草业学报 ›› 2023, Vol. 32 ›› Issue (12): 24-35.DOI: 10.11686/cyxb2023050
黄业芸1,2,3,4(), 邱开阳1,2,3,4(), 朱亚超5, 谢应忠1,2,3,4, 刘王锁1,2,3,4, 杨壹1,2,3,4, 王思瑶1,2,3,4, 崔璐瑶1,2,3,4, 鲍平安1,2,3,4
收稿日期:
2023-02-14
修回日期:
2023-04-10
出版日期:
2023-12-20
发布日期:
2023-10-18
通讯作者:
邱开阳
作者简介:
Corresponding author. E-mail: kaiyangqiu@nxu.edu.cn基金资助:
Ye-yun HUANG1,2,3,4(), Kai-yang QIU1,2,3,4(), Ya-chao ZHU5, Ying-zhong XIE1,2,3,4, Wang-suo LIU1,2,3,4, Yi YANG1,2,3,4, Si-yao WANG1,2,3,4, Lu-yao CUI1,2,3,4, Ping-an BAO1,2,3,4
Received:
2023-02-14
Revised:
2023-04-10
Online:
2023-12-20
Published:
2023-10-18
Contact:
Kai-yang QIU
摘要:
为了解干旱与半干旱区域山地生态系统植被生物量与土壤分形特征和土壤水分含量的垂直分异规律,探究植被生物量与分形特征和土壤水分的相关关系,选取贺兰山不同海拔典型植被带作为研究区,采用单因素方差分析、Pearson相关分析等方法分析植被生物量、土壤分形特征和土壤水分含量的垂直分异特征及三者间相互关系。结果表明:1)草本植被生物量与灌木植被生物量沿海拔未呈明显的线性变化趋势,灌木植被生物量在浅山灌丛(QSGC)样地具有最大值,草本植被生物量在亚高山灌丛(YGSGC)样地具有最大值,植被条件较好,植被生产力较高。2)贺兰山土壤颗粒以粉粒和极细砂粒为主,随着海拔的升高,土壤质地变细。3)土壤水分含量随海拔增高显著增加,但在青海云杉(QHYS)样地土壤水分含量略低。4)相关分析表明,年降水量以及土壤黏粒含量是影响植被生物量的主要因子。总体上,贺兰山植被生物量、土壤分形特征以及土壤水分含量受多个环境因子共同作用和影响,呈明显的空间异质性。本研究对于揭示贺兰山植被生物量空间变化机制及促进贺兰山退化植被恢复具有重要的意义,可为促进贺兰山山地生态系统植被与土壤资源合理利用提供参考。
黄业芸, 邱开阳, 朱亚超, 谢应忠, 刘王锁, 杨壹, 王思瑶, 崔璐瑶, 鲍平安. 贺兰山不同海拔植被生物量与土壤分形特征和土壤水分的相关关系[J]. 草业学报, 2023, 32(12): 24-35.
Ye-yun HUANG, Kai-yang QIU, Ya-chao ZHU, Ying-zhong XIE, Wang-suo LIU, Yi YANG, Si-yao WANG, Lu-yao CUI, Ping-an BAO. Correlation between vegetation biomass and soil fractal characteristics and soil moisture at different elevations in the Helan Mountains[J]. Acta Prataculturae Sinica, 2023, 32(12): 24-35.
研究区 Study area | 海拔 Altitude (m) | 地理位置 Geographical location | 年降水量 Mean annual precipitation (mm) | 年均温 Mean annual temperature (℃) | 草本优势物种 Herb dominant species | 灌木优势物种 Shrub dominant species |
---|---|---|---|---|---|---|
HJS | 1350 | 106°00′01″ E 38°42′05″ N | 191 | 8.32 | 短花针茅S. breviflora, 兴安胡枝子Lespedeza davurica, 冬青叶兔唇花Lagochilus ilicifolius | 松叶猪毛菜 Salsola laricifolia |
QSGC | 1800 | 105°56′40″ E 38°45′07″ N | 231 | 5.40 | 石生针茅Stipa tianschanica var. klemenzii, 沙生针茅Stipa caucasica, 贺兰山岩黄芪Hedysarum petrovii | 蒙古扁桃 P. mongolica |
QHYS | 2450 | 105°54′02″ E 38°46′36″ N | 253 | 2.89 | 祁连薹草Carex allivescens, 中华鹅观草Elymus sinicus, 小红菊Chrysanthemum chanetii | |
YGSGC | 2600 | 105°53′52″ E 38°46′24″ N | 262 | 2.32 | 高原嵩草 K. pusilla, 硬质早熟禾Poa sphondylodes, 扁穗冰草 A. cristatum | 白毛银露梅 P. glabra |
XSD | 2900 | 105°54′13″ E 38°46′00″ N | 266 | 2.19 | 高原嵩草K. pusilla, 西山委陵菜Potentilla sischanensis, 小红菊C. chanetii |
表1 研究区基本信息
Table 1 Basic information of the study areas
研究区 Study area | 海拔 Altitude (m) | 地理位置 Geographical location | 年降水量 Mean annual precipitation (mm) | 年均温 Mean annual temperature (℃) | 草本优势物种 Herb dominant species | 灌木优势物种 Shrub dominant species |
---|---|---|---|---|---|---|
HJS | 1350 | 106°00′01″ E 38°42′05″ N | 191 | 8.32 | 短花针茅S. breviflora, 兴安胡枝子Lespedeza davurica, 冬青叶兔唇花Lagochilus ilicifolius | 松叶猪毛菜 Salsola laricifolia |
QSGC | 1800 | 105°56′40″ E 38°45′07″ N | 231 | 5.40 | 石生针茅Stipa tianschanica var. klemenzii, 沙生针茅Stipa caucasica, 贺兰山岩黄芪Hedysarum petrovii | 蒙古扁桃 P. mongolica |
QHYS | 2450 | 105°54′02″ E 38°46′36″ N | 253 | 2.89 | 祁连薹草Carex allivescens, 中华鹅观草Elymus sinicus, 小红菊Chrysanthemum chanetii | |
YGSGC | 2600 | 105°53′52″ E 38°46′24″ N | 262 | 2.32 | 高原嵩草 K. pusilla, 硬质早熟禾Poa sphondylodes, 扁穗冰草 A. cristatum | 白毛银露梅 P. glabra |
XSD | 2900 | 105°54′13″ E 38°46′00″ N | 266 | 2.19 | 高原嵩草K. pusilla, 西山委陵菜Potentilla sischanensis, 小红菊C. chanetii |
图2 各样地草本与灌木地上生物量不同字母表示不同样地间差异显著(P<0.05),下同。Different letters indicate significant differences among different sites (P<0.05), the same below.
Fig.2 Herb and shrub aboveground biomass of each study areas
图5 各样地土壤颗粒组成和分形维数C: 黏粒Clay; S: 粉粒 Silt; VFS: 极细砂粒Very fine sand; FS: 细砂粒Fine sand; CS: 粗砂粒 Coarse sand; 下同The same below.
Fig.5 Soil particle composition and fractal dimension
图6 植被生物量与各因子的Pearson分析*: P<0.05; **: P<0.01;Altitude: 海拔; MAT: 年均温Mean annual temperature; MAP: 年均降水量Mean annual precipitation; H-AGB: 草本植被地上生物量Above-ground biomass of herbaceous vegetation; S-AGB: 灌木植被地上生物量Above-ground biomass of shrub vegetation; T-AGB: 总平均生物量Total mean biomass; D: 分形维数Fractal dimension; SMC: 土壤水分含量Soil moisture content; 下同The same below.
Fig.6 Pearson analysis of vegetation biomass with each factors
解释变量Explanatory variable | 解释量Explains (%) | 贡献度Contribution (%) | F | P |
---|---|---|---|---|
黏粒Clay | 30.1 | 43.8 | 10.8 | 0.02 |
土壤水分含量Soil moisture content | 21.0 | 30.6 | 10.3 | 0.02 |
极细砂粒Very fine sand | 4.5 | 6.5 | 2.3 | 0.64 |
年均降水量Mean annual precipitation | 2.3 | 3.4 | 1.2 | 1.00 |
海拔Altitude | 5.0 | 7.3 | 2.8 | 0.56 |
年均温Mean annual temperature | 2.6 | 3.8 | 1.5 | 1.00 |
粉粒Silt | 2.2 | 3.2 | 1.3 | 1.00 |
细砂粒Fine sand | 0.8 | 1.2 | 0.5 | 1.00 |
分形维数Fractal dimension | 0.2 | 0.3 | 0.1 | 1.00 |
表2 RDA分析
Table 2 RDA analysis
解释变量Explanatory variable | 解释量Explains (%) | 贡献度Contribution (%) | F | P |
---|---|---|---|---|
黏粒Clay | 30.1 | 43.8 | 10.8 | 0.02 |
土壤水分含量Soil moisture content | 21.0 | 30.6 | 10.3 | 0.02 |
极细砂粒Very fine sand | 4.5 | 6.5 | 2.3 | 0.64 |
年均降水量Mean annual precipitation | 2.3 | 3.4 | 1.2 | 1.00 |
海拔Altitude | 5.0 | 7.3 | 2.8 | 0.56 |
年均温Mean annual temperature | 2.6 | 3.8 | 1.5 | 1.00 |
粉粒Silt | 2.2 | 3.2 | 1.3 | 1.00 |
细砂粒Fine sand | 0.8 | 1.2 | 0.5 | 1.00 |
分形维数Fractal dimension | 0.2 | 0.3 | 0.1 | 1.00 |
1 | Liu C C, Wei Y F, Liu Y G, et al. Biomass of canopy and shrub layers of karst forests in Puding, Guizhou, China. Chinese Journal of Plant Ecology, 2009, 33(4): 698-705. |
刘长成, 魏雅芬, 刘玉国, 等. 贵州普定喀斯特次生林乔灌层地上生物量. 植物生态学报, 2009, 33(4): 698-705. | |
2 | Yang Y T, Shi Y L, Li Z G, et al. Community characteristics of understory herb layer and its relationships with stand structure and soil nutrient availability in the Three-North shelterbelt of Shaanxi, China. Acta Ecologica Sinica, 2020, 40(18): 6542-6551. |
杨玉婷, 石玉林, 李战刚, 等. 陕北“三北”防护林下草本群落特征及其与林分结构和土壤养分的关系. 生态学报, 2020, 40(18): 6542-6551. | |
3 | Ma K P. Studies on biodiversity and ecosystem function via manipulation experiments. Biodiversity Science, 2013, 21(3): 247-248. |
马克平. 生物多样性与生态系统功能的实验研究. 生物多样性, 2013, 21(3): 247-248. | |
4 | Luo Y K, Fang J Y, Hu H F. Biomass estimation models and allocation patterns of 14 shrub species in Mountain Luya, Shanxi, China. Chinese Journal of Plant Ecology, 2017, 41(1): 115-125. |
罗永开, 方精云, 胡会峰. 山西芦芽山14种常见灌木生物量模型及生物量分配. 植物生态学报, 2017, 41(1): 115-125. | |
5 | Wu G, Liu Z, Zhang L, et al. Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of Western China. Plant and Soil, 2010, 332(1/2): 331-337. |
6 | Huang X Y, Han Y G, Han L. Temporal and spatial variation of soil moisture in artificial forests in Hedong sandy area and its relationship with meteorological factors. Journal of Northeast Forestry University, 2020, 48(5): 29-34. |
黄晓宇, 韩永贵, 韩磊. 宁夏河东沙区人工林土壤水分时空变化及其与气象因子之间的关系. 东北林业大学学报, 2020, 48(5): 29-34. | |
7 | Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review. Earth Science Reviews, 2010, 99(3/4): 125-161. |
8 | Ying L A, Wang G, Sun W, et al. Stratification response of soil water content during rainfall events under different rainfall patterns. Hydrological Processes, 2018, 32(20): 3128-3139. |
9 | Gao Z, Lin Z, Niu F, et al. Soil water dynamics in the active layers under different land-cover types in the permafrost regions of the Qinghai-Tibet Plateau, China. Geoderma, 2020, 364: 114176. |
10 | Guo X, Fu Q, Hang Y, et al. Spatial variability of soil moisture in relation to land use types and topographic features on hillslopes in the black soil (Mollisols) area of Northeast China. Sustainability, 2020, 12(9): 3552. |
11 | Gaston K J. Global patterns in biodiversity. Nature, 2000, 6783: 220-227. |
12 | Zhang M Y, Ma Y J, Xie T. Spatial distribution characteristics of soil moisture during growing season in Qinghai Lake Basin. Water Resources and Hydropower Engineering, 2023, 54(3): 85-95. |
张梦雅, 马育军, 谢婷. 青海湖流域生长季土壤水分空间分布特征研究. 水利水电技术, 2023, 54(3): 85-95. | |
13 | Li Z K, Li X Y, Zhou S, et al. A comprehensive review on coupled processes and mechanisms of soil-vegetation-hydrology, and recent research advances. Scientia Sinica (Terrae), 2022, 52(11): 2105-2138. |
李中恺, 李小雁, 周沙, 等. 土壤-植被-水文耦合过程与机制研究进展. 中国科学: 地球科学, 2022, 52(11): 2105-2138. | |
14 | Liu Z, Li Q, Chen D D, et al. Patterns of plant species diversity along an altitudinal gradient and its effect on above-ground biomass in alpine meadows in Qinghai-Tibet Plateau. Biodiversity Science, 2015, 23(4): 451-462. |
刘哲, 李奇, 陈懂懂, 等. 青藏高原高寒草甸物种多样性的海拔梯度分布格局及对地上生物量的影响. 生物多样性, 2015, 23(4): 451-462. | |
15 | Wang J L, Cao W X, Zhang D G, et al. Structure and species diversity of alpine Rhododendron shrub-herb community and its response to altitude gradients in eastern Qilian Mountains. Grassland and Turf, 2019, 39(5): 1-9. |
王金兰, 曹文侠, 张德罡, 等. 东祁连山高寒杜鹃灌丛群落结构和物种多样性对海拔梯度的响应. 草原与草坪, 2019, 39(5): 1-9. | |
16 | Huang D Q, Yu L, Zhang Y S, et al. Above-ground biomass and its relationship to soil moisture of natural grassland in the northern slopes of the Qilian Mountains. Acta Prataculturae Sinica, 2011, 20(3): 20-27. |
黄德青, 于兰, 张耀生, 等. 祁连山北坡天然草地地上生物量及其与土壤水分关系的比较研究. 草业学报, 2011, 20(3): 20-27. | |
17 | Niu Y J, Yang S W, Zhou J W, et al. Vegetation distribution along mountain environmental gradient predicts shifts in plant community response to climate change in alpine meadow on the Tibetan Plateau. Science of the Total Environment, 2018, 650(1): 505-514. |
18 | Li W, Liu Y Z, Wang J L, et al. Six years of grazing exclusion is the optimum duration in the alpine meadow-steppe of the north-eastern Qinghai-Tibetan Plateau. Scientific Reports, 2018, 8: 17269. |
19 | Shi Y L. The main features of China mountains and its rational utilization. Resources Science, 1985(4): 1-7. |
石玉林. 我国山地的主要特点及其合理利用. 自然资源, 1985(4): 1-7. | |
20 | Jiang Y, Kang M Y, Zhu Y, et al. Plant biodiversity patterns on Helan Mountain, China. Acta Oecologica, 2006, 32(2): 125-133. |
21 | Sun H Y, Wan S B, Li L, et al. Distribution characteristics and influencing factors of soil active organic carbon at different elevations on west slope of Helan Mountain. Journal of Soil and Water Conservation, 2014, 28(4): 194-199. |
孙海燕, 万书波, 李林, 等. 贺兰山西坡不同海拔梯度土壤活性有机碳分布特征及影响因子. 水土保持学报, 2014, 28(4): 194-199. | |
22 | Song X R, Shang Z Y, Li X D, et al. Soil phosphorus and influencing factors in the grasslands at different elevations on west-slope of Helan Mountain, Inner Mongolia. Pratacultural Science, 2015, 32(7): 1054-1060. |
宋雄儒, 尚振艳, 李旭东, 等. 贺兰山西坡不同海拔梯度草地土壤磷特征及其影响因素. 草业科学, 2015, 32(7): 1054-1060. | |
23 | Ma J P, Pang D B, Chen L, et al. Phospholipid fatty acid analysis of soil microbes in typical vegetation types at different elevation on the east slope of Helan Mountain. Acta Ecologica Sinica, 2022, 42(12): 1-15. |
马进鹏, 庞丹波, 陈林, 等. 贺兰山东坡不同海拔典型植被带土壤微生物PLFA分析. 生态学报, 2022, 42(12): 1-15. | |
24 | Liu B R. Phospholipid fatty acid analysis of soil microbes in typical vegetation types at different elevation on the east slope of Helan Mountain. Ecology and Environmental Sciences, 2010, 19(4): 883-888. |
刘秉儒. 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征. 生态环境学报, 2010, 19(4): 883-888. | |
25 | Wan H Y, Chen L, Pang D B, et al. Soil enzyme activities and their stoichiometry at different altitudes in Helan Mountains, Northwest China. Chinese Journal of Applied Ecology, 2021, 32(9): 3045-3052. |
万红云, 陈林, 庞丹波, 等. 贺兰山不同海拔土壤酶活性及其化学计量特征. 应用生态学报, 2021, 32(9): 3045-3052. | |
26 | Wang G L, Zhou S L, Zhao Q G. Volume fractal dimension of soil particles and its applications to land use. Acta Pedologica Sinica, 2005(4): 545-550. |
王国梁, 周生路, 赵其国. 土壤颗粒的体积分形维数及其在土地利用中的应用. 土壤学报, 2005(4): 545-550. | |
27 | Lei J, Yang X H, Liu H M, et al. The characteristics of desert vegetation biomass and its influencing factors in the middle reaches of the Heihe River. Journal of Desert Research, 2021, 41(1): 203-208. |
雷军, 杨逍虎, 刘红梅, 等. 黑河流域中游荒漠典型区域植被生物量及其影响因素. 中国沙漠, 2021, 41(1): 203-208. | |
28 | Su C, Zhang X Y, Ma W H, et al. Altitudinal pattern and environmental interpretation of species diversity of scrub community in the Helan Mountains, China. Mountain Research, 2018, 36(5): 699-708. |
苏闯, 张芯毓, 马文红, 等. 贺兰山灌丛群落物种多样性海拔格局及环境解释. 山地学报, 2018, 36(5): 699-708. | |
29 | Han B, Fan J W, Zhong H P. Grassland biomass of communities along gradients of the Inner Mongolia grassland transect. Chinese Journal of Plant Ecology, 2006(4): 553-562. |
韩彬, 樊江文, 钟华平. 内蒙古草地样带植物群落生物量的梯度研究. 植物生态学报, 2006(4): 553-562. | |
30 | Qi W, Jia P, Luo S, et al. Disentangling the effects of environmental and communities’ factors on species’ biomass inequality in Qinghai-Tibetan grassland systems. Ecological Indicators, 2021, 122: 107309. |
31 | Shi S Y, Yu J J, Wang F, et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Science of the Total Environment, 2021, 755: 142419. |
32 | Wang J, Cai Y J, An Z S, et al. The distribution changes of alpine shrub and its climatic driving forces in Junhe sub-watershed based on remote sensing. Resources Science, 2013, 35(6): 1300-1309. |
王瑾, 蔡演军, 安芷生, 等. 基于遥感的高寒灌丛分布变化及其驱动力-以峻河流域为例. 资源科学, 2013, 35(6): 1300-1309. | |
33 | Wang C E, Huang M, Wang W Y, et al. Variation characteristics of plant community diversity and above-ground biomass in alpine degraded slopes along altitude gradients in the headwaters region of three-river on Tibetan plateau. Acta Ecologica Sinica, 2022, 42(9): 3640-3655. |
王采娥, 黄梅, 王文银, 等. 三江源区高寒坡地退化植物群落多样性和地上生物量沿海拔梯度的变化特征. 生态学报, 2022, 42(9): 3640-3655. | |
34 | Lloyd C D. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Journal of Hydrology, 2004, 308(1): 128-150. |
35 | Miao C Y, Chen J F, Zheng X Q. Relationship between air temperatures and soil freezing-thawing process. Journal of Taiyuan University of Technology, 2018, 49(3): 412-417. |
苗春燕, 陈军锋, 郑秀清. 冻融期气温与土壤冻融过程的关系研究. 太原理工大学学报, 2018, 49(3): 412-417. | |
36 | Liu J, Ai N, Zong Q Y, et al. Spatial distribution characteristics of soil moisture in Sabina vulgaris Ant. community in the southern edge of Mu Us sandland. Journal of Soil and Water Conservation, 2019, 33(5): 79-84. |
刘姣, 艾宁, 宗巧鱼, 等. 毛乌素沙地南缘臭柏群落土壤水分空间分布特征. 水土保持学报, 2019, 33(5): 79-84. | |
37 | Chen M F, Zeng H, Wang J. Research progress in the ecological characteristics of soil water in alpine grasslands on the Qinghai-Tibetan Plateau. Chinese Journal of Grassland, 2015, 37(2): 94-101. |
陈玫妃, 曾辉, 王钧. 青藏高原高寒草地土壤水分生态特征研究现状. 中国草地学报, 2015, 37(2): 94-101. | |
38 | Wang L, Lin S, Li Y H, et al. Relationship between understory vegetation and soil moisture in different forest types in Datong, Qinghai Province. Science of Soil and Water Conservation, 2019, 17(5): 25-35. |
王莉, 林莎, 李远航, 等. 青海大通不同林地类型林下植被与土壤水分的关系. 中国水土保持科学, 2019, 17(5): 25-35. | |
39 | Nan F S, Li Z X, Zhang X P, et al. Particle size fractal characteristics of soils in desert-steppe transition zone along the northern bank of Yellow River basin in Lanzhou. Earth Science, 2023, 48(3): 1195-1204. |
南富森, 李宗省, 张小平, 等. 黄河北岸兰州段荒漠-草原过渡带土壤粒径分形特征. 地球科学, 2023, 48(3): 1195-1204. | |
40 | Liu S L, Wang T, Qu J J. Soil characteristics changes in desertification processes in Hunshandake sandy land, Northern China. Journal of Desert Research, 2008(4): 611-616. |
刘树林, 王涛, 屈建军. 浑善达克沙地土地沙漠化过程中土壤粒度与养分变化研究. 中国沙漠, 2008(4): 611-616. | |
41 | Zhang C X, Nan Z B. Changeable characteristics of three soil microbial groups under different grazing intensities in Loess Plateau. Pratacultural Science, 2010, 27(11): 131-136. |
张成霞, 南志标. 不同放牧强度下陇东天然草地土壤微生物三大类群的动态特征. 草业科学, 2010, 27(11): 131-136. | |
42 | Feng Y H, Zhang Y Z, Zou Y B, et al. Genetic characteristics and taxonomy of soils in the Jinggang Mountains. Acta Pedologica Sinica, 2005(5): 18-27. |
冯跃华, 张杨珠, 邹应斌, 等. 井冈山土壤发生特性与系统分类研究. 土壤学报, 2005(5): 18-27. | |
43 | Diao E L, Cao G C, Yuan J, et al. Fractal characteristics of soil particles under different land use patterns in Xiangride-Chaidamu River Basin. Southwest China Journal of Agricultural Sciences, 2022, 35(10): 2353-2360. |
刁二龙, 曹广超, 袁杰, 等. 香日德—柴达木河流域不同土地利用方式下土壤颗粒分形特征. 西南农业学报, 2022, 35(10): 2353-2360. | |
44 | Lan L Y, Ma L L, Guo X M, et al. Soil particle distribution and fractal characteristics of different grassland types in southern Jiangxi. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(1): 222-232. |
兰龙焱, 马丽丽, 郭晓敏, 等. 赣南不同草地类型区土壤粒径分布及分形特征. 江西农业大学学报, 2022, 44(1): 222-232. | |
45 | Jiang L, Qin F C, Li L, et al. Fractal dimension of soil volume of plantation at Shixiakou reservoir and its relationship with infiltration. Journal of Agricultural Science and Technology, 2023, 25(6): 225-233. |
江磊, 秦富仓, 李龙, 等. 石峡口水库人工林土壤体积分形维数及其与入渗的关系. 中国农业科技导报, 2023, 25(6): 225-233. | |
46 | Xia D, Deng Y, Wang S, et al. Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, South China. Natural Hazards, 2015, 79(1): 455-478. |
47 | Li Z, Wu P T, Feng H, et al. Simulated experiment on effects of soil bulk density on soil water holding capacity. Acta Pedologica Sinica, 2010, 47(4): 611-620. |
李卓, 吴普特, 冯浩, 等. 容重对土壤水分蓄持能力影响模拟试验研究. 土壤学报, 2010, 47(4): 611-620. | |
48 | Cang M L, Mu L, Wang X D, et al. Spatial distribution of soil particle size and its correlation with soil moisture in Cragana tibetica community. Journal of Domestic Animal Ecology, 2014, 35(9): 23-27. |
仓木拉, 木兰, 王晓栋, 等. 西藏锦鸡儿群落表层土壤粒径空间分布特征及其与土壤水分相关性分析. 家畜生态学报, 2014, 35(9): 23-27. | |
49 | Fullen M A, Booth C A, Brandsma R T. Long-term effects of grass ley set-aside on erosion rates and soil organic matter on sandy soils in east Shropshire, UK. Soil & Tillage Research, 2005, 89(1): 122-128. |
[1] | 郁国梁, 马紫荆, 吕自立, 刘彬. 海拔和植物群落共同调节天山中段南坡巴伦台地区天然草场土壤化学计量特征[J]. 草业学报, 2023, 32(9): 68-78. |
[2] | 赵朋波, 邱开阳, 谢应忠, 刘王锁, 李小伟, 陈林, 王继飞, 孟文芬, 黄业芸, 李小聪, 杨浩楠. 海拔梯度对贺兰山岩羊主要活动区植物群落特征的影响[J]. 草业学报, 2022, 31(6): 79-90. |
[3] | 杨克彤, 陈国鹏, 鲜骏仁, 俞筱押, 张金武, 王立. 甘肃省扎尕梁北坡头花杜鹃枝叶性状特征[J]. 草业学报, 2022, 31(2): 111-120. |
[4] | 赵桂琴, 琚泽亮, 柴继宽. 海拔和品种对燕麦营养品质及表面附着微生物的影响[J]. 草业学报, 2022, 31(11): 147-157. |
[5] | 马婧婧, 刘耘华, 盛建东, 李宁, 武红旗, 贾宏涛, 孙宗玖, 程军回. 新疆草地优势种植物相对生物量沿海拔梯度变化特征[J]. 草业学报, 2021, 30(8): 25-35. |
[6] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[7] | 吕广一, 徐学宝, 高翠萍, 于志慧, 王新雅, 王成杰. 放牧对内蒙古不同类型草原植物和土壤总氮与稳定氮同位素的影响[J]. 草业学报, 2021, 30(3): 208-214. |
[8] | 贺国宝. 祁连山北坡植物群落空间分布格局与多样性研究[J]. 草业学报, 2021, 30(12): 194-201. |
[9] | 董雪, 郝玉光, 辛智鸣, 段瑞兵, 黄雅茹, 李新乐, 马媛, 刘芳. 浑善达克沙地3种灌木土壤分形特征与养分关系[J]. 草业学报, 2020, 29(6): 172-181. |
[10] | 杨勤, 官久强, 柴志欣, 李华德, 曹诗晓, 张翔飞, 柏琴, 钟金城, 罗晓林. 低海拔舍饲对牦牛肌肉品质的影响研究[J]. 草业学报, 2020, 29(5): 33-42. |
[11] | 马海霞, 张德罡, 陈瑾, 郭春秀, 董永平, 马源, 康玉坤, 陈璐, 杜凯, 陈建纲. 祁连山东段高寒草甸土壤持水能力在小尺度不同坡面位置的分异特征[J]. 草业学报, 2020, 29(1): 28-37. |
[12] | 王鑫, 罗雪萍, 字洪标, 杨文高, 胡雷, 王长庭. 青海森林凋落物生态化学计量特征及其影响因子[J]. 草业学报, 2019, 28(8): 1-14. |
[13] | 若扎·扎尔汗, 李倩, 王玉祥, 张博. 海拔与黄花苜蓿表型性状的相关性研究[J]. 草业学报, 2019, 28(1): 79-85. |
[14] | 高海宁, 李彩霞, 孙小妹, 陈年来, 张勇. 黑河上游冰沟流域土壤养分与微生物空间异质性研究[J]. 草业学报, 2018, 27(6): 23-33. |
[15] | 赛牙热木·哈力甫, 艾克拜尔·伊拉洪, 宋瑞清, 阿不都赛买提·乃合买提, 米日尼沙·买买提明, 迪里努尔·艾力. 察布查尔草原土壤酶活性垂直分布及土壤理化性质相关性研究[J]. 草业学报, 2018, 27(3): 116-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||