草业学报 ›› 2025, Vol. 34 ›› Issue (1): 135-150.DOI: 10.11686/cyxb2024122
• 研究论文 • 上一篇
李媛1,2,3(), 孟思宇1(), 冯晓云1,2,3, 鲍根生1,2,3()
收稿日期:
2024-04-10
修回日期:
2024-06-05
出版日期:
2025-01-20
发布日期:
2024-11-04
通讯作者:
鲍根生
作者简介:
E-mail: baogensheng2008@hotmail.com基金资助:
Yuan LI1,2,3(), Si-yu MENG1(), Xiao-yun FENG1,2,3, Gen-sheng BAO1,2,3()
Received:
2024-04-10
Revised:
2024-06-05
Online:
2025-01-20
Published:
2024-11-04
Contact:
Gen-sheng BAO
About author:
First author contact:These authors contributed equally to this work.
摘要:
甘肃马先蒿是一种根寄生杂草,利用吸器在紫花针茅根部建立营养摄取通道,并掠夺性获取紫花针茅体内营养物质,从而抑制紫花针茅生长。研究表明,Epichlo?内生真菌与紫花针茅共生能缓解甘肃马先蒿寄生对紫花针茅的生长抑制作用,这可能与内生真菌调控紫花针茅根系形态特征有关。本研究以带菌(E+)、不带菌(E-)紫花针茅为研究对象开展盆栽试验,探究甘肃马先蒿寄生密度对紫花针茅根系形态的影响。结果表明:1)甘肃马先蒿寄生显著降低了紫花针茅地上和根系生物量,抑制了紫花针茅根系的生长发育,且随寄生密度增加,紫花针茅生物量和根系形态指数持续降低,但E+植株的生物量和根系形态优于E-植株。2)通过结构方程模型分析发现,甘肃马先蒿寄生能抑制紫花针茅根长、根表面积和根系拓扑指数,导致紫花针茅生物量降低,且随寄生密度的增大,甘肃马先蒿对紫花针茅生长的抑制作用不断增强。内生真菌通过改变紫花针茅根长、根表面积和外部连接数等根系形态特征对甘肃马先蒿寄生作出正向的积极响应,进而增加紫花针茅生物量。由此可见,内生真菌能通过调控根系形态特征来增强紫花针茅根系和地上生物量,进而缓解甘肃马先蒿对紫花针茅的根寄生危害,这将为利用禾草内生真菌共生体这一特殊资源对根寄生杂草防控提供新思路。
李媛, 孟思宇, 冯晓云, 鲍根生. 内生真菌对根寄生逆境下紫花针茅根系形态的影响[J]. 草业学报, 2025, 34(1): 135-150.
Yuan LI, Si-yu MENG, Xiao-yun FENG, Gen-sheng BAO. Effect of the Epichloë endophyte on the root morphology of Stipa purpurea infected by the hemiparasite Pedicularis kansuensis[J]. Acta Prataculturae Sinica, 2025, 34(1): 135-150.
图1 紫花针茅和甘肃马先蒿种植模式E+: 带内生真菌的紫花针茅Endophyte-infected S. purpurea; E-: 不带内生真菌的紫花针茅Endophyte-free S. purpurea. 下同The same below.
Fig.1 Planting pattern of S. purpurea and P. kansuensis
项目Item | 处理Treatments | df | F | P |
---|---|---|---|---|
地上生物量 Shoot biomass | 内生真菌带菌状态 Es | 1 | 2516.90 | <0.01 |
寄生密度 Pd | 2 | 1060.58 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 136.99 | <0.01 | |
根系生物量 Root biomass | 内生真菌带菌状态 Es | 1 | 321.32 | <0.01 |
寄生密度 Pd | 2 | 96.93 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 9.75 | <0.01 | |
比根长度 Specific root length | 内生真菌带菌状态 Es | 1 | 10.36 | <0.01 |
寄生密度 Pd | 2 | 3.83 | 0.04 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.34 | 0.72 | |
比根面积 Specific root area | 内生真菌带菌状态 Es | 1 | 14.14 | <0.01 |
寄生密度 Pd | 2 | 21.46 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.69 | 0.51 | |
比根体积 Specific root volume | 内生真菌带菌状态 Es | 1 | 8.11 | <0.01 |
寄生密度 Pd | 2 | 12.95 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 4.12 | 0.03 | |
根冠比 Ratio of root to shoot | 内生真菌带菌状态 Es | 1 | 0.01 | 0.91 |
寄生密度 Pd | 2 | 1.27 | 0.30 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.24 | 0.30 |
表1 内生真菌侵染和甘肃马先蒿寄生密度对紫花针茅生物量、比根及根冠比影响的双因素方差分析
Table 1 Two-way ANOVA analysis for the effect of Epichlo? endophyte status and density of P. kansuensis on biomass, specific root, ratio of root to shoot of S. purpurea
项目Item | 处理Treatments | df | F | P |
---|---|---|---|---|
地上生物量 Shoot biomass | 内生真菌带菌状态 Es | 1 | 2516.90 | <0.01 |
寄生密度 Pd | 2 | 1060.58 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 136.99 | <0.01 | |
根系生物量 Root biomass | 内生真菌带菌状态 Es | 1 | 321.32 | <0.01 |
寄生密度 Pd | 2 | 96.93 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 9.75 | <0.01 | |
比根长度 Specific root length | 内生真菌带菌状态 Es | 1 | 10.36 | <0.01 |
寄生密度 Pd | 2 | 3.83 | 0.04 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.34 | 0.72 | |
比根面积 Specific root area | 内生真菌带菌状态 Es | 1 | 14.14 | <0.01 |
寄生密度 Pd | 2 | 21.46 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.69 | 0.51 | |
比根体积 Specific root volume | 内生真菌带菌状态 Es | 1 | 8.11 | <0.01 |
寄生密度 Pd | 2 | 12.95 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 4.12 | 0.03 | |
根冠比 Ratio of root to shoot | 内生真菌带菌状态 Es | 1 | 0.01 | 0.91 |
寄生密度 Pd | 2 | 1.27 | 0.30 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.24 | 0.30 |
图2 甘肃马先蒿寄生密度和内生真菌侵染对紫花针茅生物量、比根及根冠比的影响不同大写字母表示相同甘肃马先蒿寄生密度下带菌和不带菌紫花针茅间差异显著(P<0.05);不同小写字母表示不同甘肃马先蒿寄生密度下带菌或不带菌紫花针茅间差异显著(P<0.05)。未寄生表示E+或E-紫花针茅自然生长,寄生1株表示1株紫花针茅(E+或E-)植株被1株甘肃马先蒿寄生,寄生3株表示1株紫花针茅(E+或E-)植株被3株甘肃马先蒿寄生。下同。Different capital letters indicate significant differences between E+ and E- S. purpurea under identical parasite densityof P. kansuensis (P<0.05), different lowercase letters indicate significant differences in E+ or E- for S. purpurea among different parasite density of P. kansuensis (P<0.05). Without parasite indicates S. purpurea naturally grew in the absent of P. kansuensis. It is noted that one and three parasites indicate single S. purpurea seedling was parasitized by one or three P. kansuensis, respectively. The same below.
Fig.2 Effects of P. kansuensis density and Epichlo? endophyte status on the biomass, specific root, ratio of root to shoot of S. purpurea
图3 甘肃马先蒿寄生密度和内生真菌侵染对紫花针茅根系形态的影响
Fig.3 Effects of P. kansuensis density and Epichlo? endophyte status on the root morphological characteristics of S. purpurea
项目Item | 处理Treatments | df | F | P |
---|---|---|---|---|
根系总长度 Total root length | 内生真菌带菌状态 Es | 1 | 12.71 | <0.01 |
寄生密度 Pd | 2 | 20.40 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.44 | 0.11 | |
根投影面积 Root projection area | 内生真菌带菌状态 Es | 1 | 11.56 | <0.01 |
寄生密度 Pd | 2 | 9.00 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.17 | 0.14 | |
根面积 Root area | 内生真菌带菌状态 Es | 1 | 13.51 | <0.01 |
寄生密度 Pd | 2 | 1.96 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.39 | 0.11 | |
根表面积 Root surface area | 内生真菌带菌状态 Es | 1 | 11.56 | <0.01 |
寄生密度 Pd | 2 | 9.00 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.17 | 0.14 | |
根体积 Root volume | 内生真菌带菌状态 Es | 1 | 4.52 | 0.44 |
寄生密度 Pd | 2 | 1.72 | 0.20 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.36 | 0.09 | |
根平均直径 Mean root diameter | 内生真菌带菌状态 Es | 1 | 3.56 | 0.07 |
寄生密度 Pd | 2 | 8.41 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.66 | 0.52 | |
根尖数 Root tip number | 内生真菌带菌状态 Es | 1 | 10.04 | <0.01 |
寄生密度 Pd | 2 | 8.96 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.45 | 0.11 | |
根节点数 Root node number | 内生真菌带菌状态 Es | 1 | 5.99 | 0.02 |
寄生密度 Pd | 2 | 13.32 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.88 | 0.17 | |
根分叉数 Root bifurcation number | 内生真菌带菌状态 Es | 1 | 6.49 | 0.02 |
寄生密度 Pd | 2 | 14.89 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.84 | 0.18 | |
根交叉数 Root crossing number | 内生真菌带菌状态 Es | 1 | 2.51 | 0.13 |
寄生密度 Pd | 2 | 8.32 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.38 | 0.27 | |
根连接数 Number of root connections | 内生真菌带菌状态 Es | 1 | 5.12 | 0.03 |
寄生密度 Pd | 2 | 12.90 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.73 | 0.20 | |
外部连接数 Number of external connections | 内生真菌带菌状态 Es | 1 | 9.42 | <0.01 |
寄生密度 Pd | 2 | 22.14 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 3.36 | 0.05 | |
内部连接数 Number of internal connections | 内生真菌带菌状态 Es | 1 | 4.53 | 0.04 |
寄生密度 Pd | 2 | 12.83 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.61 | 0.22 | |
分形维数 Fractal dimension | 内生真菌带菌状态 Es | 1 | 0.62 | 0.44 |
寄生密度 Pd | 2 | 8.78 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.63 | 0.54 | |
拓扑指数 Topological index | 内生真菌带菌状态 Es | 1 | 5.30 | 0.03 |
寄生密度 Pd | 2 | 51.49 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.54 | 0.59 |
表2 内生真菌侵染和甘肃马先蒿寄生密度对紫花针茅根系形态特征影响的双因素方差分析
Table 2 Two-way ANOVA results for the effect of Epichlo? endophyte status and density of P. kansuensis on root morphological characteristics of S. purpurea
项目Item | 处理Treatments | df | F | P |
---|---|---|---|---|
根系总长度 Total root length | 内生真菌带菌状态 Es | 1 | 12.71 | <0.01 |
寄生密度 Pd | 2 | 20.40 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.44 | 0.11 | |
根投影面积 Root projection area | 内生真菌带菌状态 Es | 1 | 11.56 | <0.01 |
寄生密度 Pd | 2 | 9.00 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.17 | 0.14 | |
根面积 Root area | 内生真菌带菌状态 Es | 1 | 13.51 | <0.01 |
寄生密度 Pd | 2 | 1.96 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.39 | 0.11 | |
根表面积 Root surface area | 内生真菌带菌状态 Es | 1 | 11.56 | <0.01 |
寄生密度 Pd | 2 | 9.00 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.17 | 0.14 | |
根体积 Root volume | 内生真菌带菌状态 Es | 1 | 4.52 | 0.44 |
寄生密度 Pd | 2 | 1.72 | 0.20 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.36 | 0.09 | |
根平均直径 Mean root diameter | 内生真菌带菌状态 Es | 1 | 3.56 | 0.07 |
寄生密度 Pd | 2 | 8.41 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.66 | 0.52 | |
根尖数 Root tip number | 内生真菌带菌状态 Es | 1 | 10.04 | <0.01 |
寄生密度 Pd | 2 | 8.96 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 2.45 | 0.11 | |
根节点数 Root node number | 内生真菌带菌状态 Es | 1 | 5.99 | 0.02 |
寄生密度 Pd | 2 | 13.32 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.88 | 0.17 | |
根分叉数 Root bifurcation number | 内生真菌带菌状态 Es | 1 | 6.49 | 0.02 |
寄生密度 Pd | 2 | 14.89 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.84 | 0.18 | |
根交叉数 Root crossing number | 内生真菌带菌状态 Es | 1 | 2.51 | 0.13 |
寄生密度 Pd | 2 | 8.32 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.38 | 0.27 | |
根连接数 Number of root connections | 内生真菌带菌状态 Es | 1 | 5.12 | 0.03 |
寄生密度 Pd | 2 | 12.90 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.73 | 0.20 | |
外部连接数 Number of external connections | 内生真菌带菌状态 Es | 1 | 9.42 | <0.01 |
寄生密度 Pd | 2 | 22.14 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 3.36 | 0.05 | |
内部连接数 Number of internal connections | 内生真菌带菌状态 Es | 1 | 4.53 | 0.04 |
寄生密度 Pd | 2 | 12.83 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 1.61 | 0.22 | |
分形维数 Fractal dimension | 内生真菌带菌状态 Es | 1 | 0.62 | 0.44 |
寄生密度 Pd | 2 | 8.78 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.63 | 0.54 | |
拓扑指数 Topological index | 内生真菌带菌状态 Es | 1 | 5.30 | 0.03 |
寄生密度 Pd | 2 | 51.49 | <0.01 | |
内生真菌带菌状态×寄生密度 Es×Pd | 2 | 0.54 | 0.59 |
图4 甘肃马先蒿寄生和内生真菌侵染对紫花针茅根系分形维数和拓扑指数的影响
Fig.4 Effects of P. kansuensis density and Epichlo? endophyte status on root fractal dimension and topological index of S. purpurea
图5 内生真菌带菌状态和甘肃马先蒿寄生密度对紫花针茅根系构型、地上和根系生物量影响的结构方程模型实线和虚线分别代表正、负相关性。线上的数字是标准化路径系数,表示关系强度。线的宽度和值大小与相关系数成正比。R2表示解释方差的比例。Dotted line demonstrated the negative correlation between variables, while the solid line demonstrated a positive correlation between variables. The value above the lines demonstrated the normalized path coefficients of variables, which indicated the strength of the correlation. The width of line and the value above the line are proportional to the correlation coefficient. R2 indicated the proportion of the interpreted variance. *: P<0.05; **: P<0.01; ***: P<0.001. Epichlo? endophyte: 紫花针茅带菌状态; Parasite density: 甘肃马先蒿寄生密度; Length: 根系总长度Total root length; Area: 根表面积Root surface area; Volume: 根体积 Root volume; MD: 根平均直径Mean root diameter; CN: 根连接数Number of root connections; NN: 根节点数Root of node number; RCN: 根交叉数Root crossing number; TN: 根尖数Root tip number; BN: 根分叉数Root bifurcation number; EC: 外部连接数Number of external connections; IC: 内部连接数Number of internal connections; FD: 分形维数Fractal dimension; TI: 拓扑指数Topological index; Root biomass: 根系生物量; Shoot biomass: 地上生物量。
Fig.5 Structural equation model (SEM) based on effects of Epichlo? endophyte status and P. kansuensis density on root architecture and shoot and root biomass of S. purpurea
1 | Hetrick B A D. Mycorrhizas and root architecture. Experientia, 1991, 47: 355-362. |
2 | Linkohr B I, Williamson L C, Fitter A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 2002, 29(6): 751-760. |
3 | de Dorlodot S, Forster B, Pages L, et al. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 2007, 12(10): 474-481. |
4 | Giehl R F H, Gruber B D, von Wirén N. It’s time to make changes: Modulation of root system architecture by nutrient signals. Journal of Experimental Botany, 2014, 65(3): 769-778. |
5 | Zhai S L, Liu X L, Yao L Y, et al. Effect of AMF inoculation on root configuration of alfalfa under mixed saline-alkali stress. Feed Research, 2023, 46(21): 90-94. |
翟书林, 刘晓琳, 姚璐莹, 等. 混合盐碱下接种丛枝菌根真菌(AMF)对紫花苜蓿根系构型的影响. 饲料研究, 2023, 46(21): 90-94. | |
6 | Peng F. Effects of arbuscular mycorrhizal fungi and nutrient interaction on the drought resistance of Leymus chinensis. Changchun: Northeast Normal University, 2019. |
彭飞. 丛枝菌根真菌与营养互作对羊草抗旱性的影响. 长春: 东北师范大学, 2019. | |
7 | Sui X L, Zhang T, Tian Y Q, et al. A neglected alliance in battles against parasitic plants: Arbuscular mycorrhizal and rhizobial symbioses alleviate damage to a legume host by root hemiparasitic Pedicularis species. New Phytologist, 2018, 221(1): 470-481. |
8 | Bao G S, Song M L, Wang Y Q, et al. Epichloë endophyte infection enhances the tolerance of Stipa purpurea to parasitic stress through the regulation of antioxidants and phytohormones. Plant and Soil, 2021, 466(1): 239-256. |
9 | Bao G S, Song M L, Wang Y Q, et al. Effects of Pedicularis kansuensis parasitism on the photosynthetic characteristics of host grass-Epichloë symbionts. Acta Microbiologica Sinica, 2020, 60(2): 294-305. |
鲍根生, 宋梅玲, 王玉琴, 等. 甘肃马先蒿寄生对禾草内生真菌共生体光合特性的影响. 微生物学报, 2020, 60(2): 294-305. | |
10 | Bao G S, Wang Y Q, Song M L, et al. Effects of Pedicularis kansuensis parasitism on physiological characteristics of grass-Epichloë symbiont under different hemiparasite density. Acta Microbiologica Sinica, 2020, 60(3): 590-600. |
鲍根生, 王玉琴, 宋梅玲, 等. 甘肃马先蒿不同寄生密度对紫花针茅内生真菌共生体生理特性的影响. 微生物学报, 2020, 60(3): 590-600. | |
11 | Bao G S, Song M L, Wang Y Q, et al. Does Epichloë endophyte enhance host tolerance to root hemiparasite? Microbial Ecology, 2021, 82(1): 35-48. |
12 | Ren A Z, Gao Y B. Recent research progress on grass-endophyte symbiosis. Microbiology China, 2004, 31(2): 130-133. |
任安芝, 高玉葆. 禾草类内生真菌的研究进展. 微生物学通报, 2004, 31(2): 130-133. | |
13 | Li S Q, Chen Z J, Chen T X, et al. Bibliometric analysis of research on endophytic fungi in grasses and non-grasses based on the CNKI database. Acta Prataculturae Sinica, 2021, 30(6): 121-132. |
李淑琴, 陈振江, 陈泰祥, 等. 基于CNKI数据库的禾草与非禾草内生真菌文献计量分析. 草业学报, 2021, 30(6): 121-132. | |
14 | Nan Z B, Li C J. Roles of the grass-Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 2004, 24(3): 605-616. |
南志标, 李春杰. 禾草-内生真菌共生体在草地农业系统中的作用. 生态学报, 2004, 24(3): 605-616. | |
15 | Siegel M R, Latch G C M, Johnson M C. Fungal endophytes of grasses. Annual Review Phytopathology, 1987, 25: 293-315. |
16 | Du M X, Wang T, Li C J, et al. Advances in the taxonomy of the genus Epichloё endophytic fungi in grasses. Acta Agrestia Sinica, 2023, 31(12): 3575-3586. |
杜明祥, 王添, 李春杰, 等. 禾草Epichloë属内生真菌分类学研究进展. 草地学报, 2023, 31(12): 3575-3586. | |
17 | Leuchtmann A. Systematics, distribution, and host specificity of grass endophytes. Natural Toxins, 1992, 1(3): 150-162. |
18 | Omacini M, Semmartin M, Pérez L I, et al. Grass-endophyte symbiosis: A neglected aboveground interaction with multiple belowground consequences. Applied Soil Ecology, 2011, 61: 273-279. |
19 | Schardl C L, Florea S, Pan J, et al. The Epichloë: Alkaloid diversity and roles in symbiosis with grasses. Current Opinion in Plant Biology, 2013, 16(4): 480-488. |
20 | Xia C, Zhang X, Christensen M J, et al. Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecology, 2016, 16: 26-34. |
21 | Wang X Y, Qin J H, Chen W, et al. Pathogen resistant advantage of endophyte-infected over endophyte-free Leymus chinensis is strengthened by pre-drought treatment. European Journal of Plant Pathology, 2016, 144(3): 477-486. |
22 | Chen T X, White J F, Li C J. Fungal endophyte Epichloë bromicola infection regulates anatomical changes to account for salt stress tolerance in wild barley (Hordeum brevisubulatum). Plant and Soil, 2021, 461: 533-546. |
23 | Xu W B, Li M M, Lin W H, et al. Effects of Epichloë sinensis endophyte and host ecotype on physiology of Festuca sinensis under different soil moisture conditions. Plants, 2021, 10(8): 1649. |
24 | Chen Z J, Jin Y Y, Yao X, et al. Fungal endophyte improves survival of Lolium perenne in low fertility soils by increasing root growth, metabolic activity and absorption of nutrients. Plant and Soil, 2020, 452(1): 185-206. |
25 | Bao G S, Suetsugu K, Wang H S, et al. Effects of the hemiparasitic plant Pedicularis kansuensis on plant community structure in a degraded grassland. Ecological Research, 2015, 30(3): 507-515. |
26 | Bao G S, Song M L, Wang Y Q, et al. Effects of parasitism by a root hemiparasite on mutualistic relationship between host grasses and their Epichloë endophytes. Acta Prataculturae Sinica, 2020, 29(2): 42-51. |
鲍根生, 宋梅玲, 王玉琴, 等. 甘肃马先蒿寄生对禾草内生真菌共生体共生关系的影响. 草业学报, 2020, 29(2): 42-51. | |
27 | Rimer S, Cameron D D, Wacker R, et al. An anatomical study of the haustoria of Rhinanthus minor attached to roots of different hosts. Flora-Morphology, Distribution, Functional Ecology of Plants, 2007, 202(3): 194-200. |
28 | Bao G S, Song M L, Wang Y Q, et al. Interactive effects of different densities of Pedicularis kansuensis parasitism and Epichloë endophyte infection on the endogenous hormone levels and alkaloid contents of Stipa purpurea. Acta Prataculturae Sinica, 2020, 29(4): 147-156. |
鲍根生, 宋梅玲, 王玉琴, 等. 不同密度甘肃马先蒿寄生和内生真菌互作对紫花针茅内源激素及生物碱含量的影响. 草业学报, 2020, 29(4): 147-156. | |
29 | Li C J, Nan Z B, Liu Y, et al. Methodology of endophyte detection of drunken horse grass (Achnatherum inebrians). Edible Fungi of China, 2008, 27(suppl.): 16-19. |
李春杰, 南志标, 刘勇, 等. 醉马草内生真菌检测方法的研究. 中国食用菌, 2008, 27(suppl.): 16-19. | |
30 | Yao X, Li X Z, Zhu X X, et al. Effects of two fungicides on Neotyphodium seed-borne fungal endophyte of Festuca sinensis. Pratacultural Science, 2013, 30(10): 1517-1522. |
姚祥, 李秀璋, 朱小晓, 等. 两种杀菌剂对中华羊茅种传内生真菌的影响. 草业科学, 2013, 30(10): 1517-1522. | |
31 | Sui X L, Li A R, Chen Y, et al. Arbuscular mycorrhizal fungi: Potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis? Mycorrhiza, 2014, 24(3): 187-195. |
32 | Shang Z H, Yang S H, Shi J J, et al. Seed rain and its relationship with above-ground vegetation of degraded Kobresia meadows. Journal of Plant Research, 2013, 126: 63-72. |
33 | Bouma T, Nielsen K, Van Hal J, et al. Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 2001, 15(3): 360-369. |
34 | Fitter A. An architectural approach to the comparative ecology of plant root systems. New Phytologist, 1987, 106(1): 61-77. |
35 | Phoenix G K, Press M C. Linking physiological traits to impacts on community structure and function: The role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). Journal of Ecology, 2005, 93(1): 67-78. |
36 | Huang X Y, Guan K Y, Li A R. Biological trait and their ecological significances of parasitic plants: A review. Chinese Journal of Ecology, 2011, 30(8): 1838-1844. |
黄新亚, 管开云, 李爱荣. 寄生植物的生物学特性及生态学效应. 生态学杂志, 2011, 30(8): 1838-1844. | |
37 | Joel D M, Gressel J, Musselman L J. Parasitic Orobanchaceae parasitic mechanisms and control strategies. Berlin, Germany: Springer, 2013: 87-110. |
38 | Zhao Q Q, Diao P F, Liao J, et al. Research progresses in molecular communication between parasitic plants and hosts. Plant Physiology Journal, 2018, 54(4): 519-527. |
赵琦琪, 刁鹏飞, 廖坚, 等. 寄生植物和寄主间的分子交流研究进展. 植物生理学报, 2018, 54(4): 519-527. | |
39 | Wang L Q, Zhang B J, Tang N. Effects of nitrogen deficiency on the photosynthetic characteristics of wheat. Hubei Agricultural Sciences, 2014, 53(8): 1758-1761. |
王履清, 张边江, 唐宁. 氮素匮乏对小麦光合特性的影响. 湖北农业科学, 2014, 53(8): 1758-1761. | |
40 | Chen Y, Guan K Y, Li A R, et al. Effects of nitrogen and phosphorus supply on root morphology of two Pedicularis species. Plant Diversity and Resources, 2014, 36(1): 56-64. |
陈燕, 管开云, 李爱荣, 等. 氮磷供给对两种马先蒿根系形态建成的影响. 植物分类与资源学报, 2014, 36(1): 56-64. | |
41 | Tian Y Q, Sui X L, Zhang T, et al. Effects of soil nitrogen heterogeneity and parasitism by Pedicularis species on growth and root spatial distribution of Polypogon monspeliensis. Guihaia, 2020, 40(12): 1838-1848. |
田玉清, 隋晓琳, 张婷, 等. 土壤氮素异质性分布和马先蒿寄生对长芒棒头草生长发育及根系分布的影响. 广西植物, 2020, 40(12): 1838-1848. | |
42 | Yang T X, Du Y H, Liu G K, et al. Effect of parasitic Cistanche tubulosa on photosynthesis characteristic and growth of annual Tamarix chinensis. Modern Chinese Medicine, 2015, 17(4): 375-378, 386. |
杨太新, 杜艳华, 刘国库, 等. 管花肉苁蓉寄生对一年生柽柳光合特性及生长的影响. 中国现代中药, 2015, 17(4): 375-378, 386. | |
43 | Li D D, Tian M Y, Cai J, et al. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regulation, 2013, 70: 257-263. |
44 | Mei L L, Yang X, Cao H B, et al. Arbuscular mycorrhizal fungi alter plant and soil C∶N∶P stoichiometries under warming and nitrogen input in a semiarid meadow of China. International Journal of Environmental Research and Public Health, 2019, 16(3): 397. |
45 | Trachsel S, Kaeppler S M, Brown K M, et al. Maize root growth angles become steeper under low N conditions. Field Crops Research, 2013, 140: 18-31. |
46 | Gealy D R, Moldenhauer K A K, Duke S. Root distribution and potential interactions between allelopathic rice, sprangle top (Leptochloa spp.), and barnyardgrass (Echinochloa crusgalli) based on 13C isotope discrimination analysis. Journal of Chemical Ecology, 2013, 39(2): 186-203. |
47 | Neumann U, Vian B, Weber H C, et al. Interface between haustoria of parasitic members of the Scrophulariaceae and their hosts: A histochemical and immunocytochemical approach. Protoplasma, 1999, 207: 84-97. |
48 | Watling J R, Press M C. Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biology, 2001, 3(3): 244-250. |
49 | Du H, Li Y P, Cheng W, et al. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
杜红, 李玉鹏, 程文, 等. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应. 浙江农业学报, 2022, 34(5): 1039-1048. | |
50 | Jabborova D, Annapurna K, Al-Sadi A M, et al. Biochar and arbuscular mycorrhizal fungi mediated enhanced drought tolerance in okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi Journal of Biological Sciences, 2021, 28(10): 5490-5499. |
51 | Li Q, Duan W Y, Li X, et al. Effect of arbuscular mycorrhizal fungi on growth and root morphology of Acer truncatum. Journal of Northwest Agriculture & Forestry University (Natural Science Edition), 2024, 52(1): 79-86. |
李晴, 段文艳, 李鑫, 等. 丛枝菌根真菌对元宝枫生长及其根系形态的影响. 西北农林科技大学学报(自然科学版), 2024, 52(1): 79-86. | |
52 | Wu J D, Chen Q, Liu X X, et al. Preliminary study on mechanisms of growth promotion in rice colonized by Piriformospora indica. Chinese Journal of Rice Science, 2015, 29(2): 200-207. |
吴金丹, 陈乾, 刘晓曦, 等. 印度梨形孢对水稻的促生作用及其机理的初探. 中国水稻学, 2015, 29(2): 200-207. | |
53 | Yuan Z L. Study on the growth and physiological effects of a broad-spectrum endophytic fungal strain B3 on rice. Nanjing: Nanjing Normal University, 2005. |
袁志林. 一株广谱内生真菌B3对水稻生长及生理影响研究. 南京: 南京师范大学, 2005. | |
54 | Guo X W, Li K, Guo Y S, et al. Effect of arbuscular mycorrhizal fungi (AMF) strains on growth and root exudation characteristics of grapevine. Journal of Shenyang Agricultural University, 2009, 40(4): 392-395. |
郭修武, 李坤, 郭印山, 等. 丛枝菌根真菌对连作土壤中葡萄生长及根系分泌特性的影响. 沈阳农业大学学报, 2009, 40(4): 392-395. | |
55 | Berta G, Fusconi A, Trotta A. VA mycorrhizal infection and the morphology and function of root systems. Environmental and Experimental Botany, 1993, 33(1): 159-173. |
56 | Zangaro W, Nishidate F R, Camargo F R S, et al. Relationships among arbuscular mycorrhizas, root morphology and seedlings growth of tropical native woody species in southern Brazil. Journal of Tropical Ecology, 2005, 21(5): 529-540. |
57 | Ma J F, Xin M, Xu C C, et al. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies. Chinese Journal of Plant Ecology, 2021, 45(7): 728-737. |
马炬峰, 辛敏, 徐陈超, 等. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响. 植物生态学报, 2021, 45(7): 728-737. | |
58 | Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555: 94-97. |
59 | Sun C Y, Zeng Y H, Ma J Q, et al. Effects of arbuscular mycorrhizal fungi on Artemisia annua L. growth and chemical composition of root exudates. Journal of Tropical Crops, 2020, 41(9): 1831-1837. |
孙晨瑜, 曾燕红, 马俊卿, 等. 丛枝菌根真菌对黄花蒿生长和根系分泌物化学组成的影响. 热带作物学报, 2020, 41(9): 1831-1837. | |
60 | Těšitel J, Těšitelová T, Fisher J P, et al. Integrating ecology and physiology of root hemiparasitic interaction: Interactive effects of abiotic resources shape the interplay between parasitism and autotrophy. New Phytologist, 2015, 205(1): 350-360. |
61 | Hou W P, Wang J F, Christensen M J, et al. Metabolomics insights into the mechanism by which Epichloë gansuensis endophyte increased Achnatherum inebrians tolerance to low nitrogen stress. Plant and Soil, 2021, 463: 487-508. |
62 | Zhou F, Gao Y B, Ma W J. Effects of phosphorus deficiency on growth of perennial ryegrass-fungal endophyte symbiont and phenolic content in root. Plant Physiology Communications, 2003, 39(4): 321-324. |
周芳, 高玉葆, 马文江. 缺磷对黑麦草-内生真菌共生体生长和根中酚含量的影响. 植物生理学通讯, 2003, 39(4): 321-324. | |
63 | Zhang P, Meng S Y, Bao G S, et al. Effect of Epichloë endophyte on the growth and carbon allocation of its host plant Stipa purpurea under hemiparasitic root stress. Microorganisms, 2023, 11(11): 2761. |
64 | Korell L, Sandner T, Matthies D, et al. Effects of drought and N level on the interactions of the root hemiparasite Rhinanthus alectorolophus with a combination of three host species. Plant Biology, 2020, 22: 84-92. |
65 | Chen Z J, Jin Y Y, Yao X, et al. Gene analysis reveals that leaf litter from Epichloë endophyte-infected perennial ryegrass alters diversity and abundance of soil microbes involved in nitrification and denitrification. Soil Biology and Biochemistry, 2021, 154(1): 108123. |
66 | Yang B, Ma H Y, Wang X M, et al. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. Plant Physiology and Biochemistry, 2014, 82: 172-182. |
67 | Wei Y Q, Chen J X, Zheng Y L, et al. Diversity of arbuscular mycorrhizal fungi in Cycas panzhihuaensis at different tree ages in Dry Hot Valley. Journal of Northwest Forestry University, 2022, 37(4): 203-209. |
魏玉倩, 陈健鑫, 郑艳玲, 等. 干热河谷不同树龄攀枝花苏铁丛枝菌根真菌多样性研究. 西北林学院学报, 2022, 37(4): 203-209. | |
68 | Liu H, Yao T, Li J H, et al. Effect of various arbuscular mycorrhizal fungi on growth of tomato. Journal of Gansu Agricultural University, 2017, 52(4): 75-81. |
刘欢, 姚拓, 李建宏, 等. 丛枝菌根真菌对番茄生长的影响. 甘肃农业大学学报, 2017, 52(4): 75-81. |
[1] | 鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究[J]. 草业学报, 2024, 33(3): 73-84. |
[2] | 陈晓明, 韩东英, 宋桂龙. 砷(As)胁迫对海滨雀稗As吸收特征及根系形态影响[J]. 草业学报, 2023, 32(6): 112-119. |
[3] | 杨志新, 郑旭, 陈来宝, 于泳鑫, 张凤华, 李鲁华, 王家平. 干旱区盐碱地食叶草根系形态分布适应策略研究[J]. 草业学报, 2022, 31(7): 15-27. |
[4] | 张鹏, 任茜, 孟思宇, 魏小星, 鲍根生. 内生真菌对盐胁迫下紫花针茅种子萌发和幼苗生长的研究[J]. 草业学报, 2022, 31(10): 110-121. |
[5] | 宋梅玲, 王玉琴, 王宏生, 鲍根生. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158. |
[6] | 孙小富, 黄莉娟, 王普昶, 赵丽丽, 刘芳. 不同供磷水平对宽叶雀稗形态及生理的影响[J]. 草业学报, 2020, 29(8): 58-69. |
[7] | 鲍根生, 宋梅玲, 王玉琴, 刘静, 王宏生. 不同密度甘肃马先蒿寄生和内生真菌互作对紫花针茅内源激素及生物碱含量的影响[J]. 草业学报, 2020, 29(4): 147-156. |
[8] | 鲍根生, 宋梅玲, 王玉琴, 李春杰. 甘肃马先蒿寄生对禾草内生真菌共生体共生关系的影响[J]. 草业学报, 2020, 29(2): 42-51. |
[9] | 马妍, 路宁娜, 路广梅, 陈学林. 两种同域分布马先蒿植物花特征的表型选择研究[J]. 草业学报, 2020, 29(2): 186-192. |
[10] | 卿悦, 李廷轩, 叶代桦. 无机氮处理对矿山生态型水蓼氮积累及根系形态的影响[J]. 草业学报, 2020, 29(1): 203-210. |
[11] | 杨成德, 崔月贞, 冯中红, 薛莉, 金梦军. 内生枯草芽孢杆菌265ZY4对温度和紫外光胁迫下紫花针茅生化特征的影响[J]. 草业学报, 2019, 28(6): 101-108. |
[12] | 郭雄飞. 生物炭和AM真菌对重金属污染下土壤养分及望江南生长的影响[J]. 草业学报, 2018, 27(11): 150-161. |
[13] | 朱亚琼, 郑伟, 王祥, 关正翾. 混播方式对豆禾混播草地植物根系构型特征的影响[J]. 草业学报, 2018, 27(1): 73-85. |
[14] | 罗永清, 赵学勇, 王涛, 李玉强. 沙地植物根系特征及其与土壤有机碳和总氮的关系[J]. 草业学报, 2017, 26(8): 200-206. |
[15] | 高嵩涓, 曹卫东. 利用根管法对油菜和冬小麦苗期根系形态的研究[J]. 草业学报, 2017, 26(4): 134-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||