草业学报 ›› 2023, Vol. 32 ›› Issue (12): 139-149.DOI: 10.11686/cyxb2023036
• 研究论文 • 上一篇
王彦佳1(), 胡伯昂1(), 陈佳欣1, 许丽婷1, 姚琳1, 冯丽荣2, 郭长虹1()
收稿日期:
2023-02-02
修回日期:
2023-04-11
出版日期:
2023-12-20
发布日期:
2023-10-18
通讯作者:
郭长虹
作者简介:
Corresponding author. E-mail: kaku3008@126.com基金资助:
Yan-jia WANG1(), Bo-ang HU1(), Jia-xin CHEN1, Li-ting XU1, Lin YAO1, Li-rong FENG2, Chang-hong GUO1()
Received:
2023-02-02
Revised:
2023-04-11
Online:
2023-12-20
Published:
2023-10-18
Contact:
Chang-hong GUO
摘要:
为获得优良的解钾菌(KSB)并明确其对植物产量和品质的影响,采用硅酸盐细菌培养基从紫花苜蓿根际土壤分离、筛选到2株具有高效解钾能力的菌株。通过细菌形态学、16S rDNA序列分析和生理生化鉴定,确定2株解钾菌分别为巨大芽孢杆菌和耐寒短杆菌,命名为XLT-4和XLT-7。2株菌株均具有产吲哚-3-乙酸(IAA)、铁载体和溶磷能力。接种XLT-4和XLT-7显著提高了紫花苜蓿的株高、根长、地上和地下干鲜重,以及根系活力、叶片的磷、钾和粗蛋白含量,降低了中性洗涤纤维和酸性洗涤纤维的含量。此外,接种2株解钾菌还提高了紫花苜蓿根际土壤酶活性和速效钾含量。本研究获得的2株解钾菌在提高紫花苜蓿产量和品质方面发挥了重要作用,是开发微生物制剂的优质菌株资源。
王彦佳, 胡伯昂, 陈佳欣, 许丽婷, 姚琳, 冯丽荣, 郭长虹. 2株紫花苜蓿解钾菌的筛选鉴定及其对产量和品质的影响[J]. 草业学报, 2023, 32(12): 139-149.
Yan-jia WANG, Bo-ang HU, Jia-xin CHEN, Li-ting XU, Lin YAO, Li-rong FENG, Chang-hong GUO. Screening and identification of two potassium solubilizer strains and their effects on the yield and quality of alfalfa[J]. Acta Prataculturae Sinica, 2023, 32(12): 139-149.
项目 Index | 菌株Strain | |
---|---|---|
XLT-4 | XLT-7 | |
吲哚 Indole | - | - |
葡萄糖 Glucose | + | + |
甲基红 Methyl red | - | - |
伏普 V-P | - | - |
柠檬酸盐 Citrate | + | - |
淀粉水解 Starch hydrolysis | + | - |
硫化氢 H2S | - | - |
明胶液化 Gelatin liquefaction | - | + |
脲酶 Urease | + | + |
接触酶 Contact enzyme | + | + |
革兰氏染色Gram stain | + | + |
表 1 XLT-4和XLT-7的生理生化特性
Table 1 Physiological and biochemical characteristics of XLT-4 and XLT-7
项目 Index | 菌株Strain | |
---|---|---|
XLT-4 | XLT-7 | |
吲哚 Indole | - | - |
葡萄糖 Glucose | + | + |
甲基红 Methyl red | - | - |
伏普 V-P | - | - |
柠檬酸盐 Citrate | + | - |
淀粉水解 Starch hydrolysis | + | - |
硫化氢 H2S | - | - |
明胶液化 Gelatin liquefaction | - | + |
脲酶 Urease | + | + |
接触酶 Contact enzyme | + | + |
革兰氏染色Gram stain | + | + |
图3 2株解钾菌在CAS和PVK培养基上进行斑点培养A, B: XLT-4、XLT-7的铁载体Siderophore of XLT-4, XLT-7; C, D: XLT-4、XLT-7的溶磷Dissolve phosphorus of XLT-4, XLT-7.
Fig.3 Two strains of potassium solubilizing bacteria were blotted on CAS and PVK medium
图4 2株解钾菌产IAA、铁载体、溶磷能力不同小写字母表示差异显著(P<0.05)。下同。Different lowercase letters mean the significant differences among treatment (P<0.05). The same below. *: P<0.05; **: P<0.01; ***: P<0.001.
Fig.4 IAA production, siderophore and phosphorus solubilization capacity of two strains of potassium solubilizing bacteria
处理 Treatment | 株高 Plant height (cm) | 根长 Root length (cm) | 地上鲜重 Fresh plant weight (g·plant-1) | 地下鲜重 Fresh root weight (g·plant-1) | 地上干重 Dry plant weight (g·plant-1) | 地下干重 Dry root weight (g·plant-1) |
---|---|---|---|---|---|---|
CK | 20.34±0.28d | 17.79±0.92c | 6.53±0.26d | 1.18±0.06d | 1.42±0.04c | 0.41±0.03c |
CK+K | 21.11±0.47c | 19.50±0.47b | 6.83±0.30d | 1.24±0.05d | 1.52±0.04c | 0.48±0.06bc |
XLT-4 | 23.64±0.50b | 20.18±0.33b | 7.39±0.13c | 1.42±0.03c | 1.78±0.04b | 0.53±0.04b |
XLT-4+K | 25.16±0.25a | 21.17±0.07a | 7.92±0.06ab | 1.50±0.02ab | 1.98±0.09a | 0.62±0.03a |
XLT-7 | 23.86±0.21b | 20.13±0.19b | 7.80±0.42bc | 1.44±0.04bc | 1.83±0.05b | 0.53±0.06b |
XLT-7+K | 25.31±0.53a | 21.23±0.22a | 8.37±0.22a | 1.51±0.02a | 2.08±0.11a | 0.64±0.04a |
表 2 解钾菌对紫花苜蓿生物量的影响
Table 2 Effects of potassium solubilizing bacteria on biomass of alfalfa
处理 Treatment | 株高 Plant height (cm) | 根长 Root length (cm) | 地上鲜重 Fresh plant weight (g·plant-1) | 地下鲜重 Fresh root weight (g·plant-1) | 地上干重 Dry plant weight (g·plant-1) | 地下干重 Dry root weight (g·plant-1) |
---|---|---|---|---|---|---|
CK | 20.34±0.28d | 17.79±0.92c | 6.53±0.26d | 1.18±0.06d | 1.42±0.04c | 0.41±0.03c |
CK+K | 21.11±0.47c | 19.50±0.47b | 6.83±0.30d | 1.24±0.05d | 1.52±0.04c | 0.48±0.06bc |
XLT-4 | 23.64±0.50b | 20.18±0.33b | 7.39±0.13c | 1.42±0.03c | 1.78±0.04b | 0.53±0.04b |
XLT-4+K | 25.16±0.25a | 21.17±0.07a | 7.92±0.06ab | 1.50±0.02ab | 1.98±0.09a | 0.62±0.03a |
XLT-7 | 23.86±0.21b | 20.13±0.19b | 7.80±0.42bc | 1.44±0.04bc | 1.83±0.05b | 0.53±0.06b |
XLT-7+K | 25.31±0.53a | 21.23±0.22a | 8.37±0.22a | 1.51±0.02a | 2.08±0.11a | 0.64±0.04a |
图5 接种2株解钾菌紫花苜蓿的根系活力、钾、磷、粗蛋白、中性洗涤纤维、酸性洗涤纤维含量
Fig.5 The root activity, K, P, crude protein, neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents of two strains of potassium solution-producing alfalfa were inoculated
图6 接种2株解钾菌紫花苜蓿根际土壤脲酶、过氧化氢酶、蔗糖酶活性及速效钾含量
Fig.6 The activity of urease, catalase, sucrase and available potassium content in the rhizosphere soil of alfalfa inoculated with two strains of potassium-solutionizing bacteria
1 | Velázquez E, Silva L R, Ramírez-Bahena M H, et al. Potassium solubilizing microorganisms for sustainable agriculture: Diversity of potassium-solubilizing microorganisms and their interactions with plants. Springer, 2016: 99-110. |
2 | Zhao Y N, Mao X X, Zhang M S, et al. The application of Bacillus megaterium alters soil microbial community composition, bioavailability of soil phosphorus and potassium, and cucumber growth in the plastic shed system of North China. Agriculture, Ecosystems & Environment, 2021, 307(2): 107236. |
3 | Wang Y, Wu W H. Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Current Opinion in Plant Biology, 2015, 25(6): 46-52. |
4 | Zhang J L, Lu Z F, Pan Y H, et al. Potassium deficiency aggravates yield loss in rice by restricting the translocation of non‐structural carbohydrates under Sarocladium oryzae infection condition. Physiologia Plantarum, 2019, 167(3): 352-364. |
5 | Parmar P, Sindhu S S. The novel and efficient method for isolating potassium solubilizing bacteria from rhizosphere soil. Geomicrobiology Journal, 2019, 36(2): 130-136. |
6 | Chen Y H, Yang X Z, Zhuang L, et al. Efficiency of potassium-solubilizing Paenibacillus mucilaginosus for the growth of apple seedling. Journal of Integrative Agriculture, 2020, 19(10): 2458-2469. |
7 | Xiao Y J, Wang X J, Chen W L, et al. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiology Journal, 2017, 34(10): 873-880. |
8 | Bakhshandeh E, Rahimian H, Pirdashti H, et al. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran. Journal of Applied Microbiology, 2015, 119(5): 1371-1382. |
9 | Yang H, Hu Z, Guo Z H, et al. Screening and identification of rice growth-promoting strains and their effects on rice growth. Microbiology China, 2022, 49(6): 2088-2099. |
杨华, 胡展, 郭照辉, 等. 水稻促生菌的筛选、鉴定及其促生效果. 微生物学通报, 2022, 49(6): 2088-2099. | |
10 | Shi J J, Liu J Y, Han G M, et al. Physiological activity and growth promoting effect of potassium solubilizing bacteria in cotton rhizosphere. Soil and Fertilizer Sciences in China, 2012(4): 87-90. |
史静静, 刘静洋, 韩国民, 等. 棉花根际解钾细菌的生理活性和促生效果. 中国土壤与肥料, 2012(4): 87-90. | |
11 | Li H Y, Qiu Y Z, Yao T, et al. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research, 2020, 199(5): 104577. |
12 | Acharya J P, Lopez Y, Gouveia B T, et al. Breeding alfalfa (Medicago sativa L.) adapted to subtropical agroecosystems. Agronomy, 2020, 10(5): 742. |
13 | Shi S L, Nan L L, Smith K F. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy, 2017, 7(1): 1. |
14 | Macolino S, Lauriault L M, Rimi F, et al. Phosphorus and potassium fertilizer effects on alfalfa and soil in a non-limited soil. Agronomy Journal, 2013, 105(6): 1613-1618. |
15 | Chen Y F, Ke C L, Zhou D B, et al. Screening and identification of potassium solubilizing actinomycetes in banana rhizosphere soil and their potassium solubilizing characteristics. Biotechnology Bulletin, 2015, 31(6): 129-137. |
陈宇丰, 柯春亮, 周登博, 等. 香蕉根际土壤解钾放线菌的筛选鉴定及解钾特性研究. 生物技术通报, 2015, 31(6): 129-137. | |
16 | Ihsanullah D, Saad M M, Aziz E A, et al. Boosting alfalfa (Medicago sativa L.) production with rhizobacteria from various plants in Saudi Arabia. Frontiers in Microbiology, 2018, 1(1): 477. |
17 | Jiang J H, Peng X W, Yan Z X, et al. Isolation and identification of potassium-solubilizing bacteria from rhizosphere soil of apple tree. Chinese Journal of Agrometeorology, 2017, 38(11): 738-748. |
姜霁航, 彭霞薇, 颜振鑫, 等. 苹果树根际高效解钾菌的筛选及鉴定. 中国农业气象, 2017, 38(11): 738-748. | |
18 | Dong X Z, Cai M Y. Handbook for the identification of common bacterial systems. Beijing: Science Press, 2001: 66-193. |
东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京: 科学出版社, 2001: 66-193. | |
19 | Kocagöz T, Yilmaz E, Ozkara S, et al. Detection of Mycobacterium tuberculosis in sputum samples by polymerase chain reaction using a simplified procedure. Journal of Clinical Microbiology, 1993, 31(6): 1435-1438. |
20 | Li Z D, Chen X R, Li P, et al. Determination and identification of IAA production and bacteriostatic ability of endophytic strain Z5. Acta Prataculturae Sinica, 2010, 19(2): 61-68. |
李振东, 陈秀蓉, 李鹏, 等. 珠芽蓼内生菌Z5产IAA和抑菌能力测定及其鉴定. 草业学报, 2010, 19(2): 61-68. | |
21 | Schwyn B, Neilands J B. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160(1): 47-56. |
22 | Wang P, Dong B, Li F D, et al. Detection and determination of the siderophores produced by wheat rhizobacteria. Microbiology China, 1994, 21(6): 323-326. |
王平, 董飚, 李阜棣, 等. 小麦根圈细菌铁载体的检测. 微生物学通报, 1994, 21(6): 323-326. | |
23 | Qiao C C, Wang T T, Wang R F, et al. Study on screening and promoting effect of efficient phosphorus solubilizing bacteria. Journal of Nanjing Agricultural University, 2017, 40(4): 664-670. |
乔策策, 王甜甜, 王若斐, 等. 高效溶磷菌的筛选及其促生效应研究. 南京农业大学学报, 2017, 40(4): 664-670. | |
24 | Zhang X S. Analysis of factors influencing the determination of effective phosphorus content in phosphorus bacteria fermentation broth by molybdenum antimony colorimetry. Journal of Anhui Agricultural Sciences, 2008, 36(12): 4822-4823. |
张祥胜. 钼锑抗比色法测定磷细菌发酵液中有效磷含量测定值的影响因素分析. 安徽农业科学, 2008, 36(12): 4822-4823. | |
25 | Liu J J, Wei Z, Li J H. Effects of copper on leaf membrane structure and root activity of maize seedling. Botanical Studies, 2014, 55(1): 1-6. |
26 | Liu Y Q, Wang Y H, Kong W L, et al. Identification, cloning and expression patterns of the genes related to phosphate solubilization in Burkholderia multivorans WS-FJ9 under different soluble phosphate levels. Biotechnology & Applied Microbiology Express, 2020, 10(1): 1-11. |
27 | Gao R, Li Z D, Ma Z, et al. Research on crude protein of pasture based on hyperspectral imaging. Spectroscopy and Spectral Analysis, 2019, 39(10): 3245-3250. |
高睿, 李泽东, 马铮, 等. 基于高光谱成像的牧草粗蛋白含量检测研究. 光谱学与光谱分析, 2019, 39(10): 3245-3250. | |
28 | Albayrak S. Use of reflectance measurements for the detection of N, P, K, ADF and NDF contents in sainfoin pasture. Sensors, 2008, 8(11): 7275-7286. |
29 | Guan S Y. Soil enzyme and its research methods. Beijing: China Agriculture Press, 1986. |
关松萌. 土壤酶及其研究方法. 北京: 中国农业出版社, 1986. | |
30 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
31 | Feng K, Cai Z, Ding T, et al. Effects of potassium-solubulizing and photosynthetic bacteria on tolerance to salt stress in maize. Journal of Applied Microbiology, 2019, 126(5): 1530-1540. |
32 | Yi L B, Peng Q Z, He Q Z, et al. Screening, identification and potassium-releasing activity of high efficient potassium feldspar decomposition strain. Chinese Journal of Microecology, 2012, 24(9): 773-776. |
易浪波, 彭清忠, 何齐庄, 等. 高效钾长石分解菌株的筛选、鉴定及解钾活性研究. 中国微生态学杂志, 2012, 24(9): 773-776. | |
33 | Raji M, Thangavelu M. Isolation and screening of potassium solubilizing bacteria from saxicolous habitat and their impact on tomato growth in different soil types. Archives of Microbiology, 2021, 203(6): 3147-3161. |
34 | Pérez-Flores P, Valencia-Cantero E, Altamirano-Hernández J, et al. Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma, 2017, 254(6): 2201-2213. |
35 | Sultana S, Alam S, Karim M M. Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation. Journal of Agriculture and Food Research, 2021, 4(2): 100150. |
36 | Sun K, Geng F Y, Yu Q J, et al. Screening and identification of potassium solubilizing bacteria in the rhizosphere soil of burdock and optimization of potassium solubilizing conditions. China Brewing, 2020, 39(10): 103-108. |
孙科, 耿凤英, 于秋菊, 等. 牛蒡根际土壤中解钾菌筛选,鉴定及解钾条件优化. 中国酿造, 2020, 39(10): 103-108. | |
37 | Wang H, Han L Z. Identification and growth-promoting effect of four rhizosphere growth-promoting strains of tea tree. Microbiology China, 2019, 46(3): 548-562. |
王欢, 韩丽珍. 4株茶树根际促生菌菌株的鉴定及促生作用. 微生物学通报, 2019, 46(3): 548-562. | |
38 | Chen L, Li K K, Mi G H, et al. Screening and identification of potassium-solubilizing bacteria and their promoting effects on maize in black soil of Northeast China. Microbiology China, 2021, 48(5): 1560-1570. |
陈腊, 李可可, 米国华, 等. 解钾促生菌的筛选鉴定及对东北黑土区玉米的促生效应. 微生物学通报, 2021, 48(5): 1560-1570. | |
39 | Ali A M, Awad M Y M, Hegab S A, et al. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. Journal of Plant Nutrition, 2021, 44(3): 411-420. |
40 | Biswas S, Shivaprakash M K. Effect of co-inoculation of potassium solubilizing, mobilizing and phosphorus solubilizing bacteria on growth, yield and nutrient uptake of radish (Raphanus sativus L). International Journal of Advanced Research in Biological Sciences, 2021, 8(1): 108-113. |
41 | Mi Y F, Ma X W, Chen S C. Resistant evaluation of kiwifruit rootstocks to root zone hypoxia stress. American Journal of Plant Sciences, 2013, 4(4): 945-954. |
42 | Basak B B, Biswas D R. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant and Soil, 2009, 317(1): 235-255. |
43 | Hasanuzzaman M, Fujita M, Oku H, et al. Phosphorus nutrition: Plant growth in response to deficiency and excess. Springer, 2018, 6(2): 171-190. |
44 | Sun F, Ou Q J, Wang N, et al. Isolation and identification of potassium-solubilizing bacteria from Mikania micrantha rhizospheric soil and their effect on M. micrantha plants. Global Ecology and Conservation, 2020, 23(7): e01141. |
45 | Hungria M, Moreira A, Silva L A, et al. Biomass yield, nitrogen content and uptake, and nutritive value of alfalfa co-inoculated with plant-growth promoting bacteria. International Journal for Innovation Education and Research, 2020, 8(5): 400-420. |
46 | Singh M, Biswas S K, Nagar D, et al. Impact of bio-fertilizer on growth parameters and yield of potato. International Journal of Current Microbiology and Applied Sciences, 2017, 6(5): 1717-1724. |
47 | Zhong Z K, Yang G H, Ren C J, et al. Effects of farmland abandonment on soil enzymatic activity and enzymatic stoichiometry in the Loess Hilly Region. Environmental Science, 2021, 42(1): 411-421. |
钟泽坤, 杨改河, 任成杰, 等. 黄土丘陵区撂荒农田土壤酶活性及酶化学计量变化特征. 环境科学, 2021, 42(1): 411-421. | |
48 | Raghavendra M, Singh Y V, Gaind S, et al. Effect of potassium and crop residue levels on potassium solubilizers and crop yield under maize-wheat rotation. International Journal of Current Microbiology and Applied Sciences, 2018, 7(6): 424-435. |
49 | Etesami H, Emami S, Alikhani H A. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects: A review. Journal of Soil Science and Plant Nutrition, 2017, 17(4): 897-911. |
50 | Wan B B, Liu Y, Wu Y, et al. Screening, identification and application of tobacco rhizosphere phosphorus and potassium solubilizing bacteria. Journal of Henan Agricultural Sciences, 2016, 45(9): 46-51. |
万兵兵, 刘晔, 吴越, 等. 烟草根际解磷解钾菌的筛选鉴定及应用效果研究. 河南农业科学, 2016, 45(9): 46-51. |
[1] | 刘选帅, 孙延亮, 马春晖, 张前兵. 菌磷耦合下紫花苜蓿的干物质产量及磷素空间分布特征[J]. 草业学报, 2023, 32(9): 104-115. |
[2] | 石永红, 高鹏, 方志红, 赵祥, 韩伟, 魏江铭, 刘琳, 李锦臻. 15个进口饲用燕麦品种炭疽病的抗病性评价及损失分析[J]. 草业学报, 2023, 32(9): 130-142. |
[3] | 康燕霞, 姜渊博, 齐广平, 银敏华, 马彦麟, 汪精海, 贾琼, 唐仲霞, 汪爱霞. 红豆草与无芒雀麦混播草地生产力提升的水分调控模式研究[J]. 草业学报, 2023, 32(8): 115-128. |
[4] | 徐蕊, 王峥, 王仪明, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿对轮作水稻产量和蔗糖代谢的影响[J]. 草业学报, 2023, 32(8): 129-140. |
[5] | 王宝强, 马文静, 王贤, 朱晓林, 赵颖, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿幼苗次生代谢产物的影响[J]. 草业学报, 2023, 32(8): 141-151. |
[6] | 赵杰, 尹雪敬, 王思然, 董志浩, 李君风, 贾玉山, 邵涛. 贮藏时间对甜高粱青贮发酵品质、微生物群落组成和功能的影响[J]. 草业学报, 2023, 32(8): 164-175. |
[7] | 凌文卿, 张磊, 李珏, 冯启贤, 李妍, 周燚, 刘一佳, 阳伏林, 周晶. 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率及有氧稳定性的影响[J]. 草业学报, 2023, 32(7): 122-134. |
[8] | 党浩千, 覃娟清, 郭宇康, 张富, 王迎港, 刘庆华. 不同添加剂发酵笋壳对湖羊生产性能及瘤胃发酵的影响[J]. 草业学报, 2023, 32(7): 135-148. |
[9] | 蒋丛泽, 受娜, 高玮, 马仁诗, 沈禹颖, 杨宪龙. 陇东旱塬区不同青贮玉米品种生产性能和营养品质综合评价[J]. 草业学报, 2023, 32(7): 216-228. |
[10] | 王少鹏, 刘佳, 洪军, 林积圳, 张义, 史昆, 王赞. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析[J]. 草业学报, 2023, 32(7): 49-60. |
[11] | 马嵩科, 霍克, 张冬霞, 张静, 张俊豪, 柴雪茹, 王贺正. 玉米秸秆还田配施氮肥对豫西旱地小麦土壤酶活性和氮肥利用效率的影响[J]. 草业学报, 2023, 32(6): 120-133. |
[12] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
[13] | 梁梦琪, 武齐丰, 邵涛, 吴艾丽, 刘秦华. 添加剂对多花黑麦草青贮发酵品质、α-生育酚和β-胡萝卜素含量的影响[J]. 草业学报, 2023, 32(5): 180-189. |
[14] | 张振粉, 黄荣, 姚博, 张旺东, 杨成德, 陈秀蓉. 欧美进口紫花苜蓿可培养种带细菌及其对动植物的致病性[J]. 草业学报, 2023, 32(4): 161-172. |
[15] | 严翊丹, 聂莹莹, 徐丽君, 高兴发, 饶彦章, 饶雄, 张洪志, 赵查书, 竺艳萍, 朱玉波. 西南山区冬闲田功能型燕麦品种潜力挖掘评价[J]. 草业学报, 2023, 32(4): 42-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||