草业学报 ›› 2024, Vol. 33 ›› Issue (3): 61-72.DOI: 10.11686/cyxb2023156
李秀芳1(), 魏文静2, 蒲勇3, 李廷轩1, 叶代桦1()
收稿日期:
2023-05-09
修回日期:
2023-07-24
出版日期:
2024-03-20
发布日期:
2023-12-27
通讯作者:
叶代桦
作者简介:
E-mail: daihua.ye@sicau.edu.cn基金资助:
Xiu-fang LI1(), Wen-jing WEI2, Yong PU3, Ting-xuan LI1, Dai-hua YE1()
Received:
2023-05-09
Revised:
2023-07-24
Online:
2024-03-20
Published:
2023-12-27
Contact:
Dai-hua YE
摘要:
农业生产中长期施用猪粪导致土壤磷过剩,增加磷流失风险。通过连续3年定位试验,探究水蓼种植下猪粪处理土壤剖面磷组分与磷酸酶活性变化,为防治土壤过剩磷流失以及磷富集植物水蓼高效提取土壤过剩磷提供科学依据。采用野外微小区模拟试验,以水蓼为材料,设1、2和3 kg·m-2猪粪处理,以不施猪粪为对照,每个处理重复3次,连续处理3年,通过每年采集植株地上部及0~10 cm、10~20 cm、20~30 cm和30~40 cm土壤,测定植株磷含量和土壤剖面磷饱和度、磷组分、pH和磷酸酶活性,分析水蓼种植下猪粪处理土壤剖面磷组分与磷酸酶活性的变化特征。结果表明:1)连续3年种植水蓼条件下,水蓼地上部生物量和磷积累量均随猪粪施用量的增加而增加,在3 kg·m-2猪粪处理下,随年份推进,水蓼地上部磷积累量分别可达200.31、195.97和195.24 mg·plant-1,磷提取能力稳定。2)连续3年种植水蓼条件下,0~20 cm和20~40 cm土壤磷饱和度增加速率较为缓慢,除3 kg·m-2猪粪处理外,土壤磷饱和度均小于土壤磷流失临界值25%。3)随着猪粪施用量增加,0~10 cm和10~20 cm土壤各组分磷含量均增大,3年连续施用较高浓度猪粪增强了磷的移动性,0~10 cm和10~20 cm土壤pH均逐渐降低,0~10 cm和10~20 cm土壤磷酸酶活性均随猪粪施用量增大而升高,在3 kg·m-2猪粪处理时最高。综上所述,连续施用猪粪增加了0~10 cm和10~20 cm土壤各组分磷含量,增强了土壤剖面磷的移动性,且在3 kg·m-2处理下增幅最大。水蓼具有较强的磷提取能力,可有效提取猪粪处理土壤中过剩的磷。水蓼种植条件下,随着猪粪施用量增加,0~10 cm和10~20 cm土壤pH逐渐降低,土壤酸性磷酸单酯酶、碱性磷酸单酯酶、植酸酶和磷酸二酯酶活性升高,种植水蓼促进了土壤剖面磷从低效态组分到高效态组分的转化,有利于水蓼对磷的提取和积累,从而降低土壤磷流失风险。
李秀芳, 魏文静, 蒲勇, 李廷轩, 叶代桦. 水蓼种植下猪粪处理土壤剖面磷组分与磷酸酶活性变化[J]. 草业学报, 2024, 33(3): 61-72.
Xiu-fang LI, Wen-jing WEI, Yong PU, Ting-xuan LI, Dai-hua YE. Changes in phosphorus forms and phosphatase activity in the soil profile after treatment with swine manure and planting with Polygonum hydropiper[J]. Acta Prataculturae Sinica, 2024, 33(3): 61-72.
图1 猪粪处理对水蓼地上部生物量和磷积累量的影响不同小写字母表示同一年份不同处理间差异显著 (P<0.05);不同大写字母表示同一处理不同年份间差异显著(P<0.05)。 Different lowercase letters indicate significantly different among different treatments at the same year (P<0.05). Different capital letters indicate significantly different among different years at the same treatment (P<0.05).
Fig.1 Effect of swine manure treatments on shoot biomass and P accumulation of P. hydropiper
猪粪处理 Swine manure treatment (kg·m-2) | 0~20 cm | 20~40 cm | ||
---|---|---|---|---|
磷饱和度Degree of phosphorus saturation (DPS, %) | 磷饱和度增加速率Increase rate of DPS (%·r-1) | 磷饱和度Degree of phosphorus saturation (DPS, %) | 磷饱和度增加速率Increase rate of DPS (%·r-1) | |
0 | 17.84±0.71c | -1.33±0.24c | 21.12±0.30c | -0.24±0.10c |
1 | 18.47±0.98c | -1.12±0.33c | 21.48±0.20bc | -0.11±0.07bc |
2 | 21.94±0.73b | 0.04±0.24b | 22.54±0.50ab | 0.24± 0.17ab |
3 | 26.46±0.84a | 1.55±0.28a | 23.56±1.14a | 0.58±0.38a |
表1 种植水蓼下猪粪处理土壤剖面磷饱和度及其增加速率变化特征
Table 1 Changes of P saturation and its increasing rate in soil profile treated with swine manure under P. hydropiper planting
猪粪处理 Swine manure treatment (kg·m-2) | 0~20 cm | 20~40 cm | ||
---|---|---|---|---|
磷饱和度Degree of phosphorus saturation (DPS, %) | 磷饱和度增加速率Increase rate of DPS (%·r-1) | 磷饱和度Degree of phosphorus saturation (DPS, %) | 磷饱和度增加速率Increase rate of DPS (%·r-1) | |
0 | 17.84±0.71c | -1.33±0.24c | 21.12±0.30c | -0.24±0.10c |
1 | 18.47±0.98c | -1.12±0.33c | 21.48±0.20bc | -0.11±0.07bc |
2 | 21.94±0.73b | 0.04±0.24b | 22.54±0.50ab | 0.24± 0.17ab |
3 | 26.46±0.84a | 1.55±0.28a | 23.56±1.14a | 0.58±0.38a |
图2 种植水蓼下猪粪处理土壤剖面磷组分的变化特征不同小写字母表示同一年份不同处理间差异显著(P<0.05);不同大写字母表示同一处理不同土层间差异显著(P<0.05)。下同。Different lowercase letters indicate significantly different among different treatments at the same year (P<0.05). Different capital letters indicate significantly different among different soil layers at the same treatment (P<0.05). The same below.
Fig.2 The change characteristics in P fractions in swine manure-amended soil profiles planted with P. hydropiper
图4 种植水蓼下猪粪处理土壤剖面磷酸酶活性的变化特征
Fig.4 The change characteristics of phosphatase activities in swine manure-amended soil profiles planted with P. hydropiper
土壤剖面化学特性 Soil profile chemical properties | pH | 酸性磷酸单酯酶 Acid phosphomonoesterase | 碱性磷酸单酯酶 Alkaline phosphomonoesterase | 植酸酶 Phytase | 磷酸二酯酶 Phosphodiesterase |
---|---|---|---|---|---|
H2O-Pi | -0.333* | 0.503** | 0.508** | 0.528** | 0.551** |
H2O-Po | -0.426** | 0.599** | 0.591** | 0.618** | 0.632** |
NaHCO3-Pi | -0.890** | 0.966** | 0.956** | 0.958** | 0.970** |
NaHCO3-Po | -0.690** | 0.823** | 0.815** | 0.822** | 0.834** |
NaOH-Pi | -0.897** | 0.971** | 0.963** | 0.969** | 0.979** |
NaOH-Po | -0.737** | 0.849** | 0.852** | 0.861** | 0.871** |
HCl-Pi | -0.627** | 0.762** | 0.764** | 0.769** | 0.782** |
HCl-Po | -0.817** | 0.912** | 0.914** | 0.916** | 0.933** |
Resdual-P | -0.868** | 0.942** | 0.945** | 0.945** | 0.956** |
表2 种植水蓼下猪粪处理土壤剖面化学特性与磷组分的相关性分析
Table 2 Relationships between the chemical properties and P compositions in swine manure-amended soil profiles planted with P. hydropiper
土壤剖面化学特性 Soil profile chemical properties | pH | 酸性磷酸单酯酶 Acid phosphomonoesterase | 碱性磷酸单酯酶 Alkaline phosphomonoesterase | 植酸酶 Phytase | 磷酸二酯酶 Phosphodiesterase |
---|---|---|---|---|---|
H2O-Pi | -0.333* | 0.503** | 0.508** | 0.528** | 0.551** |
H2O-Po | -0.426** | 0.599** | 0.591** | 0.618** | 0.632** |
NaHCO3-Pi | -0.890** | 0.966** | 0.956** | 0.958** | 0.970** |
NaHCO3-Po | -0.690** | 0.823** | 0.815** | 0.822** | 0.834** |
NaOH-Pi | -0.897** | 0.971** | 0.963** | 0.969** | 0.979** |
NaOH-Po | -0.737** | 0.849** | 0.852** | 0.861** | 0.871** |
HCl-Pi | -0.627** | 0.762** | 0.764** | 0.769** | 0.782** |
HCl-Po | -0.817** | 0.912** | 0.914** | 0.916** | 0.933** |
Resdual-P | -0.868** | 0.942** | 0.945** | 0.945** | 0.956** |
1 | Wu S X, Liu H B, Huang H K, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China. Strategic Study of CAE, 2018, 20(5): 103-111. |
武淑霞, 刘宏斌, 黄宏坤, 等. 我国畜禽养殖粪污产生量及其资源化分析. 中国工程科学, 2018, 20(5): 103-111. | |
2 | Chen F F, Zhang C S, Wang Y N, et al. Patterns and cost-benefit analysis of manure disposal of scale swine production in China. China Environmental Science, 2017, 37(9): 3455-3463. |
陈菲菲, 张崇尚, 王艺诺, 等. 规模化生猪养殖粪便处理与成本收益分析. 中国环境科学, 2017, 37(9): 3455-3463. | |
3 | Rezvan K, Wole A, Don F. Nitrogen- or phosphorus-based swine manure application rates affect soil test phosphorus and phosphorus loss risk. Nutrient Cycling in Agroecosystems, 2018, 111(23): 11-22. |
4 | Liu Y H, Li T X, Pu Y, et al. Root tolerance characteristics of mining ecotype Polygonum hydropiper under high P application. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2160-2169. |
刘嫣含, 李廷轩, 蒲勇, 等. 高磷处理下水蓼根系耐受特征. 植物营养与肥料学报, 2021, 27(12): 2160-2169. | |
5 | Gotcher M J, Zhang H, Schroder J L, et al. Phytoremediation of soil phosphorus with Crabgrass. Agronomy Journal, 2014, 106(2): 528-536. |
6 | Ye D H, Li T X, Yu H Y, et al. P accumulation of Polygonum hydropiper, soil P fractions and phosphatase activity as affected by swine manure. Applied Soil Ecology, 2015, 86: 10-18. |
7 | Waldrip H M, He Z, Erich M S. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biology and Fertility of Soils, 2011, 47(4): 407-418. |
8 | Chen J, Huang Y S, Li T X. Phosphorous accumulation characteristics of two ecotypes of Pilea sinofasciata grown in soils amended with swine manure. Acta Prataculturae Sinica, 2017, 26(11): 139-146. |
陈静, 黄有胜, 李廷轩. 猪粪有机肥施用下两种生态型粗齿冷水花磷积累特征变化. 草业学报, 2017, 26(11): 139-146. | |
9 | Rubio G, Faggioli V, Scheiner J D, et al. Rhizosphere phosphorus depletion by three crops differing in their phosphorus critical levels. Journal of Plant Nutrition and Soil Science, 2012, 175(6): 810-817. |
10 | Betencourt E, Duputel M, Colomb B, et al. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biology and Biochemistry, 2012, 46: 181-190. |
11 | Zhou J, Wu Y H, Prietzel J, et al. Changes of soil phosphorus speciation along a 120-year soil chronosequence in the Hailuogou Glacier retreat area (Gongga Mountain, SW China). Geoderma, 2013, 195/196: 251-259. |
12 | Li C L, Zhang P, Zhang J J, et al. Forms, transformations, and availability of phosphorus after 32 years of manure and mineral fertilization in a mollisol under continuous maize cropping. Archives of Agronomy and Soil Science, 2020, 67(9): 1256-1271. |
13 | Li S S, Guo J J, Liu W B, et al. Influence of typical rotation systems on soil phosphorus availability under different fertilization strategies. Scientia Agricultura Sinica, 2022, 55(1): 96-110. |
李帅帅, 郭俊杰, 刘文波, 等. 不同施肥模式下轮作制度引起的土壤磷素有效性变化及其影响因素. 中国农业科学, 2022, 55(1): 96-110. | |
14 | Zhang H Z, Shi L L, Lu H B, et al. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Science of the Total Environment, 2020, 732: 139295. |
15 | Fraser T D, Lynch D H, Gaiero J, et al. Quantification of bacterial non-specific acid (phoC) and alkaline (phoD) phosphatase genes in bulk and rhizosphere soil from organically managed soybean fields. Applied Soil Ecology, 2017, 111: 48-56. |
16 | Liang X, Jin Y, He M, et al. Composition of phosphorus species and phosphatase activities in a paddy soil treated with manure at varying rates. Agriculture Ecosystems and Environment, 2017, 237: 173-180. |
17 | Ye D H, Li T X, Chen G D, et al. Influence of swine manure on growth, P uptake and activities of acid phosphomonoesterase and phytase of Polygonum hydropiper. Chemosphere, 2014, 105(3): 139-145. |
18 | Wei W J, Li T X, Zhang X Z. Phytoextraction efficiency of P by mining ecotype of Polygonum hydropiper grown in soils amended with swine manure. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1166-1172. |
魏文静, 李廷轩, 张锡洲. 矿山生态型水蓼对施用猪粪土壤中磷的吸取净化效果. 植物营养与肥料学报, 2019, 25(7): 1166-1172. | |
19 | Kostic L, Nikolic N, Samardzic J, et al. Liming of anthropogenically acidified soil promotes phosphorus acquisition in the rhizosphere of wheat. Biology and Fertility of Soils, 2015, 51(3): 289-298. |
20 | Mishima S, Itahashi S, Kimura R, et al. Trends of phosphate fertilizer demand and phosphate balance in farmland soils in Japan. Soil Science and Plant Nutrition, 2003, 30(13): 13-20. |
21 | Lu R K. Analytical methods of soil agricultural chemistry. Beijing: China Agricultural Science Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
22 | Ye D H, Li T X, Zhang X Z, et al. Rhizosphere P composition, phosphatase and phytase activities of Polygonum hydropiper grown in excess P soils. Biology and Fertility of Soils, 2017, 53(8): 823-836. |
23 | Deforest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology and Biochemistry, 2009, 41(6): 1180-1186. |
24 | Zhang A M, Chen Z H, Chen L J, et al. A method for direct determination of phytase activity in soil: CN201210275586.3[31E]. (2013-01-09)[2020-06-10]. http://epub.cnipa.gov.cn/Dxb/IndexQuery |
张艾明, 陈振华, 陈利军, 等. 一种直接测定土壤植酸酶活性的方法: CN201210275586.3[31E]. (2013-01-09)[2020-06-10]. http://epub.cnipa.gov.cn/Dxb/IndexQuery | |
25 | Shenker M, Bloom P R. Comments on “amounts, forms, and solubility of phosphorus in soils receiving manure”. Soil Science Society of America Journal, 2005, 69(4): 1353-1354. |
26 | Fischer P, Pöthig R, Venohr M. The degree of phosphorus saturation of agricultural soils in Germany: Current and future risk of diffuse P loss and implications for soil P management in Europe. Science of the Total Environment, 2017, 599/600: 1130-1139. |
27 | Fischer P, Pöthig R, Gücker B, et al. Phosphorus saturation and superficial fertilizer application as key parameters to assess the risk of diffuse phosphorus losses from agricultural soils in Brazil. Science of the Total Environment, 2018, 630(15): 1515-1527. |
28 | Gao X M, Wang J D, Liu Z P, et al. Accumulation and leaching risk of phosphorus in vegetable soils under intensive cultivation. Journal of Ecology and Rural Environment, 2010, 26(1): 82-86. |
高秀美, 汪吉东, 刘兆普, 等. 集约化蔬菜地土壤磷素累积特征及流失风险. 生态与农村环境学报, 2010, 26(1): 82-86. | |
29 | Li Y J, Shen Q W, Zhang A, et al. P accumulation and P removal potential of a P-accumulating ecotype of Polygonum hydropiper for different manure types. Acta Prataculturae Sinica, 2022, 31(3): 114-123. |
李玉洁, 沈启维, 张澳, 等. 畜禽粪便处理下矿山生态型水蓼磷积累及去除能力研究. 草业学报, 2022, 31(3): 114-123. | |
30 | Priya P, Sahi S V. Influence of phosphorus nutrition on growth and metabolism of Duo grass (Duo festulolium). Plant Physiology and Biochemistry, 2009, 47(1): 31-36. |
31 | Kuligowski K, Gilkes R J, Poulsen T G, et al. Ash from the thermal gasification of swine manure-effects on ryegrass yield, element uptake, and soil properties. Soil Research, 2012, 50(5): 406-415. |
32 | Yan K, Zhang L, Zhang Y J, et al. Is phytoextraction efficient for remediating phosphorus-enriched soils in mountainous region? A case study of lake Dianchi watershed of Southwestern China. Applied Mechanics and Materials, 2014, 448(48): 488-493. |
33 | Zheng W W. The effect of urbanization on the concentration and distribution of soil phosphorus. Chengdu: Sichuan Agricultural University, 2018. |
郑雯文. 城市化对绿地土壤磷素赋存形态及分布特征影响研究. 成都: 四川农业大学, 2018. | |
34 | Zhang C L, Li B, Huang R, et al. Effects of long-term application of swine manure on soil phosphorus content and inorganic phosphorus components. Journal of Agro-Environment Science, 2022, 41(10): 2241-2249. |
张春龙, 李冰, 黄容, 等. 长期施用猪粪对土壤磷含量及无机磷组分的影响. 农业环境科学学报, 2022, 41(10): 2241-2249. | |
35 | Yan Y, Cheng H L, Feng M X, et al. Relationship between phosphorus fractions in paddy soil and phosphorus release to runoff amended with manure. Clean-Soil Air Water, 2018, 17(2): 81-92. |
36 | Qu H P, Zhou L Q, Huang M F, et al. Phosphorus balance in paddy soils and its environmental effect under different phosphorus application rates. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 40-47. |
区惠平, 周柳强, 黄美福, 等. 不同施磷量下稻田土壤磷素平衡及其潜在环境风险评估. 植物营养与肥料学报, 2016, 22(1): 40-47. | |
37 | Chen G L, Yuan J H, Chen H, et al. Animal manures promoted soil phosphorus transformation via affecting soil microbial community in paddy soil. Science of the Total Environment, 2022, 831: 154917. |
38 | Yan Z J. Effects of manure application on the form and mobility of soil phosphorus in vegetable greenhouse. Beijing: China Agricultural University, 2015. |
严正娟. 施用粪肥对设施菜田土壤磷素形态与移动性的影响. 北京: 中国农业大学, 2015. | |
39 | Cao Z H, Li Q K. Effect of phosphorus fertilizer granule on the pH of soil adjacent to the application site. Acta Pedologica Sinica, 1987, 24(3): 226-231. |
曹志洪, 李庆逵. 磷肥肥粒对周围微域土壤pH的影响. 土壤学报, 1987, 24(3): 226-231. | |
40 | Liu N, Ma X D, Mu J, et al. The composition of organic phosphorus and bioavailability of different organic materials. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 440-449. |
刘娜, 马旭东, 慕君, 等. 不同类型有机物料的有机磷组成及生物有效性. 植物营养与肥料学报, 2021, 27(3): 440-449. | |
41 | Nakayama Y, Wade J, Margenot A J. Does soil phosphomonoesterase activity reflect phosphorus pools estimated by Hedley phosphorus fractionation? Geoderma, 2021, 401: 115279. |
42 | Gao Y L, Fang F, Tang Z C, et al. Distribution characteristics of soil phosphorus forms and phosphatase activity at different altitudes in the soil of water-level-fluctuation zone in Pengxi river, three gorges reservoir. Environmental Science, 2022, 43(10): 4630-4638. |
高艺伦, 方芳, 唐子超, 等. 三峡库区澎溪河不同高程消落带土壤磷形态及磷酸酶活性分布特征. 环境科学, 2022, 43(10): 4630-4638. | |
43 | Spohn M, Kuzyakov Y. Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation-coupling soil zymography with 14C imaging. Soil Biology and Biochemistry, 2013, 67: 106-113. |
44 | Benjamin L T, Philip M H. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Science of the Total Environment, 2005, 344(1/2/3): 27-36. |
45 | Qu B, Li M, Qi M, et al. Effects of soil organic phosphorus transformation on fertilizing outside source of phytase in Yeyahu wetland. Ecology and Environmental Sciences, 2015, 24(2): 250-254. |
曲博, 李敏, 其美, 等. 外源植酸酶对野鸭湖湿地土壤有机磷转化的影响研究. 生态环境学报, 2015, 24(2): 250-254. |
[1] | 李玉洁, 沈启维, 张澳, 刘丹, 叶代桦, 李廷轩. 畜禽粪便处理下矿山生态型水蓼磷积累及去除能力研究[J]. 草业学报, 2022, 31(3): 114-123. |
[2] | 马涛, 吕文强, 李泽霞, 陈爱华, 董彦丽. 黄土高原丘陵沟壑区轮作休耕模式下5种土地利用方式土壤剖面水分分布特征[J]. 草业学报, 2020, 29(7): 30-39. |
[3] | 卿悦, 李廷轩, 叶代桦. 无机氮处理对矿山生态型水蓼氮积累及根系形态的影响[J]. 草业学报, 2020, 29(1): 203-210. |
[4] | 雷玮倩, 胡玉福, 杨泽鹏, 何剑锋, 肖海华, 舒向阳, 阳帆, 李正青. 垦殖对川西北高寒草地土壤中不同磷组分含量的影响[J]. 草业学报, 2019, 28(5): 36-45. |
[5] | 陈静, 黄有胜, 李廷轩. 猪粪有机肥施用下两种生态型粗齿冷水花磷积累特征变化[J]. 草业学报, 2017, 26(11): 139-146. |
[6] | 张生伟, 姚拓, 黄旺洲, 杨巧丽, 滚双宝. 猪粪高效除臭微生物菌株筛选及发酵条件优化[J]. 草业学报, 2015, 24(11): 38-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||