草业学报 ›› 2023, Vol. 32 ›› Issue (11): 81-92.DOI: 10.11686/cyxb2023001
米扬1,2(), 郭蓉1,2(), 王媛1,2, 王占军3, 蒋齐3, 俞鸿千3, 马琨1,2()
收稿日期:
2023-01-04
修回日期:
2023-02-22
出版日期:
2023-11-20
发布日期:
2023-09-27
通讯作者:
马琨
作者简介:
E-mail: makun0411@163.com基金资助:
Yang MI1,2(), Rong GUO1,2(), Yuan WANG1,2, Zhan-jun WANG3, Qi JIANG3, Hong-qian YU3, Kun MA1,2()
Received:
2023-01-04
Revised:
2023-02-22
Online:
2023-11-20
Published:
2023-09-27
Contact:
Kun MA
摘要:
细菌和真菌作为土壤主要微生物类群,在荒漠草原生态系统中随自然降水梯度变化的响应是否一致仍不清楚。为揭示自然降水变化对土壤细菌和真菌群落的影响机制,选取多年平均降水量为231(T0),154(T1),137(T2)和114 mm (T3)的4个宁夏荒漠草原国家监测点作为观测样地。基于IonS5TMXL高通量测序方法,开展了降水变化对荒漠草原土壤细菌和真菌群落的影响差异研究。结果表明:荒漠草原土壤细菌总OTUs、真菌总OTUs总体上表现为随降水梯度的下降呈先上升后下降趋势。荒漠草原土壤细菌类群的主要优势菌门为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和酸杆菌门(Acidobacteria),土壤真菌类群的主要优势菌门为子囊菌门(Ascomycota)和担子菌门(Basidiomycota)。降水变化对细菌优势菌门(变形菌门、放线菌门、酸杆菌门)和部分非优势菌门[疣微菌门(Verrucomicrobia)]相对丰度影响显著(P<0.05);真菌优势菌门(子囊菌门、担子菌门)相对丰度受降水变化影响不显著,但非优势菌门[球囊菌门(Glomeromycota)]的相对丰度受降水变化影响显著(P<0.05)。与T0处理相比,T1、T2和T3处理下细菌和真菌的丰富度指数(Chao1指数和ACE指数)显著升高,细菌群落的Shannon-Wiener多样性指数也显著升高,但真菌的Shannon-Wiener多样性指数无显著变化。驱动细菌群落变化的环境因子为土壤全氮和速效磷,驱动真菌群落变化的环境因子为土壤全磷和有机质。植被因子(生物量)和土壤因子(土壤养分)共同参与解释了降水变化对荒漠草原土壤细菌群落和真菌群落的调控过程,其中土壤因子起主导作用。研究结果表明,土壤细菌和真菌群落对生物和非生物因子的变化有不同的响应机制,反映了荒漠草原土壤微生物应对降水变化具有不同的适应策略。
米扬, 郭蓉, 王媛, 王占军, 蒋齐, 俞鸿千, 马琨. 宁夏荒漠草原土壤细菌与真菌群落对降水变化的响应[J]. 草业学报, 2023, 32(11): 81-92.
Yang MI, Rong GUO, Yuan WANG, Zhan-jun WANG, Qi JIANG, Hong-qian YU, Kun MA. Responses of soil bacterial and fungal communities to precipitation in the desert steppe ecosystem of Ningxia[J]. Acta Prataculturae Sinica, 2023, 32(11): 81-92.
图2 土壤细菌(a)和真菌(b)群落在门水平上相对丰度差异*,P<0.05;**,P<0.01;***, P<0.001. 下同The same below.
Fig.2 Differences in the relative abundance of soil bacterial (a) and fungal (b) communities on the phylum level
处理Treatment | 细菌群落Bacterial communities | 真菌群落Fungal communities | |||||||
---|---|---|---|---|---|---|---|---|---|
Chao1指数 Chao1 index | ACE指数 ACE index | 香农-维纳指数Shannon-Wiener index | 辛普森指数Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index | 香农-维纳指数Shannon-Wiener index | 辛普森指数 Simpson index | ||
T0 | 3078.13±377.02b | 3166.68±375.60b | 7.95±1.90b | 0.90±0.14a | 895.18±177.42b | 931.83±190.37b | 5.30±0.64a | 0.91±0.03a | |
T1 | 3606.96±246.43a | 3693.69±243.12a | 9.55±0.14a | 0.99±0.01a | 1200.60±206.12a | 1246.61±198.87a | 6.18±0.59a | 0.95±0.01a | |
T2 | 3590.49±324.97a | 3669.84±342.74a | 9.48±0.36a | 0.99±0.01a | 1063.61±149.12a | 1094.62±153.05ab | 5.50±0.93a | 0.89±0.10a | |
T3 | 3279.35±258.41a | 3399.65±291.50a | 9.26±0.20a | 0.99±0.02a | 1014.56±92.87a | 1054.37±102.21ab | 5.91±0.47a | 0.93±0.02a |
表1 降水对荒漠草原土壤细菌与真菌群落多样性的影响
Table 1 Effects on the precipitation in bacterial and fungal community diversity in desert grassland soils
处理Treatment | 细菌群落Bacterial communities | 真菌群落Fungal communities | |||||||
---|---|---|---|---|---|---|---|---|---|
Chao1指数 Chao1 index | ACE指数 ACE index | 香农-维纳指数Shannon-Wiener index | 辛普森指数Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index | 香农-维纳指数Shannon-Wiener index | 辛普森指数 Simpson index | ||
T0 | 3078.13±377.02b | 3166.68±375.60b | 7.95±1.90b | 0.90±0.14a | 895.18±177.42b | 931.83±190.37b | 5.30±0.64a | 0.91±0.03a | |
T1 | 3606.96±246.43a | 3693.69±243.12a | 9.55±0.14a | 0.99±0.01a | 1200.60±206.12a | 1246.61±198.87a | 6.18±0.59a | 0.95±0.01a | |
T2 | 3590.49±324.97a | 3669.84±342.74a | 9.48±0.36a | 0.99±0.01a | 1063.61±149.12a | 1094.62±153.05ab | 5.50±0.93a | 0.89±0.10a | |
T3 | 3279.35±258.41a | 3399.65±291.50a | 9.26±0.20a | 0.99±0.02a | 1014.56±92.87a | 1054.37±102.21ab | 5.91±0.47a | 0.93±0.02a |
图3 不同降水梯度下荒漠草原土壤细菌(a)和真菌(b)群落的非度量多维尺度分析
Fig.3 Non-metric multidimensional scaling analysis (NMDS) of bacteria (a) and fungi (b) in desert grasslands under different precipitation gradients
图4 不同降水梯度下荒漠草原土壤细菌群落(a)及真菌群落(b)与环境因子间的RDA分析
Fig.4 Redundancy analysis (RDA) based on soil bacterial community (a), fungal community (b) and environmental factors under different precipitation gradients in desert grasslands
图5 荒漠草原生态系统各组分间的结构方程模型a:细菌群落参与的生态系统Ecosystems in which bacterial communities participate;b:真菌群落参与的生态系统Ecosystems in which fungal communities participate.实线代表显著路径,虚线代表不显著路径,箭头指向表示影响效应方向,数字代表每条路径的标准化系数。The solid lines represent significant paths, the dashed lines represent insignificant paths, the arrows point in the direction of the impact effect, and the numbers represent the normalized coefficients for each path.
Fig.5 Structural equation model between biological and abiotic components of desert steppe ecosystem
1 | Wang C P, Huang M T, Zhai P M. New progress and enlightenment on different types of drought changes from IPCC Sixth Assessment Report. Acta Meteorologica Sinica, 2022, 80(1): 168-175. |
王晨鹏, 黄萌田, 翟盘茂. IPCCAR6报告关于不同类型干旱变化研究的新进展与启示. 气象学报, 2022, 80(1): 168-175. | |
2 | Jansson J K, Hofmockel K S. Soil microbiomes and climate change. Nature Reviews Microbiology, 2020, 18(1): 35-46. |
3 | He X Y, Wang N, Liu J Y, et al. The variation of plant community diversity and biomass along a soil water gradient in loess hilly region. Chinese Journal of Ecology, 2021, 40(1): 31-40. |
何欣月, 王宁, 刘均阳, 等. 黄土丘陵区植物群落多样性及生物量随土壤水分梯度变化特征. 生态学杂志, 2021, 40(1): 31-40. | |
4 | Zhu Y G, Shen R F, He J Z, et al. China soil microbiome initiative: Progress and perspective. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 554-565. |
朱永官, 沈仁芳, 贺纪正, 等. 中国土壤微生物组: 进展与展望. 中国科学院院刊, 2017, 32(6): 554-565. | |
5 | Waldrop M P, Holloway J M, Smith D B, et al. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale. Ecology, 2017, 98(7): 1957-1967. |
6 | Zhu Y G, Chen B D, Fu W. Research frontiers in soil ecology. Science & Technology Review, 2022, 40(3): 25-31. |
朱永官, 陈保冬, 付伟. 土壤生态学研究前沿. 科技导报, 2022, 40(3): 25-31. | |
7 | Shen R F, Zhao X Q. Role of soil microbes in the acquisition of nutrients by plants. Acta Ecologica Sinica, 2015, 35(20): 6584-6591. |
沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用. 生态学报, 2015, 35(20): 6584-6591. | |
8 | Yao D G. Interpretation role of soil microbes in the acquisition of nutrients by plants. Agricultural Development & Equipments, 2020, 6(8): 125-126. |
姚登国. 解读土壤微生物在植物获得养分中的作用. 农业开发与装备, 2020, 6(8): 125-126. | |
9 | Bowles T M, Jackson L E, Cavagnaro T R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Global Change Biology, 2018, 24(1): 171-182. |
10 | Fu W, Chen B, Rillig M C, et al. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. The New Phytologist, 2022, 234(6): 2003-2017. |
11 | Zheng Z, Ma X, Zhang Y, et al. Soil properties and plant community-level traits mediate arbuscular mycorrhizal fungal response to nitrogen enrichment and altered precipitation. Applied Soil Ecology, 2022, 169: 104245. |
12 | Yang X, Zhu K, Loik M E, et al. Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe. Geoderma, 2021, 384: 114812. |
13 | Amilauer P, Košnar J, Kotilínek M, et al. Contrasting effects of host identity, plant community, and local species pool on the composition and colonization levels of arbuscular mycorrhizal fungal community in a temperate grassland. The New Phytologist, 2020, 225(1): 467-473. |
14 | Barnard R L, Osborne C A, Firestone M K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 2013, 7(11): 2229-2241. |
15 | Joshua P S. Life in dry soils: Effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics, 2018, 49(1): 409-432. |
16 | Navas M, Martín-Lammerding D, Hontoria C,, et al. The distinct responses of bacteria and fungi in different sized soil aggregates under different management practices. European Journal of Soil Science, 2020, 72(3): 1177-1189. |
17 | Tao L B, Yu S, Wang G H, et al. Effects of enclosure on characteristics and stability of vegetation community of desert steppe in sandy area of eastern Ningxia. Chinese Journal of Grassland, 2018, 40(2): 64-74. |
陶利波, 于双, 王国会, 等. 封育对宁夏东部风沙区荒漠草原植物群落特征及其稳定性的影响. 中国草地学报, 2018, 40(2): 67-74. | |
18 | Jia R, Lan D M, Guo W X, et al. Characteristics of plant communities and soil nutrients in desert steppe of northeastern Ningxia. Ecology and Environmental Sciences, 2020, 29(3): 483-488. |
贾荣, 兰登明, 郭威星, 等. 宁夏东北部典型荒漠草原植物群落与土壤养分特征. 生态环境学报, 2020, 29(3): 483-488. | |
19 | Li R, Liu M X, Zhang C, et al. Distribution characteristics of soil microbial communities along different slope direction of Gannan sub-alpine meadows. Ecology and Environmental Sciences, 2017, 26(11): 1884-1891. |
李瑞, 刘旻霞, 张灿, 等. 甘南亚高寒草甸不同坡向土壤微生物群落分布特征. 生态环境学报, 2017, 26(11): 1884-1891. | |
20 | Steinauer K, Tilman D, Wragg P D, et al. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology, 2015, 96(1): 99-112. |
21 | Wang Z J, Ma K, Cui H Z, et al. Correlations between arbuscular mycorrhizal fungi and distribution of main grassland types in Ningxia. Acta Prataculturae Sinica, 2020, 29(12): 150-160. |
王占军, 马琨, 崔慧珍, 等. 土壤丛枝菌根真菌与宁夏主要草原类型植被群落分布间的相互关系研究. 草业学报, 2020, 29(12): 150-160. | |
22 | Bao S D. Soil agrochemical analysis (The 3rd Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. | |
23 | Magoc T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963. |
24 | Bokulich N A, Subramanian S, Faith J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 2013, 10(1): 57-59. |
25 | Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335-336. |
26 | Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ, 2016, 4: e2584. |
27 | Haas B J, Gevers D, Earl A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 2011, 21(3): 494-504. |
28 | Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996-998. |
29 | Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3): 403-410. |
30 | Kõljalg U, Nilsson R H, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 2013, 22(21): 5271-5277. |
31 | Chen J, Wang P, Wang C, et al. Fungal community demonstrates stronger dispersal limitation and less network connectivity than bacterial community in sediments along a large river. Environmental Microbiology, 2020, 22(3): 832-849. |
32 | Na X F, Yu H L, Wang P, et al. Vegetation biomass and soil moisture coregulate bacterial community succession under altered precipitation regimes in a desert steppe in northwestern China. Soil Biology and Biochemistry, 2019, 136: 107520. |
33 | Wu K, Xu W, Yang W. Effects of precipitation changes on soil bacterial community composition and diversity in the Junggar desert of Xinjiang, China. PeerJ, 2020, 8(4): e8433. |
34 | Wang J F. Effect of controlled precipitation on soil bacterial community in desert steppe of western Loess Plateau. Lanzhou: Northwest Normal University, 2021. |
王军锋. 控制降水对黄土高原西部荒漠草原土壤细菌群落的影响研究. 兰州: 西北师范大学, 2021. | |
35 | Wang J, Wang Y, He N, et al. Plant functional traits regulate soil bacterial diversity across temperate deserts. Science of the Total Environment, 2020, 715: 136976. |
36 | Chen H, Zhao X R, Chen X J, et al. Seasonal changes of soil microbial C, N, P and associated nutrient dynamics in a semiarid grassland of north China. Applied Soil Ecology, 2018, 128: 89-97. |
37 | Aroca, Ricardo. Enhancement of plant drought tolerance by microbes. Plant Responses to Drought Stress, 2012, 15: 383-413. |
38 | Ochoa-Hueso R, Collins S L, Delgado-Baquerizo M, et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Global Change Biology, 2018, 24(7): 2818-2827. |
39 | Maestre F T, Delgado-Baquerizo M, Jeffries T C, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15684-15689. |
40 | Xu P, Rong X Y, Liu C H, et al. Effects of extreme drought on community and ecological network of soil fungi in a temperate desert. Biodiversity Science, 2022, 30(3): 70-83. |
徐鹏, 荣晓莹, 刘朝红, 等. 极端干旱对温带荒漠土壤真菌群落和生态网络的影响. 生物多样性, 2022, 30(3): 70-83. | |
41 | Nijs E D, Hicks L C, Leizeaga A, et al. Soil microbial moisture dependences and responses to drying-rewetting: the legacy of 18 years drought. Global Change Biology, 2018, 25(3): 1005-1015. |
42 | Lynch J M, Whipps J M. Substrate flow in the rhizosphere. Plant and Soil, 1990, 129(1): 1-10. |
43 | Franciska T D V, Mira E L, Lisa B, et al. Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2012, 2(4): 276-280. |
44 | Wang S, Zuo X, Zhao X, et al. Dominant plant species shape soil bacterial community in semiarid sandy land of northern China. Ecology and Evolution, 2018, 8(3): 1693-1704. |
45 | Wen H C, Shen Y, Nie M H, et al. Characteristics of leaf-soil-microbial carbon and nitrogen and their relationships in typical communities of desert steppe. Chinese Journal of Grassland, 2022, 44(11): 9-17. |
温华晨, 沈艳, 聂明鹤, 等. 荒漠草原典型群落植物叶片-土壤-微生物碳、氮特征及相互关系. 中国草地学报, 2022, 44(11): 9-17. | |
46 | Wei M, Hu G Q, Wang H, et al. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China. European Journal of Soil Biology, 2017, 82: 27-34. |
47 | Shang L R, Wan L Q, Li X L. Effects of organic fertilizer on soil bacterial community diversity in Leymus chinensis steppe. Scientia Agricultura Sinica, 2020, 53(13): 2614-2624. |
商丽荣, 万里强, 李向林. 有机肥对羊草草原土壤细菌群落多样性的影响. 中国农业科学, 2020, 53(13): 2614-2624. | |
48 | Akane O A, Alejandro S, Youmi O, et al. Reviews and syntheses: Soil responses to manipulated precipitation changes an assessment of meta-analyses. Biogeosciences, 2020, 17(14): 3859-3873. |
49 | Wang S, Zuo X, Awada T, et al. Changes of soil bacterial and fungal community structure along a natural aridity gradient in desert grassland ecosystems, Inner Mongolia. Catena, 2021, 205: 105470. |
50 | Li C Y, He M Z, Tang L. Advances on phosphorus cycle and their driving mechanisms in desert ecosystems: A review. Acta Ecologica Sinica, 2022, 42(12): 5115-5124. |
李承义, 何明珠, 唐亮. 荒漠生态系统磷循环及其驱动机制研究进展综述. 生态学报, 2022, 42(12): 5115-5124. | |
51 | Boer W D, Folman L B, Summerbell R C, et al. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews, 2005, 29(4): 795-811. |
[1] | 赵敏, 赵坤, 王赟博, 殷国梅, 刘思博, 闫宝龙, 孟卫军, 吕世杰, 韩国栋. 长期放牧干扰降低了短花针茅荒漠草原植物多样性[J]. 草业学报, 2023, 32(9): 39-49. |
[2] | 赵杰, 尹雪敬, 王思然, 董志浩, 李君风, 贾玉山, 邵涛. 贮藏时间对甜高粱青贮发酵品质、微生物群落组成和功能的影响[J]. 草业学报, 2023, 32(8): 164-175. |
[3] | 刘欣雷, 杜鹤强, 刘秀帆, 范亚伟. 内蒙古荒漠草原地表风沙活动对放牧强度的响应[J]. 草业学报, 2023, 32(7): 1-11. |
[4] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[5] | 胡宇霞, 龚吉蕊, 朱趁趁, 矢佳昱, 张子荷, 宋靓苑, 张魏圆. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14. |
[6] | 李江文, 裴婧宏, 韩国栋, 何邦印, 李彩. 基于植物功能性状分析异常降水对不同载畜率下荒漠草原功能群多样性的影响[J]. 草业学报, 2023, 32(11): 212-222. |
[7] | 吴旭东, 蒋齐, 王占军, 季波, 任小玢. 降水对荒漠草原地上生物量稳定性的影响[J]. 草业学报, 2023, 32(11): 30-39. |
[8] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[9] | 刘万龙, 许冬梅, 史佳梅, 许爱云. 不同群落生境蒙古冰草种群株丛结构和叶片功能性状的变化[J]. 草业学报, 2022, 31(8): 72-80. |
[10] | 戈建珍, 傅文慧, 张露, 蔺宝珺, 赵帅, 白玛噶翁, 寇建村. 多菌灵在果园白三叶青贮中的降解及其对微生物群落的影响[J]. 草业学报, 2022, 31(7): 64-75. |
[11] | 郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 新疆天山北坡荒漠草原碳通量特征及其对环境因子的响应[J]. 草业学报, 2022, 31(5): 1-12. |
[12] | 金玲, 陆颖, 马红彬, 谢应忠, 沈艳. 内蒙古鄂托克前旗荒漠草原植物群落的数量分类与排序[J]. 草业学报, 2022, 31(4): 12-21. |
[13] | 倪芳芳, 吕世杰, 屈志强, 白璐, 孟彪, 张博涵, 李治国. 不同载畜率下荒漠草原非生长季植物群落特征对近地面风沙通量的影响[J]. 草业学报, 2022, 31(3): 26-33. |
[14] | 程燕明, 马红彬, 马菁, 马子元, 刘进娣, 周瑶, 彭文栋. 不同放牧方式对荒漠草原土壤碳氮储量及固持的影响[J]. 草业学报, 2022, 31(10): 18-27. |
[15] | 郭志霞, 刘任涛, 赵文智. 荒漠灌丛和土壤动物关系及对降水变化的响应研究进展[J]. 草业学报, 2022, 31(10): 206-216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||