草业学报 ›› 2024, Vol. 33 ›› Issue (12): 45-58.DOI: 10.11686/cyxb2024045
白宇飞1,2(), 尹航1,2, 杨海波1,2, 冯振华1,2, 李斐1,2()
收稿日期:
2024-02-01
修回日期:
2024-03-07
出版日期:
2024-12-20
发布日期:
2024-10-09
通讯作者:
李斐
作者简介:
E-mail: Lifei@imau.edu.cn基金资助:
Yu-fei BAI1,2(), Hang YIN1,2, Hai-bo YANG1,2, Zhen-hua FENG1,2, Fei LI1,2()
Received:
2024-02-01
Revised:
2024-03-07
Online:
2024-12-20
Published:
2024-10-09
Contact:
Fei LI
摘要:
产量是苜蓿草场经济产出的重要指标,及时准确量化苜蓿产量有利于提高草场的施肥管理水平和优化种植模式。传统人工草场产量信息的获取依赖于破坏性实地调查,具有滞后性。相比之下,无人机遥感监测技术可以无损地快速获取反演产量模型的有效信息,然而基于单一传感器的图像信息,光谱分辨率和空间分辨率往往不可兼得,从而影响作物长势的全面分析,致使构建的产量模型的估测精度难以得到有效提升。因此,本研究旨在探索无人机多源影像信息融合对收获期苜蓿产量的估测潜力。在苜蓿收获期采集RGB和多光谱(MS)影像,从中提取光谱、纹理以及小波特征,投入偏最小二乘(PLSR)和高斯回归(GPR)两种机器学习算法,评估苜蓿产量估测模型的鲁棒性。结果表明,RGB影像的小波特征相比于颜色指数和纹理特征的估测效果更好,两类特征组合对于苜蓿产量估算精度具有一定的提升,颜色指数、纹理以及小波3类特征结合的GPR苜蓿产量估算模型精度最高,训练集R2=0.76,验证集R2=0.63,分析相对误差(RPD)=1.61。对于MS影像来说,基于纹理特征建立的苜蓿产量估算模型略优于光谱指数特征,组合两类特征构建的GPR苜蓿估产模型精度最高,训练集R2=0.83,验证集R2=0.58,RPD=1.55。当把RGB影像和MS影像特征融合后,苜蓿产量估算模型精度显著提升,融合3类特征参数(多光谱指数、多光谱纹理、RGB小波特征)的GPR模型得到最优的苜蓿产量估算精度,训练集R2=0.83,验证集R2=0.75,RPD=1.98。总体看来,GPR算法表现了最好的估测结果,相比于PLSR模型估测精度提升了13.6%,研究结果为今后标准化人工草地的遥感监测和智能估产提供了参考。
白宇飞, 尹航, 杨海波, 冯振华, 李斐. 无人机多光谱和RGB影像融合的苜蓿产量估测[J]. 草业学报, 2024, 33(12): 45-58.
Yu-fei BAI, Hang YIN, Hai-bo YANG, Zhen-hua FENG, Fei LI. Estimation of alfalfa yields on the basis of unmanned aerial vehicle multi-spectral and red-green-blue images[J]. Acta Prataculturae Sinica, 2024, 33(12): 45-58.
项目Item | 指数 Index | 公式 Formula | 文献 Reference |
---|---|---|---|
CI | r | R/(R+G+B) | [ |
g | G/(R+G+B) | ||
b | B/(R+G+B) | ||
蓝/绿色素指数Blue/green pigment index (BGI) | b/g | ||
蓝/红色素指数Blue/red pigment index (BRI) | b/r | ||
绿/红色素指数green/red pigment index (GRI) | g/r | ||
超绿指数Excess green index (ExG) | 2g-r-b | ||
绿红植被指数Green red vegetation index (GRVI) | (g-r)/(g+r) | [ | |
可见大气阻力指数Visible atmospherically resistant index (VARI) | (g-r)/(g+r-b) | [ | |
修正绿红植被指数Modified green red vegetation index (MGRVI) | (g2-r2)/(g2+r2) | [ | |
红绿蓝植被指数Red-green-blue vegetation index (RGBVI) | (g2-rb)/(g2+rb) | ||
三角形绿色指数Triangular greenness index (TGI) | -0.5[190(r-g)-120(r-b)] | [ | |
SI | 差值植被指数Different vegetation index (DVI) | [ | |
比率植被指数Ratio vegetation index (RVI) | [ | ||
归一化植被指数Normalized difference vegetation index (NDVI) | |||
红边叶绿素指数Red edge chlorophyll index (CIred-edge) | [ | ||
三波段比率光谱指数Three-band ratio spectral index (TRSI) | [ | ||
蓝氮指数1 Blue nitrogen index 1 (BNI1) | [ | ||
蓝氮指数2 Blue nitrogen index 2 (BNI2) | |||
植被衰减指数Plant senescence reflectance index (PSRI) | [ | ||
陆地叶绿素指数The MERIS terrestrial chlorophyll index (MTCI) | [ | ||
修正红边比率Modified red-edge ratio (mSR705) | [ | ||
修正红边归一化差异植被指数Modified red-edge normalized difference vegetatio index (mND705) | |||
双峰氮指数Double-peak nitrogen index (NDDA) | [ | ||
修正叶绿素吸收反射指数Modified chlorophyll absorption reflectance index (MCARI) | [ | ||
优化土壤调节植被指数Optimized soil-adjusted vegetation index (OSAVI) | [ | ||
修正的归一化差分植被指数Modified normalized difference vegetation index (nNDVIblue) | [ | ||
转换叶绿素吸收反射指数Transformed chlorophyll absorption reflectance index (TCARI) | [ | ||
冠层叶绿素反演指数Canopy chlorophyll inversion index (TCARI/OSAVI) | |||
氮平面域指数Nitrogen planar domain index (CIred-edge/NDVI) | [ | ||
MCARI/OSAVI | [ |
表1 RGB指数选用及MS波段优化公式
Table 1 RGB index selection and multi-spectral band optimization formula
项目Item | 指数 Index | 公式 Formula | 文献 Reference |
---|---|---|---|
CI | r | R/(R+G+B) | [ |
g | G/(R+G+B) | ||
b | B/(R+G+B) | ||
蓝/绿色素指数Blue/green pigment index (BGI) | b/g | ||
蓝/红色素指数Blue/red pigment index (BRI) | b/r | ||
绿/红色素指数green/red pigment index (GRI) | g/r | ||
超绿指数Excess green index (ExG) | 2g-r-b | ||
绿红植被指数Green red vegetation index (GRVI) | (g-r)/(g+r) | [ | |
可见大气阻力指数Visible atmospherically resistant index (VARI) | (g-r)/(g+r-b) | [ | |
修正绿红植被指数Modified green red vegetation index (MGRVI) | (g2-r2)/(g2+r2) | [ | |
红绿蓝植被指数Red-green-blue vegetation index (RGBVI) | (g2-rb)/(g2+rb) | ||
三角形绿色指数Triangular greenness index (TGI) | -0.5[190(r-g)-120(r-b)] | [ | |
SI | 差值植被指数Different vegetation index (DVI) | [ | |
比率植被指数Ratio vegetation index (RVI) | [ | ||
归一化植被指数Normalized difference vegetation index (NDVI) | |||
红边叶绿素指数Red edge chlorophyll index (CIred-edge) | [ | ||
三波段比率光谱指数Three-band ratio spectral index (TRSI) | [ | ||
蓝氮指数1 Blue nitrogen index 1 (BNI1) | [ | ||
蓝氮指数2 Blue nitrogen index 2 (BNI2) | |||
植被衰减指数Plant senescence reflectance index (PSRI) | [ | ||
陆地叶绿素指数The MERIS terrestrial chlorophyll index (MTCI) | [ | ||
修正红边比率Modified red-edge ratio (mSR705) | [ | ||
修正红边归一化差异植被指数Modified red-edge normalized difference vegetatio index (mND705) | |||
双峰氮指数Double-peak nitrogen index (NDDA) | [ | ||
修正叶绿素吸收反射指数Modified chlorophyll absorption reflectance index (MCARI) | [ | ||
优化土壤调节植被指数Optimized soil-adjusted vegetation index (OSAVI) | [ | ||
修正的归一化差分植被指数Modified normalized difference vegetation index (nNDVIblue) | [ | ||
转换叶绿素吸收反射指数Transformed chlorophyll absorption reflectance index (TCARI) | [ | ||
冠层叶绿素反演指数Canopy chlorophyll inversion index (TCARI/OSAVI) | |||
氮平面域指数Nitrogen planar domain index (CIred-edge/NDVI) | [ | ||
MCARI/OSAVI | [ |
纹理特征Textural features | 公式Formula |
---|---|
均值Mean | |
方差Variance (var) | |
同质性Homogenetity (hom) | |
对比度Contrast (con) | |
差异性Dissimilarity (dis) | |
熵Entropy (ent) | |
二阶距Second moment (sm) | |
相关性 Correlation (cor) |
表2 影像提取的8种纹理指数
Table 2 Eight texture indices were extracted from the image
纹理特征Textural features | 公式Formula |
---|---|
均值Mean | |
方差Variance (var) | |
同质性Homogenetity (hom) | |
对比度Contrast (con) | |
差异性Dissimilarity (dis) | |
熵Entropy (ent) | |
二阶距Second moment (sm) | |
相关性 Correlation (cor) |
变量 Variable | 特征数量 Feature quantity | 偏最小二乘回归PLSR | 高斯回归GPR | ||||
---|---|---|---|---|---|---|---|
Cali-R2 | Vali-R2 | Vali-RPD | Cali-R2 | Vali-R2 | Vali-RPD | ||
CI | 10 | 0.39 | 0.45 | 1.36 | 0.31 | 0.15 | 1.08 |
TFRGB | 22 | 0.53 | 0.52 | 1.45 | 0.75 | 0.19 | 1.13 |
WFRGB | 17 | 0.63 | 0.60 | 1.57 | 0.64 | 0.66 | 1.72 |
CI+TFRGB | 29 | 0.61 | 0.55 | 1.46 | 0.86 | 0.36 | 1.26 |
CI+WFRGB | 25 | 0.66 | 0.55 | 1.41 | 0.72 | 0.63 | 1.65 |
TFRGB+WFRGB | 37 | 0.67 | 0.57 | 1.22 | 0.88 | 0.52 | 1.41 |
CI+TFRGB+WFRGB | 52 | 0.69 | 0.65 | 1.54 | 0.76 | 0.63 | 1.61 |
表3 RGB传感器特征组合建模估测
Table 3 RGB sensor feature combination modeling estimation
变量 Variable | 特征数量 Feature quantity | 偏最小二乘回归PLSR | 高斯回归GPR | ||||
---|---|---|---|---|---|---|---|
Cali-R2 | Vali-R2 | Vali-RPD | Cali-R2 | Vali-R2 | Vali-RPD | ||
CI | 10 | 0.39 | 0.45 | 1.36 | 0.31 | 0.15 | 1.08 |
TFRGB | 22 | 0.53 | 0.52 | 1.45 | 0.75 | 0.19 | 1.13 |
WFRGB | 17 | 0.63 | 0.60 | 1.57 | 0.64 | 0.66 | 1.72 |
CI+TFRGB | 29 | 0.61 | 0.55 | 1.46 | 0.86 | 0.36 | 1.26 |
CI+WFRGB | 25 | 0.66 | 0.55 | 1.41 | 0.72 | 0.63 | 1.65 |
TFRGB+WFRGB | 37 | 0.67 | 0.57 | 1.22 | 0.88 | 0.52 | 1.41 |
CI+TFRGB+WFRGB | 52 | 0.69 | 0.65 | 1.54 | 0.76 | 0.63 | 1.61 |
图3 不同特征组合两种算法估测a、d: RGB影像Image, CI+TFRGB+WFRGB ; b、e: MS影像Image, SI+TFMS; c、f: RGB+MS影像Image, SI+TFMS+WFRGB.
Fig.3 Two algorithms estimate for different feature combinations
变量 Variable | 特征数量 Feature quantity | 偏最小二乘回归Partial least squares regression | 高斯回归Gaussian process regression | ||||
---|---|---|---|---|---|---|---|
Cali-R2 | Vali-R2 | Vali-RPD | Cali-R2 | Vali-R2 | Vali-RPD | ||
SI | 20 | 0.43 | 0.49 | 1.42 | 0.58 | 0.46 | 1.37 |
TFMS | 25 | 0.49 | 0.55 | 1.52 | 0.57 | 0.56 | 1.50 |
SI+TFMS | 29 | 0.48 | 0.44 | 1.35 | 0.83 | 0.58 | 1.55 |
表4 多光谱传感器特征组合建模估测
Table 4 Multi-spectral sensor feature combination modeling and estimation
变量 Variable | 特征数量 Feature quantity | 偏最小二乘回归Partial least squares regression | 高斯回归Gaussian process regression | ||||
---|---|---|---|---|---|---|---|
Cali-R2 | Vali-R2 | Vali-RPD | Cali-R2 | Vali-R2 | Vali-RPD | ||
SI | 20 | 0.43 | 0.49 | 1.42 | 0.58 | 0.46 | 1.37 |
TFMS | 25 | 0.49 | 0.55 | 1.52 | 0.57 | 0.56 | 1.50 |
SI+TFMS | 29 | 0.48 | 0.44 | 1.35 | 0.83 | 0.58 | 1.55 |
变量 Variable | 特征数量 Feature quantity | 偏最小二乘回归PLSR | 高斯回归GPR | ||||
---|---|---|---|---|---|---|---|
Cali-R2 | Vali-R2 | Vali-RPD | Cali-R2 | Vali-R2 | Vali-RPD | ||
SI+WFRGB | 16 | 0.59 | 0.55 | 1.49 | 0.89 | 0.61 | 1.62 |
SI+TFRGB | 24 | 0.52 | 0.46 | 1.37 | 0.77 | 0.42 | 1.32 |
TFMS+CI | 23 | 0.56 | 0.56 | 1.52 | 0.69 | 0.60 | 1.57 |
TFMS+WFRGB | 28 | 0.53 | 0.53 | 1.47 | 0.85 | 0.71 | 1.85 |
CI+TFMS+WFRGB | 43 | 0.64 | 0.63 | 1.64 | 0.82 | 0.73 | 1.80 |
SI+TFRGB+WFRGB | 57 | 0.67 | 0.66 | 1.51 | 0.80 | 0.66 | 1.67 |
SI+TFMS+WFRGB | 61 | 0.66 | 0.62 | 1.50 | 0.83 | 0.75 | 1.98 |
表5 RGB+MS传感器特征组合建模估测
Table 5 RGB+MS sensor feature combination modeling estimation
变量 Variable | 特征数量 Feature quantity | 偏最小二乘回归PLSR | 高斯回归GPR | ||||
---|---|---|---|---|---|---|---|
Cali-R2 | Vali-R2 | Vali-RPD | Cali-R2 | Vali-R2 | Vali-RPD | ||
SI+WFRGB | 16 | 0.59 | 0.55 | 1.49 | 0.89 | 0.61 | 1.62 |
SI+TFRGB | 24 | 0.52 | 0.46 | 1.37 | 0.77 | 0.42 | 1.32 |
TFMS+CI | 23 | 0.56 | 0.56 | 1.52 | 0.69 | 0.60 | 1.57 |
TFMS+WFRGB | 28 | 0.53 | 0.53 | 1.47 | 0.85 | 0.71 | 1.85 |
CI+TFMS+WFRGB | 43 | 0.64 | 0.63 | 1.64 | 0.82 | 0.73 | 1.80 |
SI+TFRGB+WFRGB | 57 | 0.67 | 0.66 | 1.51 | 0.80 | 0.66 | 1.67 |
SI+TFMS+WFRGB | 61 | 0.66 | 0.62 | 1.50 | 0.83 | 0.75 | 1.98 |
图4 Relief重要度排序挑选CI+TFRGB+WFRGB、SI+TFMS、SI+TFMS+WFRGB特征
Fig.4 CI+TFRGB+WFRGB, SI+TFMS, SI+TFMS+WFRGB features were selected for relief importance ranking
1 | Yang Q C, Kang J M, Zhang T J, et al. Distribution, breeding and utilization of alfalfa germplasm resources. Chinese Science Bulletin, 2016, 61(2): 261-270. |
杨青川, 康俊梅, 张铁军, 等. 苜蓿种质资源的分布、育种与利用. 科学通报, 2016, 61(2): 261-270. | |
2 | Wang M L. Focusing on the expansion of pasture industry to ensure the high-quality development of livestock industry. Modern Agriculture, 2023, 48(6): 3-6, 24. |
王明利. 着力草业扩面增量保障畜牧业高质量发展. 现代农业, 2023, 48(6): 3-6, 24. | |
3 | Sun Q Z, Yu Z, Ma C H, et al. Achievements of the alfalfa industry in last decade and priorities in next decade in China. Pratacultural Science, 2013, 30(3): 471-477. |
孙启忠, 玉柱, 马春晖, 等. 我国苜蓿产业过去10年发展成就与未来10年发展重点. 草业科学, 2013, 30(3): 471-477. | |
4 | Wang R G, Xu W P. Development characteristics and trend of alfalfa industry in China. Journal of Agricultural Science and Technology, 2021, 23(12): 7-12. |
王瑞港, 徐伟平. 我国苜蓿产业发展特征与趋势分析. 中国农业科技导报, 2021, 23(12): 7-12. | |
5 | Zhang L, Chen X P, Jia L L. Parameter research of using UAV-based visible spectral analysis technology in dynamical diagnosis of nitrogen status of summer maize. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 261-269. |
张玲, 陈新平, 贾良良. 基于无人机可见光遥感的夏玉米氮素营养动态诊断参数研究. 植物营养与肥料学报, 2018, 24(1): 261-269. | |
6 | Chen J S, Zhu R F, Gao C, et al. Nitrogen status diagnosis of fertilized alfalfa during budding stage using digital photography analysis. Acta Agrestia Sinica, 2013, 21(3): 576-580. |
陈积山, 朱瑞芬, 高超, 等. 基于图像处理技术对现蕾期紫花苜蓿氮素营养的诊断研究. 草地学报, 2013, 21(3): 576-580. | |
7 | Miao C L, Li Z X, Zhao Z C, et al. Real-time monitoring and analysis algorithm for key biophysical indicators of cultivated alfalfa in a grassland intelligent perception system. Acta Prataculturae Sinica, 2023, 32(12): 90-103. |
苗春丽, 李仲贤, 赵志成, 等. 栽培苜蓿草地智能感知系统关键生物物理指标实时监测及分析算法研究. 草业学报, 2023, 32(12): 90-103. | |
8 | Wang Q, Che Y P, Chai H H, et al. Monitoring of sugar beet growth using canopy spectrum and structural characteristics with UAV images. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 90-98. |
王庆, 车荧璞, 柴宏红, 等. 基于无人机影像的冠层光谱和结构特征监测甜菜长势. 农业工程学报, 2021, 37(20): 90-98. | |
9 | Yue J B, Yang G J, Tian Q J, et al. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 226-244. |
10 | Xing L X, Meng Z G, Edward M O. Information extraction of remote sensing texture based on wavelet transform. Journal of Jilin University (Earth Science Edition), 2004, 34(3): 481-483. |
邢立新, 孟治国, Edward M O. 基于小波变换的遥感纹理信息提取. 吉林大学学报(地球科学版), 2004, 34(3): 481-483. | |
11 | Liu Y, Sun Q, Feng H K, et al. Estimation of above-ground biomass of potato based on wavelet analysis. Spectroscopy and Spectral Analysis, 2021, 41(4): 1205-1212. |
刘杨, 孙乾, 冯海宽, 等. 基于小波分析的马铃薯地上生物量估算. 光谱学与光谱分析, 2021, 41(4): 1205-1212. | |
12 | Juliane B, Kang Y, Helge A, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observations and Geoinformation, 2015, 39(2): 79-87. |
13 | Mutanga O, Skidmore K A. Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 2004, 25(19): 3999-4014. |
14 | Wang D, Li D, Xu L J, et al. Research progress and application of intelligent management of alfalfa. China Agricultural Informatics, 2022, 34(2): 16-26. |
王笛, 李达, 徐丽君, 等. 苜蓿智慧管理研究进展与应用. 中国农业信息, 2022, 34(2): 16-26. | |
15 | Yan H J, Zhuo Y, Li M N, et al. Alfalfa yield prediction using machine learning and UAV multispectral remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(11): 64-71. |
严海军, 卓越, 李茂娜, 等. 基于机器学习和无人机多光谱遥感的苜蓿产量预测. 农业工程学报, 2022, 38(11): 64-71. | |
16 | Ni H R, Wang R, Hu H, et al. Seed identification of alfalfa varieties based on multispectral imaging. Acta Agrestia Sinica, 2023, 31(10): 2985-2991. |
倪浩然, 王润, 胡昊, 等. 基于多光谱成像技术鉴别不同紫花苜蓿品种的种子. 草地学报, 2023, 31(10): 2985-2991. | |
17 | Jia Y Z, Xiao L Q, Yue T W, et al. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods. Computers and Electronics in Agriculture, 2021, 185(6): 106-138. |
18 | Shao Y J, Tang Q X, Cui J P, et al. Cotton leaf area index estimation combining UAV spectral and textural features. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 186-196. |
邵亚杰, 汤秋香, 崔建平, 等. 融合无人机光谱信息与纹理特征的棉花叶面积指数估测. 农业机械学报, 2023, 54(6): 186-196. | |
19 | Meng L, Yin D, Cheng M, et al. Improved crop biomass algorithm with piecewise function (iCBA-PF) for maize using multi-source UAV data. Drones, 2023, 7(4): 254. |
20 | Chandel A K, Khot L R, Yu L X. Alfalfa crop vigor and yield characterization using high-resolution aerial multispectral and thermal infrared imaging technique. Computers and Electronics in Agriculture, 2021, 182(3): 105999. |
21 | Noland L R, Wells S M, Coulter A J, et al. Estimating alfalfa yield and nutritive value using remote sensing and air temperature. Field Crops Research, 2018, 222(6): 189-196. |
22 | Yang J, Ding F, Chen C, et al. Correlation of wheat biomass and yield with UAV image characteristic parameters. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 104-110. |
杨俊, 丁峰, 陈晨, 等. 小麦生物量及产量与无人机图像特征参数的相关性. 农业工程学报, 2019, 35(23): 104-110. | |
23 | Han W T, Peng X S, Zhang L Y, et al. Summer maize yield estimation based on vegetation index derived from multi-temporal UAV remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 148-155. |
韩文霆, 彭星硕, 张立元, 等. 基于多时相无人机遥感植被指数的夏玉米产量估算. 农业机械学报, 2020, 51(1): 148-155. | |
24 | Wang K, Zhu D Z, Zhang D Y, et al. Advance of the imaging spectral technique in diagnosis of the information of crop. Spectroscopy and Spectral Analysis, 2011, 31(3): 589-594. |
王坤, 朱大洲, 张东彦, 等. 成像光谱技术在农作物信息诊断中的研究进展. 光谱学与光谱分析, 2011, 31(3): 589-594. | |
25 | Woebbecke D M, Meyer G E, Von Bargen K, et al. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 1995, 38(1): 259-269. |
26 | Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 1979, 8(2): 127-150. |
27 | Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80(1): 76-87. |
28 | Hunt Jr E R, Doraiswamy P C, McMurtrey J E, et al. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, 2013, 21(4): 103-112. |
29 | Bannari A, Morin D, Bonn F, et al. A review of vegetation indices. Remote Sensing Reviews, 1995, 13(10): 95-120. |
30 | Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Plant Physiology, 2003, 160(3): 271-282. |
31 | Chappelle E W, Kim M S, McMurtrey Ⅲ J E. Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment, 1992, 39(3): 239-247. |
32 | Tian Y, Yao X, Yang J, et al. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground space-based hyperspectral reflectance. Field Crop Research, 2011, 120(2): 299-310. |
33 | Dash J, Curran P J. The MERIS terrestrial chlorophyll index. Remote Sensing of Environment, 2004, 25(23): 5403-5413. |
34 | Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81(2/3): 337-354. |
35 | Feng W, Guo B B, Wang Z J, et al. Measuring leaf nitrogen concentration in winter wheat using double-peak spectral reflection remote sensing data. Field Crop Research, 2014, 159(3): 43-52. |
36 | Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 2000, 74(2): 229-239. |
37 | Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996, 55(2): 95-107. |
38 | Wang W, Yao X, Yao X F, et al. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crop Research, 2012, 129(4): 90-98. |
39 | Haboudane D, Miller J R, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 2002, 81(2/3): 416-426. |
40 | Li F, Mistele B, Hu Y C, et al. Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany. Field Crop Research, 2012, 138(10): 21-32. |
41 | Zarco-Tejada P J, Miller J R, Morales A, et al. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 2004, 90(4): 463-476. |
42 | Fan J L, Wang H, Liao Z Q, et al. Winter wheat leaf area index estimation based on texture-color features and vegetation indices. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 347-359. |
范军亮, 王涵, 廖振棋, 等. 基于纹理-颜色特征与植被指数融合的冬小麦LAI估测. 农业机械学报, 2023, 54(7): 347-359. | |
43 | Chen X, Xing L X, Gao Z Y, et al. Information extraction of remote sensing image texture based on wavelet transform. Journal of Anhui Agricultural Sciences, 2015, 43(4): 363-366. |
陈潇, 邢立新, 高志勇, 等. 基于小波变换的遥感影像纹理信息提取. 安徽农业科学, 2015, 43(4): 363-366. | |
44 | Liang J L, Liu Y H, Xu J, et al. Classification feature optimization of remote sensing images based on ReliefF algorithm. Surveying and Mapping of Geology and Mineral Resources, 2020, 36(3): 1-5. |
梁加玲, 刘彦花, 徐军, 等. 基于ReliefF算法的遥感影像分类特征优化. 地矿测绘, 2020, 36(3): 1-5. | |
45 | Dessislava G, Eugenia R, Petar D, et al. Phenotypic traits estimation and preliminary yield assessment in different phenophases of wheat breeding experiment based on UAV multispectral images. Remote Sensing, 2022, 14(4): 1019. |
46 | Mohsen A, Davoud A, Hossein A, et al. Alfalfa yield estimation based on time series of Landsat 8 and PROBA-V images: An investigation of machine learning techniques and spectral-temporal features. Remote Sensing Applications: Society and Environment, 2022, 25(1): 100657. |
47 | Zhang N N, Zhang X, Wang C K, et al. Cotton LAI estimation based on hyperspectral and successive projection algorithm. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(S1): 257-262. |
张楠楠, 张晓, 王城坤, 等. 基于高光谱和连续投影算法的棉花叶面积指数估测. 农业机械学报, 2022, 53(S1): 257-262. | |
48 | Feng L, Zhang Z, Ma Y, et al. Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning. Remote Sensing, 2020, 12(12): 2028. |
49 | Cui Y, Ji Y, Liu R, et al. Faba bean (Vicia faba L.) yield estimation based on dual-sensor data. Drones, 2023, 7(6): 378. |
50 | Huang J X, Zhang J, Liu J M, et al. Correlation analysis between drought and winter wheat yields based on remotely sensed drought severity index. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 166-173. |
黄健熙, 张洁, 刘峻明, 等. 基于遥感DSI指数的干旱与冬小麦产量相关性分析. 农业机械学报, 2015, 46(3): 166-173. | |
51 | Zhang X J, Chen Y L, Xiao G, et al. A review of crop yield prediction based on machine learning. Anhui Agricultural Science Bulletin, 2021, 27(3): 117-119, 134. |
张向君, 陈优良, 肖钢, 等. 基于机器学习的农作物产量预测研究综述. 安徽农学通报, 2021, 27(3): 117-119, 134. |
[1] | 崔红丽, 孙明哲, 贾博为, 孙晓丽. 蒺藜苜蓿OSCA基因家族鉴定及低温逆境表达分析[J]. 草业学报, 2024, 33(9): 111-125. |
[2] | 李争艳, 徐智明, 李岩, 李杨. 江淮地区苜蓿短期连作对后作高丹草生长及土壤微环境的影响[J]. 草业学报, 2024, 33(9): 155-168. |
[3] | 王晓彤, 李小红, 麻旭霞, 蔡文祺, 冯学丽, 李淑霞. 紫花苜蓿FBA基因家族成员的鉴定与分析[J]. 草业学报, 2024, 33(9): 81-93. |
[4] | 张盈盈, 胡丹丹, 马春晖, 张前兵. 苜蓿叶片结构和光合特性对菌磷添加的响应[J]. 草业学报, 2024, 33(8): 133-144. |
[5] | 李伟, 王涵, 王常清, 潘玉鑫, 侯建荣, 康文娟, 尚素琴, 师尚礼. 苜蓿生卡螨种群参数对温度的响应[J]. 草业学报, 2024, 33(8): 181-189. |
[6] | 王峥, 常伟, 李俊诚, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿还田对饲料玉米产量和氮素吸收转运的影响[J]. 草业学报, 2024, 33(8): 63-73. |
[7] | 徐寿霞. 基于meta分析的丛枝菌根对小麦产量和品质的影响[J]. 草业学报, 2024, 33(7): 192-204. |
[8] | 高金柱, 赵东豪, 高乐, 苏喜浩, 何学青. 硝酸铈与脱落酸处理对紫花苜蓿种子萌发和幼苗生理特性的影响[J]. 草业学报, 2024, 33(6): 175-186. |
[9] | 亓雯雯, 马红媛, 李亚晓, 杜艳, 孙梦丹, 武海涛. 优质牧草新品种选育方法研究进展[J]. 草业学报, 2024, 33(6): 187-202. |
[10] | 谭英, 尹豪. 盐胁迫下根施AMF和褪黑素对紫花苜蓿生长、光合特征以及抗氧化系统的影响[J]. 草业学报, 2024, 33(6): 64-75. |
[11] | 王敏, 李莉, 贾蓉, 包爱科. 10种紫花苜蓿在低温胁迫下的生理特性及耐寒性评价[J]. 草业学报, 2024, 33(6): 76-88. |
[12] | 孔海明, 宋家兴, 杨静, 李倩, 杨培志, 曹玉曼. 紫花苜蓿CAMTA基因家族鉴定及其在非生物胁迫下的表达模式分析[J]. 草业学报, 2024, 33(5): 143-154. |
[13] | 何升然, 刘晓静, 赵雅姣, 汪雪, 王静. 紫花苜蓿/甜高粱间作对根际土壤特性及微生物群落特征的影响[J]. 草业学报, 2024, 33(5): 92-105. |
[14] | 刘昊, 李显炀, 何飞, 王雪, 李明娜, 龙瑞才, 康俊梅, 杨青川, 陈林. 紫花苜蓿SAUR基因家族的鉴定及其在非生物胁迫中的表达模式研究[J]. 草业学报, 2024, 33(4): 135-153. |
[15] | 李显炀, 刘昊, 何飞, 王雪, 李明娜, 龙瑞才, 康俊梅, 杨青川, 陈林. 全基因组水平紫花苜蓿WRKY转录因子家族鉴定与表达模式分析[J]. 草业学报, 2024, 33(4): 154-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||