草业学报 ›› 2024, Vol. 33 ›› Issue (3): 97-106.DOI: 10.11686/cyxb2023176
鲍平安1,2,3,4(), 邱开阳1,2,3,4(), 黄业芸1,2,3,4, 王思瑶1,2,3,4, 崔璐瑶1,2,3,4, 骆欣怡1,2,3,4, 杨云涛1,2,3,4, 谢应忠1,2,3,4
收稿日期:
2023-05-29
修回日期:
2023-07-12
出版日期:
2024-03-20
发布日期:
2023-12-27
通讯作者:
邱开阳
作者简介:
E-mail: kaiyangqiu@nxu.edu.cn基金资助:
Ping-an BAO1,2,3,4(), Kai-yang QIU1,2,3,4(), Ye-yun HUANG1,2,3,4, Si-yao WANG1,2,3,4, Lu-yao CUI1,2,3,4, Xin-yi LUO1,2,3,4, Yun-tao YANG1,2,3,4, Ying-zhong XIE1,2,3,4
Received:
2023-05-29
Revised:
2023-07-12
Online:
2024-03-20
Published:
2023-12-27
Contact:
Kai-yang QIU
摘要:
探究荒漠草原植物在N、P添加下叶功能性状特征及其变异,对揭示植被对环境的响应机制至关重要。以宁夏盐池县荒漠草原植物群落为研究对象,分析了N、P添加对植物群落叶片形态和化学性状的影响。结果表明:植物群落叶片氮磷比<14,表明研究区植物生长受到N限制,P添加对植物群落叶片功能性状无显著影响,N+P共同添加显著增加了叶片碳磷比,N添加下植物群落叶面积、比叶面积、叶组织密度和叶片氮含量显著上升,反映了植物在环境的变化下采取了较快的养分循环策略;根据可塑性指数排序结果可知,植物群落叶面积、比叶面积、叶片干物质含量、叶组织密度、叶片碳含量和叶片氮含量为响应N、P添加的敏感性状(PI>0.5),其中变异性较大的性状为叶面积、比叶面积和叶组织密度,表明植物群落主要通过改变自身形态来应对环境的变化;相关性分析结果表明,植物群落叶片性状之间存在显著的相关性,并且表现出应对养分环境变化的协同作用。本研究为预测植物和生态系统对全球变化因素的反应提供了理论依据,对探讨区域植被分布、恢复进程至关重要。
鲍平安, 邱开阳, 黄业芸, 王思瑶, 崔璐瑶, 骆欣怡, 杨云涛, 谢应忠. 荒漠草原植物在氮磷添加下叶功能性状特征及其可塑性[J]. 草业学报, 2024, 33(3): 97-106.
Ping-an BAO, Kai-yang QIU, Ye-yun HUANG, Si-yao WANG, Lu-yao CUI, Xin-yi LUO, Yun-tao YANG, Ying-zhong XIE. Leaf functional trait characteristics and plasticity of desert steppe plants under nitrogen and phosphorus addition[J]. Acta Prataculturae Sinica, 2024, 33(3): 97-106.
图2 N、P添加对植物群落化学性状的影响ns表示差异不显著,下同。 ns indicates no significant difference, the same below.
Fig.2 Effects of N and P addition on chemical traits of plant community
图3 N、P添加下植物群落叶片功能性状可塑性指数(PI)与变异系数(CV)排序LA: 叶面积Leaf area; SLA: 比叶面积Specific leaf area; LTD: 叶组织密度Leaf tissue density; LDMC: 叶干物质含量Leaf dry matter content; LC: 叶片碳含量Leaf carbon content; LN: 叶片氮含量Leaf nitrogen content; LP: 叶片磷含量Leaf phosphorus content; C/N: 叶碳氮比Leaf carbon nitrogen ratio; C/P: 叶碳磷比Leaf carbon phosphorus ratio; N/P: 叶氮磷比Leaf nitrogen phosphorus ratio.
Fig.3 Rankings of the plant community leaf functional trait plasticity index (PI) and coefficient variation(CV) under N and P addition
指标 Index | 叶面积Leaf area | 比叶面积Specific leaf area | 叶组织密度Leaf tissue density | 叶干物质 含量 Leaf dry matter content | 叶片碳 含量 Leaf carbon content | 叶片氮含量 Leaf nitrogen content | 叶片磷 含量 Leaf phosphorus content | 碳氮比 C/N | 碳磷比C/P |
---|---|---|---|---|---|---|---|---|---|
比叶面积Specific leaf area | 0.769** | ||||||||
叶组织密度Leaf tissue density | 0.657* | 0.545 | |||||||
叶干物质含量Leaf dry matter content | 0.678* | 0.706* | 0.587* | ||||||
叶片碳含量Leaf carbon content | 0.608* | 0.692* | 0.867** | 0.699* | |||||
叶片氮含量Leaf nitrogen content | 0.231 | 0.189 | 0.671* | 0.580* | 0.629* | ||||
叶片磷含量Leaf phosphorus content | 0.629* | 0.601* | 0.832** | 0.587* | 0.944** | 0.545 | |||
碳氮比C/N | 0.469 | 0.289 | -0.084 | -0.140 | -0.147 | -0.517 | 0.035 | ||
碳磷比C/P | 0.364 | 0.483 | 0.294 | 0.168 | 0.133 | -0.133 | 0.021 | 0.210 | |
氮磷比N/P | 0.070 | 0.343 | 0.196 | 0.126 | 0.147 | -0.105 | 0.091 | -0.196 | 0.804** |
表1 N、P添加下叶片功能性状间的相关性
Table 1 Correlation among leaf functional traits under N and P addition
指标 Index | 叶面积Leaf area | 比叶面积Specific leaf area | 叶组织密度Leaf tissue density | 叶干物质 含量 Leaf dry matter content | 叶片碳 含量 Leaf carbon content | 叶片氮含量 Leaf nitrogen content | 叶片磷 含量 Leaf phosphorus content | 碳氮比 C/N | 碳磷比C/P |
---|---|---|---|---|---|---|---|---|---|
比叶面积Specific leaf area | 0.769** | ||||||||
叶组织密度Leaf tissue density | 0.657* | 0.545 | |||||||
叶干物质含量Leaf dry matter content | 0.678* | 0.706* | 0.587* | ||||||
叶片碳含量Leaf carbon content | 0.608* | 0.692* | 0.867** | 0.699* | |||||
叶片氮含量Leaf nitrogen content | 0.231 | 0.189 | 0.671* | 0.580* | 0.629* | ||||
叶片磷含量Leaf phosphorus content | 0.629* | 0.601* | 0.832** | 0.587* | 0.944** | 0.545 | |||
碳氮比C/N | 0.469 | 0.289 | -0.084 | -0.140 | -0.147 | -0.517 | 0.035 | ||
碳磷比C/P | 0.364 | 0.483 | 0.294 | 0.168 | 0.133 | -0.133 | 0.021 | 0.210 | |
氮磷比N/P | 0.070 | 0.343 | 0.196 | 0.126 | 0.147 | -0.105 | 0.091 | -0.196 | 0.804** |
1 | Cornelissen J, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51(4): 335-380. |
2 | Loretta G. Plant phenotypic plasticity in response to environmental factors. Advances in Botany, 2014, 4: 1-17. |
3 | Lavorel S, Grigulis K, Lamarque P, et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 2010, 99(1): 135-147. |
4 | Sun M, Tian K, Zhang Y, et al. Research on leaf functional traits and their environmental adaptation. Plant Science Journal, 2017, 35(6): 940-949. |
孙梅, 田昆, 张贇, 等. 植物叶片功能性状及其环境适应研究. 植物科学学报, 2017, 35(6): 940-949. | |
5 | Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821. |
6 | Leishman M R, Haslehurst T, Baruch A Z. Leaf trait relationships of native and invasive plants: Community- and global-scale comparisons. New Phytologist, 2007, 176(3): 635-643. |
7 | Osnas J L, Lichstein J W, Reich P B, et al. Global leaf trait relationships: Mass, area, and the leaf economics spectrum. Science, 2013, 340(6133): 741-744. |
8 | Ansquer P, Durn M, Theau J P, et al. Functional traits as indicators of fodder provision over a short time scale in species-rich grasslands. Annals of Botany, 2008, 103(1): 117-126. |
9 | Santiago S, Sala A, Gracia C A, et al. Nutrient content in Quercus ilex canopies: Seasonal and spatial variation within a catchment. Plant and Soil, 1995, 168/169(1): 297-304. |
10 | Gren G I. The C∶N∶P stoichiometry of autotrophs-theory and observations. Ecology Letters, 2010, 7(3): 185-191. |
11 | Reich P B, Tjoelker M G, Pregitzer K S, et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 2008, 11(8): 793-801. |
12 | Lu X T, Reed S, Yu Q, et al. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global Change Biology, 2013, 19(9): 2775-2784. |
13 | Yang G J. Trait variations in four dominant plants in response to nitrogen and phosphorus addition in Hulun Buir grassland. Shanghai: Shanghai Institute of Technology, 2016. |
杨国姣. 氮磷添加对呼伦贝尔草原4种优势植物性状的影响. 上海: 上海应用技术大学, 2016. | |
14 | Yang H, Luo Y C. Response of the functional traits in Cleistogenes squarrosa to nitrogen and drought. Chinese Journal of Plant Ecology, 2015, 39(1): 32-42. |
杨浩, 罗亚晨. 糙隐子草功能性状对氮添加和干旱的响应. 植物生态学报, 2015, 39(1): 32-42. | |
15 | Wan H W, Yang Y, Bai S Q, et al. Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Chinese Journal of Plant Ecology, 2008, 32(3): 611-621. |
万宏伟, 杨阳, 白世勤, 等. 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报, 2008, 32(3): 611-621. | |
16 | Marklein A R, Houlton B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 2012, 193(3): 696-704. |
17 | Zhou Y. Effects of seasonal grazing on plant functional traits and functional diversity of the desert grasslands. Yinchuan: Ningxia University, 2021. |
周瑶. 季节性放牧对荒漠草原植物功能性状和功能多样性的影响.银川: 宁夏大学, 2021. | |
18 | Bai Y, Wu J, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16(1): 358-372. |
19 | Niu Y J, Yang S W, Wang G Z, et al. Study on the relationships between plant species richness, lifeform richness, and above-and belowground biomass under grazing disturbance in an alpine meadow. Acta Ecologica Sinica, 2018, 38(8): 2791-2801. |
牛钰杰, 杨思维, 王贵珍, 等. 放牧干扰下高寒草甸物种和生活型丰富度与地上及地下生物量的关系. 生态学报, 2018, 38(8): 2791-2801. | |
20 | Tao L B. Effects of enclosure on plant community and organic carbon distribution in desert steppe ecosystem. Yinchuan: Ningxia University, 2018. |
陶利波. 封育对荒漠草原生态系统植物群落及有机碳分布的影响. 银川: 宁夏大学, 2018. | |
21 | Li S J, Su P X, Zhang H N, et al. Characteristics and relationships of foliar water and leaf functional traits of desert plants. Plant Physiology Journal, 2013, 49(2): 153-160. |
李善家, 苏培玺, 张海娜, 等. 荒漠植物叶片水分和功能性状特征及其相互关系. 植物生理学报, 2013, 49(2): 153-160. | |
22 | Jäschke Y, Heberling G, Wesche K. Environmental controls override grazing effects on plant functional traits in Tibetan rangelands. Functional Ecology, 2020, 34(3): 747-760. |
23 | Valladares F, Wright S J, Lasso E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 2000, 81(7): 1925-1936. |
24 | Valencia E, Maestre F T, Le Bagousse-Pinguet Y, et al.Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytologist, 2015, 206(2): 660-671. |
25 | Hautier Y, Niklaus P A, Hector A. Competition for light causes plant biodiversity loss after eutrophication. Science, 2009, 324(5927): 636-638. |
26 | Liang X, Zhang T, Lu X, et al. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Global Change Biology, 2020, 26(6): 3585-3600. |
27 | Zhou X, Zuo X A, Zhao X Y, et al. Plant functional traits and interrelationships of 34 plant species in south central Horqin Sandy Land, China. Journal of Desert Research, 2015, 35(6): 1489-1495. |
周欣, 左小安, 赵学勇, 等. 科尔沁沙地中南部34种植物叶功能性状及其相互关系. 中国沙漠, 2015, 35(6): 1489-1495. | |
28 | Li Y, Lin L, Zhu W Y, et al. Responses of leaf traits to nitrogen and phosphorus additions across common species in an alpine grassland on the Qinghai-Tibetan plateau. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Science Edition), 2017, 53(3): 535-544. |
李颖, 林笠, 朱文琰, 等. 青藏高原高寒草地常见植物叶属性对氮、磷添加的响应. 北京大学学报(自然科学版), 2017, 53(3): 535-544. | |
29 | Lambers H, Poorter H. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research, 1992, 22: 187-261. |
30 | Zhang Y P. Effects of nutrient additions on plant functional traits in temperate grassland of Inner Mongolia. Hohhot: Inner Mongolia University, 2016. |
张宇平. 养分添加对内蒙古温带草地植物功能性状的影响.呼和浩特: 内蒙古大学, 2016. | |
31 | Suding K N, Collins S L, Gough L, et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences, 2005, 102(12): 4387-4392. |
32 | Fan H B, Liu W F, Xu L, et al. Carbon and nitrogen dynamic of decomposing foliar litter in a Chinese fir (Cunninghamia lanceolata) plantation exposed to simulated nitrogen deposition. Acta Ecologica Sinica, 2008(6): 2546-2553. |
樊后保, 刘文飞, 徐雷, 等. 氮沉降下杉木(Cunninghamia lanceolata)人工林凋落叶分解过程中C、N元素动态变化. 生态学报, 2008(6): 2546-2553. | |
33 | Lu X T, Reed S C, Yu Q, et al. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions. Plant and Soil, 2016, 398(1/2): 111-120. |
34 | Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature, 2002, 419(6910): 915-917. |
35 | Feng Y, Xing Y J. Priming effects of soil organic carbon decomposition: A review. International Journal of Ecology, 2021, 10(2): 7. |
冯玥, 邢亚娟. 土壤有机碳分解激发效应的研究进展. 世界生态学, 2021, 10(2): 7. | |
36 | Aerts R, Chapin F. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67. |
37 | Xu S, Gong J R, Zhang Z Y, et al. The ecological stoichiometric of dominant species in different land uses type of grassland. Acta Prataculturae Sinica, 2014, 23(6): 45-53. |
徐沙, 龚吉蕊, 张梓榆, 等. 不同利用方式下草地优势植物的生态化学计量特征. 草业学报, 2014, 23(6): 45-53. | |
38 | Li X Z, Chen Z Z. Nitrogen loss and management in grazing grassland ecosystem. Climatic and Environmental Research, 1997(3): 44-53. |
李香真, 陈佐忠. 放牧草地生态系统中氮素的损失和管理. 气候与环境研究, 1997(3): 44-53. | |
39 | Gusewell S. N∶P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2010, 164(2): 243-266. |
40 | Wang S, Zhou D W. Research on phenotypic plasticity in plants: An overview of history, current status, and development trends. Acta Ecologica Sinica, 2017, 37(24): 8161-8169. |
王姝, 周道玮. 植物表型可塑性研究进展. 生态学报, 2017, 37(24): 8161-8169. | |
41 | Eek R L. Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources. American Journal of Botany, 2000, 87(3): 402-411. |
42 | Cui H Y, Sun W, Delgado-Baquerizo M, et al. Cascading effects of N fertilization activate biologically driven mechanisms promoting P availability in a semi-arid grassland ecosystem. Functional Ecology, 2021, 35(4): 1001-1011. |
43 | Sun L. Responses of soil properties and common species leaf functional traits to nitrogen addition in meadow steep of Inner Mongolia. Jinan: Shandong University, 2022. |
孙露. 内蒙古草甸草原土壤性质及常见植物叶功能性状对氮添加的响应.济南: 山东大学, 2022. | |
44 | Feng Q H, Shi Z M, Dong L L, et al. Functional traits of deciduous trees and their relationship with meteorological factors in NSTEC. Chinese Journal of Agrometeorology, 2009, 30(1): 79-83. |
冯秋红, 史作民, 董莉莉, 等. 南北样带落叶乔木功能性状及其与气象因子的关系. 中国农业气象, 2009, 30(1): 79-83. | |
45 | Van Bodegom P M, Douma J C, Verheijen L M. A fully traits-based approach to modeling global vegetation distribution. Proceedings of the National Academy of Sciences, 2014, 111(38): 13733-13738. |
46 | Xue L, Cao H. Changes of leaf traits of plants under stress resistance. Ecology and Environmental Sciences, 2010, 19(8): 2004-2009. |
薛立, 曹鹤. 逆境下植物叶性状变化的研究进展. 生态环境学报, 2010, 19(8): 2004-2009. | |
47 | Liu G F, Liu Y P, Baiyila D F, et al. Leaf traits of dominant plants of main forest communities in Daqinggou Nature Reserve. Acta Ecologica Sinica, 2017, 37(14): 4646-4655. |
刘贵峰, 刘玉平, 达福白乙拉, 等. 大青沟自然保护区主要森林群落优势种的叶性状. 生态学报, 2017, 37(14): 4646-4655. | |
48 | Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 1999, 143(1): 155-162. |
49 | Qi J, Ma K M, Zhang Y X. Comparison on leaf traits of Quercus liaotungensis Koidz. on different slope positions in Dongling Mountain of Beijing. Acta Ecologica Sinica, 2008(1): 122-128. |
祁建, 马克明, 张育新. 北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较. 生态学报, 2008(1): 122-128. | |
50 | Rose L, Rubarth M C, Hertel D, et al. Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows. Journal of Vegetation Science, 2013, 24(2): 239-250. |
51 | Qi J, Ma K M, Zhang Y X. Leaf-trait relationships of Quercus liaotungensis along an altitudinal gradient in Dongling Mountain, Beijing. Ecological Research, 2009, 24(6): 1243-1250. |
52 | Dao R N, Song Y T, Wu Y N, et al. Response of plant leaf traits to grazing intensity in Stipa krylovii steppe. Chinese Journal of Applied Ecology, 2016, 27(7): 2231-2238. |
道日娜, 宋彦涛, 乌云娜, 等. 克氏针茅草原植物叶片性状对放牧强度的响应. 应用生态学报, 2016, 27(7): 2231-2238. | |
53 | Shi Y, Wen Z M, Gong S H. Comparisons of relationship between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River basin, Shaanxi Province, China. Acta Ecologica Sinica, 2011, 31(22): 6805-6814. |
施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化. 生态学报, 2011, 31(22): 6805-6814. |
[1] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
[2] | 段鹏, 韦鎔宜, 王芳萍, 姚步青, 赵之重, 胡碧霞, 宋词, 杨萍, 王婷. 不同养分添加对黄河源区退化高寒湿地土壤微生物碳源利用的影响[J]. 草业学报, 2024, 33(2): 138-153. |
[3] | 赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49. |
[4] | 刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11. |
[5] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[6] | 胡宇霞, 龚吉蕊, 朱趁趁, 矢佳昱, 张子荷, 宋靓苑, 张魏圆. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14. |
[7] | 李江文, 裴婧宏, 韩国栋, 何邦印, 李彩. 基于植物功能性状分析异常降水对不同载畜率下荒漠草原功能群多样性的影响[J]. 草业学报, 2023, 32(11): 212-222. |
[8] | 吴旭东, 蒋齐, 王占军, 季波, 任小玢. 降水对荒漠草原地上生物量稳定性的影响[J]. 草业学报, 2023, 32(11): 30-39. |
[9] | 米扬, 郭蓉, 王媛, 王占军, 蒋齐, 俞鸿千, 马琨. 宁夏荒漠草原土壤细菌与真菌群落对降水变化的响应[J]. 草业学报, 2023, 32(11): 81-92. |
[10] | 苏荣霞, 马彦平, 王红梅, 赵亚楠, 李志丽. 荒漠草原不同间距灌丛引入对土壤细菌碳源利用和胞外酶活性的影响[J]. 草业学报, 2023, 32(11): 93-105. |
[11] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[12] | 刘万龙, 许冬梅, 史佳梅, 许爱云. 不同群落生境蒙古冰草种群株丛结构和叶片功能性状的变化[J]. 草业学报, 2022, 31(8): 72-80. |
[13] | 张永超, 魏小星, 梁国玲, 秦燕, 刘文辉, 贾志锋, 刘勇, 马祥. 老芒麦衰老过程形态特征变化规律及对养分添加的响应[J]. 草业学报, 2022, 31(6): 101-111. |
[14] | 郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 新疆天山北坡荒漠草原碳通量特征及其对环境因子的响应[J]. 草业学报, 2022, 31(5): 1-12. |
[15] | 金玲, 陆颖, 马红彬, 谢应忠, 沈艳. 内蒙古鄂托克前旗荒漠草原植物群落的数量分类与排序[J]. 草业学报, 2022, 31(4): 12-21. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||