ab |
1 a禁牧1 a grazing prohibition | 52.67±10.84b | 1.64±0.40a |
4 a禁牧4 a grazing prohibition | 66.65±18.23a | 1.68±0.60a |
10 a禁牧10 a grazing prohibition | 34.65±9.62d | 1.18±0.42b |
工况类型 Working conditions | 平均根数Average root number (No.) | 平均含根量Average root content (mg·cm-3) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 942±538c | 476±311b | 11.70±6.98b | 4.90±1.19b |
1 a禁牧1 a grazing prohibition | 1428±778a | 996±581a | 18.51±7.91a | 11.71±5.16a |
4 a禁牧4 a grazing prohibition | 1199±974ab | 861±392a | 11.41±6.12b | 9.10±5.93ab |
10 a禁牧10 a grazing prohibition | 900±251c | 435±151b | 6.10±2.00c | 4.30±2.10b |
表2 试验区4种不同工况下垂穗披碱草地下根系生长量指标
Table 2 Underground root growth index of E. nutans under four different working conditions in the test area
工况类型 Working conditions | 平均根数Average root number (No.) | 平均含根量Average root content (mg·cm-3) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 942±538c | 476±311b | 11.70±6.98b | 4.90±1.19b |
1 a禁牧1 a grazing prohibition | 1428±778a | 996±581a | 18.51±7.91a | 11.71±5.16a |
4 a禁牧4 a grazing prohibition | 1199±974ab | 861±392a | 11.41±6.12b | 9.10±5.93ab |
10 a禁牧10 a grazing prohibition | 900±251c | 435±151b | 6.10±2.00c | 4.30±2.10b |
工况类型 Working conditions | 平均根径 Average root diameter (D, mm) | 单根抗拉力Tensile resistance of single root | 单根抗拉强度Tensile strength of single root | ||||
---|---|---|---|---|---|---|---|
平均抗拉力 Average tensile resistance (F, N) | 回归方程 Regression equation | 拟合优度R2 Goodness of fit R2 | 平均抗拉强度 Average tensile strength (TN, MPa) | 回归方程 Regression equation | 拟合优度R2 Goodness of fit R2 | ||
未禁牧No grazing prohibition | 0.19±0.05 | 2.63±1.20ab | F=38.238D1.646 | 0.9707 | 88.21±11.06a | TN=48.684D-0.354 | 0.6049 |
1 a禁牧1 a grazing prohibition | 0.23±0.04 | 3.05±1.32a | F=19.388D1.768 | 0.8740 | 78.36±23.59a | TN=24.280D-0.740 | 0.7016 |
4 a禁牧4 a grazing prohibition | 0.26±0.11 | 3.02±1.74a | F=14.107D1.564 | 0.8768 | 63.91±24.18b | TN=17.963D-0.836 | 0.7862 |
10 a禁牧10 a grazing prohibition | 0.28±0.09 | 2.26±1.06b | F=14.152D1.463 | 0.9566 | 37.63±7.71c | TN=18.020D-0.537 | 0.7478 |
表3 试验区4种不同工况条件下垂穗披碱草单根抗拉力、抗拉强度回归方程拟合结果
Table 3 Fitting results of regression equations of tensile resistance and tensile strength of single root of E. nutans under four different working conditions in the test area
工况类型 Working conditions | 平均根径 Average root diameter (D, mm) | 单根抗拉力Tensile resistance of single root | 单根抗拉强度Tensile strength of single root | ||||
---|---|---|---|---|---|---|---|
平均抗拉力 Average tensile resistance (F, N) | 回归方程 Regression equation | 拟合优度R2 Goodness of fit R2 | 平均抗拉强度 Average tensile strength (TN, MPa) | 回归方程 Regression equation | 拟合优度R2 Goodness of fit R2 | ||
未禁牧No grazing prohibition | 0.19±0.05 | 2.63±1.20ab | F=38.238D1.646 | 0.9707 | 88.21±11.06a | TN=48.684D-0.354 | 0.6049 |
1 a禁牧1 a grazing prohibition | 0.23±0.04 | 3.05±1.32a | F=19.388D1.768 | 0.8740 | 78.36±23.59a | TN=24.280D-0.740 | 0.7016 |
4 a禁牧4 a grazing prohibition | 0.26±0.11 | 3.02±1.74a | F=14.107D1.564 | 0.8768 | 63.91±24.18b | TN=17.963D-0.836 | 0.7862 |
10 a禁牧10 a grazing prohibition | 0.28±0.09 | 2.26±1.06b | F=14.152D1.463 | 0.9566 | 37.63±7.71c | TN=18.020D-0.537 | 0.7478 |
图3 试验区4种不同工况条件下垂穗披碱草单根抗拉力、抗拉强度与根径之间的关系曲线
Fig.3 Relation curve between tensile resistance, tensile strength of single root and root diameter of E. nutans under four different working conditions in the test area
工况类型 Working conditions | 土体平均密度Average density of soil mass (g·cm-3) | 土体平均含水率Average moisture content of soil mass (%) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 1.20±0.10 | 1.32±0.12 | 33.31±6.47 | 22.04±3.01 |
1 a禁牧1 a grazing prohibition | 1.14±0.22 | 1.18±0.14 | 36.90±6.20 | 26.19±5.00 |
4 a禁牧4 a grazing prohibition | 1.12±0.21 | 1.04±0.11 | 35.55±6.15 | 26.22±4.29 |
10 a禁牧10 a grazing prohibition | 1.19±0.17 | 1.17±0.12 | 39.95±5.07 | 29.07±5.03 |
表4 试验区4种不同工况下草本植物垂穗披碱草草地土体密度和含水率
Table 4 Soil density and moisture content of E. nutans grassland under four different working conditions in the test area
工况类型 Working conditions | 土体平均密度Average density of soil mass (g·cm-3) | 土体平均含水率Average moisture content of soil mass (%) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 1.20±0.10 | 1.32±0.12 | 33.31±6.47 | 22.04±3.01 |
1 a禁牧1 a grazing prohibition | 1.14±0.22 | 1.18±0.14 | 36.90±6.20 | 26.19±5.00 |
4 a禁牧4 a grazing prohibition | 1.12±0.21 | 1.04±0.11 | 35.55±6.15 | 26.22±4.29 |
10 a禁牧10 a grazing prohibition | 1.19±0.17 | 1.17±0.12 | 39.95±5.07 | 29.07±5.03 |
工况类型 Working conditions | 平均黏聚力c值Average cohesion c value (kPa) | 平均内摩擦角值Average internal friction angle φ value (°) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 26.58±5.86a | 22.91±5.00a | 19.53±2.48 | 20.48±2.48 |
1 a禁牧1 a grazing prohibition | 16.02±1.99ab | 15.37±1.76ab | 19.96±2.69 | 22.07±2.69 |
4 a禁牧4 a grazing prohibition | 13.15±6.78b | 7.45±3.91b | 20.39±2.92 | 21.25±3.54 |
10 a禁牧10 a grazing prohibition | 9.70±1.90b | 6.91±3.24b | 18.95±3.99 | 19.25±2.24 |
表5 试验区4种不同工况条件下垂穗披碱草草地根-土复合体试样抗剪强度
Table 5 Shear strength of E. nutans root-soil composite systems under four different working conditions in the test area
工况类型 Working conditions | 平均黏聚力c值Average cohesion c value (kPa) | 平均内摩擦角值Average internal friction angle φ value (°) | ||
---|---|---|---|---|
0~10 cm | 10~20 cm | 0~10 cm | 10~20 cm | |
未禁牧No grazing prohibition | 26.58±5.86a | 22.91±5.00a | 19.53±2.48 | 20.48±2.48 |
1 a禁牧1 a grazing prohibition | 16.02±1.99ab | 15.37±1.76ab | 19.96±2.69 | 22.07±2.69 |
4 a禁牧4 a grazing prohibition | 13.15±6.78b | 7.45±3.91b | 20.39±2.92 | 21.25±3.54 |
10 a禁牧10 a grazing prohibition | 9.70±1.90b | 6.91±3.24b | 18.95±3.99 | 19.25±2.24 |
图4 试验区4种不同工况条件下根-土复合体的含根量、根径与黏聚力之间的三维关系曲线
Fig.4 Three dimensional relation curve between root content, root diameter and cohesion of root-soil composite systems under four different working conditions in the test area
指标 Index | 根径 Root diameter | 含根量 Root content | 密度 Density | 含水率 Moisture content | 单根抗拉强度 Single tensile strength |
---|---|---|---|---|---|
黏聚力c值Cohesion c value | 0.352* | 0.592** | 0.369* | -0.456* | 0.486** |
内摩擦角φ值Internal friction angle φ value | -0.068 | 0.040 | -0.020 | -0.074 | 0.153 |
表6 试验区4种不同工况下根-土复合体抗剪强度主要影响因素相关性分析
Table 6 Correlation analysis of main influence factors on shear strength of root-soil composite systems under four different working conditions in the test area
指标 Index | 根径 Root diameter | 含根量 Root content | 密度 Density | 含水率 Moisture content | 单根抗拉强度 Single tensile strength |
---|---|---|---|---|---|
黏聚力c值Cohesion c value | 0.352* | 0.592** | 0.369* | -0.456* | 0.486** |
内摩擦角φ值Internal friction angle φ value | -0.068 | 0.040 | -0.020 | -0.074 | 0.153 |
图5 试验区4种不同工况条件下根-土复合体的密度、含水率与黏聚力之间的三维关系曲线
Fig.5 Three dimensional relation curve between density, moisture content and cohesion of root-soil composite systems under four different working conditions in the test area
1 | Gao Y N, Liao L R, Wang J, et al. Effects of grazing exclusion on the fractal characteristics of soil particle size in semi-arid grassland on the Loess Plateau. Journal of Soil and Water Conservation, 2021, 35(6): 310-318, 326. |
高雅宁, 廖李容, 王杰, 等. 禁牧对黄土高原半干旱草地土壤粒径多重分形特征的影响. 水土保持学报, 2021, 35(6): 310-318, 326. | |
2 | Xu T W, Zhao X Q, Geng Y Y, et al. Key technologies and optimization model for ecological protection and grass-based livestock husbandry in the source region of the Yellow River. Resources Science, 2020, 42(3): 508-516. |
徐田伟, 赵新全, 耿远月, 等. 黄河源区生态保护与草牧业发展关键技术及优化模式. 资源科学, 2020, 42(3): 508-516. | |
3 | Liu D D, Ju W L, Jin X L, et al. Associated soil aggregate nutrients and controlling factors on aggregate stability in semiarid grassland under different grazing prohibition timeframes. Science of the Total Environment, 2021, 777: 146104. |
4 | Sun J, Liu M, Fu B J, et al. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Science Bulletin, 2020, 65(16): 1405-1414. |
5 | Zhang Z C. The above- and below-ground processes of degradation and restoring efficiency of grazing exclusion in typical alpine grasslands on the Tibetan Plateau. Beijing: Beijing Forestry University, 2020. |
张振超. 青藏高原典型高寒草地地上-地下的退化过程和禁牧恢复效果研究. 北京: 北京林业大学, 2020. | |
6 | Zhang J S. Effects of grazing exclusion on plant community composition and carbon storage of alpine meadow in Qinghai-Tibet Plateau. Lanzhou: Lanzhou University, 2020. |
张建胜. 禁牧对青藏高原高寒草甸植物群落组成和碳储量的影响. 兰州: 兰州大学, 2020. | |
7 | He X N, Dong C X, Geng Y R, et al. Analysis of mechanical property of root soil complex of common slope protection plants. Shanxi Architecture, 2021, 47(8): 68-70. |
何鑫南, 董晨霄, 耿嫣然, 等. 常见护坡植物的根土复合体力学特性分析. 山西建筑, 2021, 47(8): 68-70. | |
8 | Shaurav A, Tanvir M, Eric B, et al. In-situ assessment of soil-root bonding strength to aid in preventing soil erosion. Soil & Tillage Research, 2021, 213: 1-8. |
9 | Liu C Y, Hu X S, Li X L, et al. Relationship between shear strength of root-soil composite systems of alpine grassland and distribution of soil nutrient elements in the source region of the Yellow River, China. Mountain Research, 2020, 38(3): 349-359. |
刘昌义, 胡夏嵩, 李希来, 等. 黄河源区高寒草地根-土复合体抗剪强度与土壤营养元素分布关系. 山地学报, 2020, 38(3): 349-359. | |
10 | Liu Y B, Hu X S, Yu D M, et al. Influence of the roots of mixed-planting species on the shear strength of saline loess soil. Journal of Mountain Science, 2021, 18(3): 806-818. |
11 | Bo F, Zong Q L, Cai H B, et al. Calculation of increased soil shear strength from desert plant roots. Arabian Journal of Geosciences, 2019, 12(16): 1-12. |
12 | Yang F C, Liu C Y, Hu X S, et al. Study on physical and chemical properties and shear strength characteristics of root-soil composite system with different degradation degrees of alpine grassland in the source region of the Yellow River. Arid Zone Research, 2022, 39(2): 560-571. |
杨馥铖, 刘昌义, 胡夏嵩, 等. 黄河源区不同退化程度高寒草地理化性质及复合体抗剪强度研究. 干旱区研究, 2022, 39(2): 560-571. | |
13 | Shen Z Y, Liu C Y, Hu X S, et al. Relationships between the physical and chemical properties of soil and the shear strength of root-soil composite systems at different soil depths in alpine grass land in the source region of the Yellow River. Arid Zone Research, 2021, 38(2): 392-401. |
申紫雁, 刘昌义, 胡夏嵩, 等. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究. 干旱区研究, 2021, 38(2): 392-401. | |
14 | Liu C Y, Hu X S, Dou Z N, et al. Shear strength tests of the root-soil composite system of alpine grassland vegetation at different stages of degradation and the determination of thresholds in the Yellow River source region. Acta Prataculturae Sinica, 2017, 26(9): 14-26. |
刘昌义, 胡夏嵩, 窦增宁, 等. 黄河源区高寒草地植被根-土复合体抗剪强度试验及退化程度阈值确定. 草业学报, 2017, 26(9): 14-26. | |
15 | Chai Y, Li X L, Yu J F, et al. Effects of different applications of organic fertilizer in degraded alpine meadow on soil aggregates and organic carbon in the source zone of Yellow River. Acta Agrestia Sinica, 2022, 30(7): 1613-1620. |
柴瑜, 李希来, 于金峰, 等. 有机肥施用量对黄河源不同坡向退化高寒草甸土壤团聚体及有机碳的影响. 草地学报, 2022, 30(7): 1613-1620. | |
16 | Xu W Y, Zhang Y P, Duan C W, et al. Spatial variability of soil nutrients in degraded alpine meadows in different regions of the Yellow River. Ecology and Environmental Sciences, 2021, 30(10): 1968-1975. |
徐文印, 张宇鹏, 段成伟, 等. 黄河源不同区域退化高寒草甸土壤养分空间变异研究. 生态环境学报, 2021, 30(10): 1968-1975. | |
17 | Zhou H K, Zhao X Q, Wen J, et al. The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River source region. Acta Prataculturae Sinica, 2012, 21(5): 1-11. |
周华坤, 赵新全, 温军, 等. 黄河源区高寒草原的植被退化与土壤退化特征. 草业学报, 2012, 21(5): 1-11. | |
18 | Xu T, Liu C Y, Hu X S, et al. Study on the mechanical properties of roots and the shear strengths of four halophytic plants in Qaidam Basin. Research of Soil and Water Conservation, 2021, 28(3): 101-110. |
许桐, 刘昌义, 胡夏嵩, 等. 柴达木盆地4种盐生植物根系力学特性及根-土复合体抗剪强度研究. 水土保持研究, 2021, 28(3): 101-110. | |
19 | He W P, Liu C Y, Zhou G Y, et al. A study of the mechanical properties of herbaceous roots and root-soil composite systems in the degraded alpine pasture artificially restored grassland. Hydrogeology & Engineering Geology, 2022, 49(2): 207-218. |
何伟鹏, 刘昌义, 周国英, 等. 退化高寒草原人工恢复植被根系及根-土复合体力学特性研究. 水文地质工程地质, 2022, 49(2): 207-218. | |
20 | Shen Z Y, Li G Y, Liu C Y, et al. Mechanical properties of four plant roots and shear strength of root-soil complex in the source region of the Yellow River. Science of Soil and Water Conservation, 2021(7): 49-52. |
申紫雁, 李光莹, 刘昌义, 等. 黄河源区4种植物根系力学特性及根-土复合体抗剪强度研究. 中国水土保持, 2021(7): 49-52. | |
21 | Zhang Y, Asiya M, Xin X P, et al. Effects of fencing and grazing on the community structure, biomass and forage quality of temperate steppe in Xinjiang. Acta Agrestia Sinica, 2020, 28(3): 815-821. |
张宇, 阿斯娅·曼力克, 辛晓平, 等. 禁牧与放牧对新疆温性草原群落结构、生物量及牧草品质的影响. 草地学报, 2020, 28(3): 815-821. | |
22 | Zhou R, Song M L, Wang Y Q, et al. Effect of Ligularia virgaurea control on plant community of grassland under different grazing modes. Acta Agrestia Sinica, 2022, 30(7): 1819-1828. |
周睿, 宋梅玲, 王玉琴, 等. 不同放牧方式下防除黄帚橐吾对高寒草地植物群落的影响. 草地学报, 2022, 30(7): 1819-1828. | |
23 | Wang H S, Song M L, Wang Y Q, et al. Effects of different restoration methods on Ligularia virgaurea and toxic weed. Chinese Journal of Grassland, 2022, 44(4): 32-39. |
王宏生, 宋梅玲, 王玉琴, 等. 不同恢复措施对黄帚橐吾及毒害草型退化草地群落的影响. 中国草地学报, 2022, 44(4): 32-39. | |
24 | Dong Y Q, Sun Z J, An S Z, et al. Effect of short-term grazing exclusion on community characteristics and stability in Artemisia desert on the northern slopes of the Tianshan Mountains. Pratacultural Science, 2018, 35(5): 996-1003. |
董乙强, 孙宗玖, 安沙舟, 等. 短期禁牧对天山北坡蒿类荒漠群落特征及其稳定性的影响. 草业科学, 2018, 35(5): 996-1003. | |
25 | Sun J, Fu B J, Zhao W W, et al. Optimizing grazing exclusion practices to achieve Goal 15 of the sustainable development goals in the Tibetan Plateau. Science Bulletin, 2021, 66(15): 1493-1496. |
26 | Cheng J M, Cheng J, Yang X M, et al. Spatial distribution of carbon density in grassland vegetation of the Loess Plateau of China. Acta Ecologica Sinica, 2012, 32(1): 226-237. |
程积民, 程杰, 杨晓梅, 等. 黄土高原草地植被碳密度的空间分布特征. 生态学报, 2012, 32(1): 226-237. | |
27 | Shui H W, Hasbagan G, Wu H B, et al. Effects of grazing exclusion on community characteristics and productivity of Stellera-dominated degraded grassland in the northern Tibetan Plateau. Acta Prataculturae Sinica, 2020, 29(10): 14-21. |
水宏伟, 干珠扎布, 吴红宝, 等. 禁牧对藏北高原狼毒型退化草地群落特征及生产力的影响. 草业学报, 2020, 29(10): 14-21. | |
28 | Zhou L H, Hu X S, Liu C Y, et al. Comparison of tensile resistance properties of main roots and lateral roots among four shrub species in Northeast Qinghai-Tibet Plateau. Bulletin of Soil and Water Conservation, 2019, 39(3): 93-100. |
周林虎, 胡夏嵩, 刘昌义, 等. 青藏高原东北部4种灌木主根和侧根抗拉力学特性比较. 水土保持通报, 2019, 39(3): 93-100. | |
29 | Liu Y B, Li S X, Yu D M, et al. Experiment on single root tensile mechanical properties of typical herb species in loess region of Xining basin. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 157-166. |
刘亚斌, 李淑霞, 余冬梅, 等. 西宁盆地黄土区典型草本植物单根抗拉力学特性试验. 农业工程学报, 2018, 34(15): 157-166. | |
30 | Li S, Li F X, Li Z S, et al. Effect of different grazing intensity on plant community and soil property in cultivated grassland in Weining, Guizhou province. Grassland and Turf, 2019, 39(4): 19-24. |
李硕, 李富祥, 李振松, 等. 不同放牧强度对贵州威宁人工草地植被和土壤特性的影响. 草原与草坪, 2019, 39(4): 19-24. | |
31 | Lai J D, Tian K, Zhao Y H, et al. Effect of grazing prohibition on soil properties of degraded meadow in Napahai plateau wetland. Journal of West China Forestry Science, 2013, 42(2): 43-48. |
赖建东, 田昆, 赵一鹤, 等. 禁牧对高原湿地纳帕海退化草甸土壤理化性质的影响. 西部林业科学, 2013, 42(2): 43-48. | |
32 | Qiao R, Cui X X, Lv X F, et al. Effect of enclosure and grazing prohibition on soil properties of degraded grassland. Bulletin of Soil and Water Conservation, 2014, 34(5): 162-165. |
乔荣, 崔向新, 吕新丰, 等. 围封禁牧对退化草原土壤性状的影响. 水土保持通报, 2014, 34(5): 162-165. | |
33 | Asitaiken J, Dong Y Q, Li J, et al. Effects of grazing exclusion on nutrition and stoichiometry characteristics of Artemisia desert vegetation and soil. Journal of Arid Land Resources and Environment, 2021, 35(11): 157-164. |
阿斯太肯·居力海提, 董乙强, 李靖, 等. 禁牧对不同气候区蒿类荒漠植被和土壤养分及化学计量特征的影响. 干旱区资源与环境, 2021, 35(11): 157-164. | |
34 | Yan C, Hu X S, Li X L, et al. Experimental study on effects of vegetation restoration on physical and mechanical properties of dump slope soil in alpine coal mine areas. Journal of Engineering Geology, 2022, 30(2): 383-393. |
闫聪, 胡夏嵩, 李希来, 等. 高寒矿区排土场植被恢复对边坡土体物理力学性质影响研究. 工程地质学报, 2022, 30(2): 383-393. |
[1] | 撖冬荣, 姚拓, 李海云, 陈敏豪, 高亚敏, 李昌宁, 白洁, 苏明. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4): 53-61. |
[2] | 王传旗, 刘文辉, 张永超, 周青平. 野生垂穗披碱草成苗期间的耐旱性研究[J]. 草业学报, 2021, 30(9): 76-85. |
[3] | 孙华方, 李希来, 金立群, 李成一, 张静. 黄河源人工草地土壤微生物多样性对建植年限的响应[J]. 草业学报, 2021, 30(2): 46-58. |
[4] | 张桐瑞, 李富翠, 李辉, 季双旋, 范志浩, 陈雨峰, 晁跃辉, 韩烈保. 草垫植入对混合草坪坪床稳定性和表观质量的影响[J]. 草业学报, 2020, 29(8): 27-36. |
[5] | 周涛, 谌芸, 王润泽, 李铁, 唐菡, 翟婷婷, 刘枭宏. 种草和施用聚丙烯酰胺对荒坡紫色土抗剪和抗蚀性能的影响研究[J]. 草业学报, 2019, 28(3): 62-73. |
[6] | 梁坤伦, 贾存智, 孙金豪, 王明艳, 傅华, 毛祝新. 高寒地区垂穗披碱草种质对低温胁迫的生理响应及其耐寒性评价[J]. 草业学报, 2019, 28(3): 111-121. |
[7] | 杨帆, 邵全琴, 郭兴健, 李愈哲, 王东亮, 张雅娴, 汪阳春, 刘纪远, 樊江文. 玛多县大型野生食草动物种群数量对草畜平衡的影响研究[J]. 草业学报, 2018, 27(7): 1-13. |
[8] | 蔺永和, 吴景, 方江平, 张卫红, 苗彦军, 李勇胜. 铝胁迫对西藏野生垂穗披碱草种子萌发及幼苗生长的影响[J]. 草业学报, 2018, 27(7): 155-165. |
[9] | 罗文蓉, 栗文瀚, 干珠扎布, 闫玉龙, 李钰, 曹旭娟, 何世丞, 旦久罗布, 高清竹, 胡国铮. 施氮对藏北垂穗披碱草人工草地叶片功能性状和种群特征的影响[J]. 草业学报, 2018, 27(5): 51-60. |
[10] | 徐雅梅, 王传旗, 武俊喜, 张文静, 王小川, 赤列催珍, 徐德飞, 包赛很那, 苗彦军. Mn2+、Pb2+对野生垂穗披碱草种子萌发与幼苗生长的影响[J]. 草业学报, 2018, 27(3): 194-200. |
[11] | 李铁, 王润泽, 谌芸, 何丙辉, 周涛, 吴晨, 刘枭宏. PAM和草类根系对荒坡紫色土物理性质与抗剪性能的影响[J]. 草业学报, 2018, 27(2): 69-78. |
[12] | 刘昌义, 胡夏嵩, 窦增宁, 李希来, 徐志闻. 黄河源区高寒草地植被根-土复合体抗剪强度试验及退化程度阈值确定[J]. 草业学报, 2017, 26(9): 14-26. |
[13] | 葛静, 孟宝平, 杨淑霞, 高金龙, 殷建鹏, 张仁平, 冯琦胜, 梁天刚. 基于ADC和MODIS遥感数据的高寒草地地上生物量监测研究——以黄河源区为例[J]. 草业学报, 2017, 26(7): 23-34. |
[14] | 丁文斌, 何文健, 史东梅, 蒋光毅, 蒋平, 常松果. 干湿作用对紫色土坡耕地生物埂土壤抗剪强度衰减-恢复效应[J]. 草业学报, 2017, 26(6): 56-67. |
[15] | 葛静, 孟宝平, 杨淑霞, 高金龙, 冯琦胜, 梁天刚, 黄晓东, 高新华, 李文龙, 张仁平, 王云龙. 基于UAV技术和MODIS遥感数据的高寒草地盖度动态变化监测研究—以黄河源东部地区为例[J]. 草业学报, 2017, 26(3): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||