草业学报 ›› 2023, Vol. 32 ›› Issue (12): 1-13.DOI: 10.11686/cyxb2023058
• 研究论文 •
收稿日期:
2023-02-21
修回日期:
2023-03-09
出版日期:
2023-12-20
发布日期:
2023-10-18
通讯作者:
黄麟
作者简介:
Corresponding author. E-mail: huanglin@igsnrr.ac.cn基金资助:
Jia-hui LI1,2(), Lin HUANG3(), Jiang-wen FAN3
Received:
2023-02-21
Revised:
2023-03-09
Online:
2023-12-20
Published:
2023-10-18
Contact:
Lin HUANG
摘要:
草原是我国最大的陆地生态系统、重要的自然资源、人-草-畜社会生态系统的载体,然而仍有大面积草原存在不同程度的退化,亟待保护修复以提升质量、功能和稳定性。本研究利用生态价值核算作为一种监测和评估草原多重生态功能变化的有效途径,更新并分析了2000-2020年中国草原生态系统功能及其价值的地域分异特征,评价了草原核心生态价值的时空演变态势,并基于核心生态功能及价值变化方向和程度提出了分区分类的草原保护修复优化提升策略。结果表明:1)2020年,中国草原潜在生态价值约24.7万亿元,每km2约760万元,以防风固沙(27.3%)和物种保育(25.8%)为主。2)近20年,超过90%草原的生态价值呈增长趋势,特别是青藏高原东部、黄土高原北部和内蒙古中部东部等。3)省域比较而言,蒙、藏、青、川、新的草原生态价值之和约占全国的67.4%,近20年增长较多的省域为陕西、北京、宁夏、天津与山西,增幅均超过65%。4)按照主导功能及价值动态趋势,可将中国草原区分为3种类别12种类型,应采取差异化的保护、修复或保护修复并重的措施,以实现草原可持续发展目标。
李佳慧, 黄麟, 樊江文. 中国草原生态价值及时空动态格局[J]. 草业学报, 2023, 32(12): 1-13.
Jia-hui LI, Lin HUANG, Jiang-wen FAN. Ecological value and its spatiotemporal dynamic patterns of grassland in China[J]. Acta Prataculturae Sinica, 2023, 32(12): 1-13.
主要类别Major category | 核算指标Accounting indicator | 价值量评估方法Valueing method |
---|---|---|
供给价值Supply service value | 牧草供给Forage supply | 市场价值法Market price |
物种保育Species richness maintenance | 保育价值法Conservation value | |
调节价值Regulating service value | 水源涵养Water conservation 水源涵养Water conservation | 影子工程法Shadow price 替代成本法Replacement cost |
水土保持Soil retention | 替代成本法Replacement cost | |
防风固沙Windbreak and sand fixation | 恢复成本法Restoration cost | |
碳固定Carbon sequestration | 替代成本法Replacement cost | |
微气候调节Climate regulation | 替代成本法Replacement cost | |
氧气提供Oxygen supply | 替代成本法Replacement cost | |
文化价值Cultural service value | 生态旅游Ecotourism | 旅游产值法Tourism revenue |
表1 中国草原生态价值核算指标与方法
Table 1 Accounting indicators and methods of grassland ecological value in China
主要类别Major category | 核算指标Accounting indicator | 价值量评估方法Valueing method |
---|---|---|
供给价值Supply service value | 牧草供给Forage supply | 市场价值法Market price |
物种保育Species richness maintenance | 保育价值法Conservation value | |
调节价值Regulating service value | 水源涵养Water conservation 水源涵养Water conservation | 影子工程法Shadow price 替代成本法Replacement cost |
水土保持Soil retention | 替代成本法Replacement cost | |
防风固沙Windbreak and sand fixation | 恢复成本法Restoration cost | |
碳固定Carbon sequestration | 替代成本法Replacement cost | |
微气候调节Climate regulation | 替代成本法Replacement cost | |
氧气提供Oxygen supply | 替代成本法Replacement cost | |
文化价值Cultural service value | 生态旅游Ecotourism | 旅游产值法Tourism revenue |
等级 Level | 丰富度 Richness | 单位面积价值 Value of per unit area (CNY·hm-2·a-1) |
---|---|---|
1 | 563≤Richness≤698 | 50000 |
2 | 455≤Richness≤562 | 40000 |
3 | 368≤Richness≤454 | 30000 |
4 | 282≤Richness≤367 | 20000 |
5 | 205≤Richness≤281 | 10000 |
6 | 130≤Richness≤204 | 5000 |
7 | 26≤Richness≤129 | 3000 |
表2 物种丰富度等级划分及其单位面积价值
Table 2 Classification of species richness and its value
等级 Level | 丰富度 Richness | 单位面积价值 Value of per unit area (CNY·hm-2·a-1) |
---|---|---|
1 | 563≤Richness≤698 | 50000 |
2 | 455≤Richness≤562 | 40000 |
3 | 368≤Richness≤454 | 30000 |
4 | 282≤Richness≤367 | 20000 |
5 | 205≤Richness≤281 | 10000 |
6 | 130≤Richness≤204 | 5000 |
7 | 26≤Richness≤129 | 3000 |
编号Number | 类别 Category | 类型 Strategy | 描述 Description |
---|---|---|---|
1 | C | 防风固沙型 Windbreak and sand fixation type | 防风固沙价值显著减少的区域。 Areas with significantly reduced value of windbreak and sand fixation. |
2 | C | 水源涵养型Water conservation type | 水源涵养价值显著减少的区域。 Areas with significantly reduced value of water conservation. |
3 | C | 双重效应型Double-benefits type | 防风固沙、水源涵养、牧草供给、碳固定4项核心价值中,2项价值显著减少的区域。 Areas with the two of the four key ecosystem services which significantly decreased. |
4 | C | 三重效应型Triple-benefits type | 4项核心价值中,3项价值显著减少的区域。 Areas with the three of the four key ecosystem services which significantly decreased. |
5 | P | 防风固沙型 Windbreak and sand fixation type | 防风固沙价值显著增加的区域。 Areas with significant increase in windbreak and sand fixation value. |
6 | P | 水源涵养型Water conservation type | 水源涵养价值显著增加的区域。 Areas with significant increase in water conservation value. |
7 | P | 牧草供给型Forage supply type | 牧草供给价值显著增加的区域。Areas with significant increase in forage supply value. |
8 | P | 碳固定型Carbon sequestration type | 碳固定价值显著增加的区域。Areas with significant increase in carbon sequestration value. |
9 | P | 双重效应型Double-benefits type | 4项核心价值中,2项价值显著增加的区域。 Areas with the two of the four key ecosystem services which significantly increased. |
10 | P | 三重效应型Triple-benefits type | 4项核心价值中,3项价值显著增加的区域。 Areas with the three of the four key ecosystem services which significantly increased. |
11 | P | 多重效应型Multiple-benefits type | 4项核心价值均显著增加的区域。 Areas with the four key ecosystem services which significantly increased. |
12 | C×P | 保护修复并重型 Conservation and protection focused type | 4项核心价值变化均不显著的区域。 Areas with insignificant changes in the four key ecosystem services. |
表3 中国草原生态价值优化提升策略划分说明
Table 3 Classification of adaptation strategies for optimizing and enhancing the grassland ecological value in China
编号Number | 类别 Category | 类型 Strategy | 描述 Description |
---|---|---|---|
1 | C | 防风固沙型 Windbreak and sand fixation type | 防风固沙价值显著减少的区域。 Areas with significantly reduced value of windbreak and sand fixation. |
2 | C | 水源涵养型Water conservation type | 水源涵养价值显著减少的区域。 Areas with significantly reduced value of water conservation. |
3 | C | 双重效应型Double-benefits type | 防风固沙、水源涵养、牧草供给、碳固定4项核心价值中,2项价值显著减少的区域。 Areas with the two of the four key ecosystem services which significantly decreased. |
4 | C | 三重效应型Triple-benefits type | 4项核心价值中,3项价值显著减少的区域。 Areas with the three of the four key ecosystem services which significantly decreased. |
5 | P | 防风固沙型 Windbreak and sand fixation type | 防风固沙价值显著增加的区域。 Areas with significant increase in windbreak and sand fixation value. |
6 | P | 水源涵养型Water conservation type | 水源涵养价值显著增加的区域。 Areas with significant increase in water conservation value. |
7 | P | 牧草供给型Forage supply type | 牧草供给价值显著增加的区域。Areas with significant increase in forage supply value. |
8 | P | 碳固定型Carbon sequestration type | 碳固定价值显著增加的区域。Areas with significant increase in carbon sequestration value. |
9 | P | 双重效应型Double-benefits type | 4项核心价值中,2项价值显著增加的区域。 Areas with the two of the four key ecosystem services which significantly increased. |
10 | P | 三重效应型Triple-benefits type | 4项核心价值中,3项价值显著增加的区域。 Areas with the three of the four key ecosystem services which significantly increased. |
11 | P | 多重效应型Multiple-benefits type | 4项核心价值均显著增加的区域。 Areas with the four key ecosystem services which significantly increased. |
12 | C×P | 保护修复并重型 Conservation and protection focused type | 4项核心价值变化均不显著的区域。 Areas with insignificant changes in the four key ecosystem services. |
图1 2020与2000-2020年多年平均全国草原生态价值空间分布基于自然资源部标准地图服务网站GS(2020)4632号标准地图制作,底图边界无修改。下同。Based on the standard map service website GS(2020)4632 of the Ministry of Natural Resources, the boundary of the base map is not modified. The same below.
Fig.1 Spatial distribution of China’s grassland ecological value in 2020 and in average from 2000 to 2020
图2 2020年中国省域草原生态价值统计由于数据来源限制,核算未包括香港、澳门特别行政区。下同。Due to the limitation of data sources, the accounting does not include Hongkong and Macao Special Administrative Regions. The same below.
Fig.2 Statistics of grassland ecological value of China’s provinces in 2020
图6 2000-2020年中国草原核心生态价值变化及其显著性空间分布
Fig.6 Spatial distribution of the change of grassland key ecosystem service value and its significance in China from 2000 to 2020
图7 中国草原生态价值分区分类优化提升策略I: 防风固沙Windbreak and sand fixation; Ⅱ: 水源涵养Water conservation; Ⅲ: 牧草供给Forage supply; Ⅳ: 碳固定Carbon sequestration.
Fig.7 Spatial distribution of adaptation strategies for optimizing and enhancing the grassland ecological value in China
1 | O’Mara F P. The role of grasslands in food security and climate change. Annals of Botany, 2012, 110(6): 1263-1270. |
2 | Wilsey B J. The biology of grasslands. Oxford, USA: Oxford University Press, 2018. |
3 | White R P, Murray S, Rohweder M, et al. Grassland ecosystems. Washington, DC, USA: World Resources Institute, 2000. |
4 | Bengtsson J, Bullock J M, Egoh B, et al. Grasslands-more important for ecosystem services than you might think. Ecosphere, 2019, 10(2): e02582. |
5 | Bai Y F, Cotrufo M F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 2022, 377: 603-608. |
6 | Tang X L, Zhao X, Bai Y F, et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 2018, 115(16): 4021-4026. |
7 | Bardgett R D, Bullock J M, Lavorel S, et al. Combatting global grassland degradation. Nature Reviews Earth & Environment, 2021, 2(10): 720-735. |
8 | Murphy B P, Andersen A N, Parr C L. The underestimated biodiversity of tropical grassy biomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371: 20150319. |
9 | Bond W J. Ancient grasslands at risk. Science, 2016, 351: 120-122. |
10 | Lavorel S, Grigulis K, Leitinger G, et al. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Regional Environmental Change, 2017, 17(8): 2251-2264. |
11 | Dass P, Houlton B Z, Wang Y P, et al. Grasslands may be more reliable carbon sinks than forests in California. Environmental Research Letters, 2018, 13(7): 074027. |
12 | Wu G L, Liu Y F, Cui Z, et al. Trade-off between vegetation type, soil erosion control and surface water in global semi-arid regions: A meta-analysis. Journal of Applied Ecology, 2020, 57(5): 875-885. |
13 | Costanza R, Kubiszewski I, Giovannini E, et al. Development: Time to leave GDP behind. Nature, 2014, 505: 283-285. |
14 | Liu H F, Hou L L, Kang N N, et al. A meta-regression analysis of the economic value of grassland ecosystem services in China. Ecological Indicators, 2022, 138: 108793. |
15 | Bastin J F, Finegold Y, Garcia C, et al. The global tree restoration potential. Science, 2020, 365(6448): 76-79. |
16 | Bullock J M, Aronson J, Newton A C, et al. Restoration of ecosystem services and biodiversity: Conflicts and opportunities. Trends in Ecology & Evolution, 2011, 26(10): 541-549. |
17 | Okpara U T, Stringer L C, Akhtar-Schuster M, et al. A social-ecological systems approach is necessary to achieve land degradation neutrality. Environmental Science & Policy, 2018, 89: 59-66. |
18 | Manning P, van der Plas F, Soliveres S, et al. Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2018, 2(3): 427-436. |
19 | Shao Q Q, Liu S C, Ning J, et al. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing. Acta Geographica Sinica, 2022, 77(9): 2133-2153. |
邵全琴, 刘树超, 宁佳, 等. 2000-2019年中国重大生态工程生态效益遥感评估. 地理学报, 2022, 77(9): 2133-2153. | |
20 | Ren Y J, Lu Y H, Fu B J. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: A meta-analysis. Ecological Engineering, 2016, 95: 542-550. |
21 | Li R Q, Li Y F, Hu H. Support of ecosystem services for spatial planning theories and practices. Acta Geographica Sinica, 2020, 75(11): 2417-2430. |
李睿倩, 李永富, 胡恒. 生态系统服务对国土空间规划体系的理论与实践支撑. 地理学报, 2020, 75(11): 2417-2430. | |
22 | Ouyang Z Y, Zhu C Q, Yang G B, et al. Gross ecosystem product: Concept, accounting framework and case study. Acta Ecologica Sinica, 2013, 33(21): 6747-6761. |
欧阳志云, 朱春全, 杨广斌, 等. 生态系统生产总值核算: 概念、核算方法与案例研究. 生态学报, 2013, 33(21): 6747-6761. | |
23 | Xie G D, Zhang Y L, Lu C X, et al. Study on valuation of rangeland ecosystem services of China. Journal of Natural Resources, 2001(1): 47-53. |
谢高地, 张钇锂, 鲁春霞, 等. 中国自然草地生态系统服务价值. 自然资源学报, 2001(1): 47-53. | |
24 | Jiang L P, Qin Z H, Xie W, et al. Estimation of grassland ecosystem services value of China using remote sensing data. Journal of Natural Resources, 2007(2): 161-170. |
姜立鹏, 覃志豪, 谢雯, 等. 中国草地生态系统服务功能价值遥感估算研究. 自然资源学报, 2007(2): 161-170. | |
25 | Liu Y Y, Ren H Y, Zhou R L, et al. Estimation and dynamic analysis of the service value of grassland ecosystem in China. Acta Agrestia Sinica, 2021, 29(7): 1522-1532. |
刘洋洋, 任涵玉, 周荣磊, 等. 中国草地生态系统服务价值估算及其动态分析. 草地学报, 2021, 29(7): 1522-1532. | |
26 | Hutchinson M F, Xu T. Anusplin version 4.4 user guide. Canberra: Fenner School of Environment and Society, the Australian National University, 2013. |
27 | Cressie N A. Statistics for spatial data. Hoboken: Wiley Online Library, 1993. |
28 | Beijing Municipal Bureau of Quality and Technical Supervision. Technical specifications for valuation of forest resource assets, DB11/T 659-2018. Beijing: Beijing Municipal Bureau of Quality and Technical Supervision, 2018. |
北京市质量技术监督局. 森林资源资产价值评估技术规范, DB11/T 659-2018. 北京: 北京市质量技术监督局, 2018. | |
29 | National Forestry and Grassland Administration. Specifications for assessment of forest ecosystem services, GB/T 38582-2020. Beijing: State Administration for Market Regulation, 2020. |
国家林业和草原局.森林生态系统服务功能评估规范, GB/T 38582-2020. 北京: 中华人民共和国国家市场监督管理总局, 2020. | |
30 | Ma A N, Yu G R, He N P, et al. Above and below ground biomass relationships in China’s grassland vegetation. Quaternary Sciences, 2014, 34(4): 769-776. |
马安娜, 于贵瑞, 何念鹏, 等. 中国草地植被地上和地下生物量的关系分析. 第四纪研究, 2014, 34(4): 769-776. | |
31 | Shen H H, Zhu Y K, Zhao X, et al. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. |
沈海花, 朱言坤, 赵霞, 等. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154. | |
32 | Wu D, Shao Q Q, Liu J Y, et al. Spatiotemporal dynamics of water regulation service of grassland ecosystem in China. Research of Soil and Water Conservation, 2016, 23(5): 256-260. |
吴丹, 邵全琴, 刘纪远, 等. 中国草地生态系统水源涵养服务时空变化. 水土保持研究, 2016, 23(5): 256-260. | |
33 | Zhu L Q, Xu S M, Chen P Y. Study on the impact of land use/land cover change on soil erosion in mountainous areas. Geographical Research, 2003, 22(4): 432-438. |
朱连奇, 许叔明, 陈沛云. 山区土地利用/覆被变化对土壤侵蚀的影响. 地理研究, 2003, 22(4): 432-438. | |
34 | Han G Z, Wang D C, Xie X J. Pedotransfer functions for prediction of soil bulk density for major types of soils in China. Acta Pedologica Sinica, 2016, 53(1): 93-102. |
韩光中, 王德彩, 谢贤健. 中国主要土壤类型的土壤容重传递函数研究. 土壤学报, 2016, 53(1): 93-102. | |
35 | Han Y W, Gao J X, Wang B L, et al. Evaluation of soil conservation function and its values in major eco-function areas of Loess Plateau in eastern Gansu Province. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17): 78-85. |
韩永伟, 高吉喜, 王宝良, 等. 黄土高原生态功能区土壤保持功能及其价值. 农业工程学报, 2012, 28(17): 78-85. | |
36 | Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration, 1980-94. Global Change Biology, 2002, 8(8): 800-812. |
37 | Bond-Lamberty B, Wang C K, Gower S T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology, 2004, 10(10): 1756-1766. |
38 | OECD. Carbon pricing in times of COVID-19: What has changed in G20 economies? Paris, France: OECD Publishing, 2021. DOI: https://dx.doi.org/10.1787/8f030bcc-en. |
39 | Wang Y, Wang J S, Zhang Q. Drought risk status of grassland in China. Acta Prataculturae Sinica, 2022, 31(8): 1-12. |
王莺, 王健顺, 张强. 中国草原干旱灾害风险特征研究. 草业学报, 2022, 31(8): 1-12. | |
40 | Li G C, Wu M H, Yu X J. Introduction to Meta-analysis. Beijing: Science Press, 2021. |
41 | Dong S K, Shang Z H, Gao J X, et al. Enhancing the ecological services of the Qinghai-Tibetan Plateau’s grasslands through sustainable restoration and management in era of global change. Agriculture, Ecosystems & Environment, 2022, 326: 107756. |
42 | Ge J, Hou M J, Liang T G, et al. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Science of the Total Environment, 2022, 826: 154226. |
43 | Wang Y F, Lv W W, Xue K, et al. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3(10): 668-683. |
44 | Hou L L, Xia F, Chen Q H, et al. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nature Communications, 2021, 12(1): 4683. |
45 | Jin K, Wang F, Han J Q, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015. Acta Geographica Sinica, 2020, 75(5): 961-974. |
金凯, 王飞, 韩剑桥, 等. 1982-2015年中国气候变化和人类活动对植被NDVI变化的影响. 地理学报, 2020, 75(5): 961-974. | |
46 | Xie G D. Ecological asset evaluation: Stock, quality and value. Environmental Protection, 2017, 45(11): 18-22. |
谢高地. 生态资产评价: 存量、质量与价值. 环境保护, 2017, 45(11): 18-22. |
[1] | 杨志贵, 张建国, 李锦荣, 于红妍, 常丽, 宜树华, 吕燕燕, 张玉琢, 孟宝平. 内蒙古温性草原草地类型近20年时空动态变化研究[J]. 草业学报, 2023, 32(9): 1-16. |
[2] | 赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49. |
[3] | 宫珂, 靳瑰丽, 刘文昊, 马建, 刘智彪, 李嘉欣, 李莹. 模拟增温对无芒雀麦生长特性的影响[J]. 草业学报, 2023, 32(9): 93-103. |
[4] | 张慧龙, 杨秀春, 杨东, 陈昂, 张敏. 2000-2020年内蒙古草地植被覆盖度时空变化及趋势预测[J]. 草业学报, 2023, 32(8): 1-13. |
[5] | 刘继亮, 赵文智, 王永珍, 冯怡琳, 祁进贤, 李永元. 禁牧和放牧对祁连山高寒草原秋季大型和中型土壤节肢动物多样性的影响[J]. 草业学报, 2023, 32(8): 214-221. |
[6] | 李芳, 王广军, 杜海波, 李萌, 梁四海, 彭红明. 融合MODIS和Landsat数据的青海湖流域典型区NDVI重构与年内最大值变化分析[J]. 草业学报, 2023, 32(8): 28-39. |
[7] | 刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11. |
[8] | 黄治鹏, 黄毅, 杨全俊, 夏超, 张岩. 蒙古国草地农业及对我国的启示[J]. 草业学报, 2023, 32(6): 1-15. |
[9] | 张雅娴, 樊江文, 王穗子, 张海燕. 草原调查、监测与评价的国际经验和启示[J]. 草业学报, 2023, 32(6): 203-213. |
[10] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[11] | 许开宏, 施招, 马磊超, 王平, 陈昂, 王兴, 成明, 肖粤新, 王荣谭. 基于机载激光雷达与高景一号数据的草原地上生物量反演研究[J]. 草业学报, 2023, 32(5): 40-49. |
[12] | 花蕊, 包达尔罕, 董瑞, 唐庄生, 楚彬, 郝媛媛, 花立民. 基于无人机遥感的天然草原鼠害发生面积调查方法研究[J]. 草业学报, 2023, 32(5): 71-82. |
[13] | 胡宇霞, 龚吉蕊, 朱趁趁, 矢佳昱, 张子荷, 宋靓苑, 张魏圆. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14. |
[14] | 王琪, 郑佳华, 赵萌莉, 张军. 刈割强度对大针茅草原植物群落特征和土壤理化性质的影响[J]. 草业学报, 2023, 32(2): 26-34. |
[15] | 杜鹏冲, 潘昱臻, 侯双利, 王智慧, 王洪义. 氮磷添加对呼伦贝尔草地凋落物分解的影响[J]. 草业学报, 2023, 32(2): 44-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||