草业学报 ›› 2025, Vol. 34 ›› Issue (7): 132-144.DOI: 10.11686/cyxb2024327
• 研究论文 • 上一篇
郭龙欣1,2(
), 张铭洋1,3, 杨永胜1(
), 庞博1, 张振华1,4, 张秀娟2
收稿日期:2024-08-27
修回日期:2024-10-30
出版日期:2025-07-20
发布日期:2025-05-12
通讯作者:
杨永胜
作者简介:E-mail: ysyang@nwipb.cas.cn基金资助:
Long-xin GUO1,2(
), Ming-yang ZHANG1,3, Yong-sheng YANG1(
), Bo PANG1, Zhen-hua ZHANG1,4, Xiu-juan ZHANG2
Received:2024-08-27
Revised:2024-10-30
Online:2025-07-20
Published:2025-05-12
Contact:
Yong-sheng YANG
摘要:
为探究三江源地区高寒草甸苔藓结皮快速培育方式,利用正交试验与完全组合试验相结合的设计方法,研究了养分因子、菌类和植物生长调节剂噻苯隆(TDZ)3类外源添加物对苔藓结皮生长发育过程的影响。结果表明:1)养分因子碳(C)添加显著抑制苔藓结皮株高,氮(N)、磷(P)的添加对苔藓结皮盖度和高度具有显著影响;2)菌类和TDZ添加均对苔藓结皮株高具有显著影响(P<0.05),其中TDZ对结皮盖度具有一定抑制作用;3)TDZ与放线菌的交互作用在苔藓结皮培育过程中具有一定积极影响;4)快速培育三江源高寒草甸的最佳因子组合为巨大芽孢杆菌(1 g·kg-1基质)+蒸馏水,在人工气候室条件下培育70 d,苔藓结皮盖度、密度、株高及叶绿素a含量分别达到90.35%,31.39 株·cm-2,1.86 mm和7.39 μg·cm-2。综上,三江源地区苔藓结皮培育过程中受到外源因素影响较大,且在添加巨大芽孢杆菌条件下长势较好,研究结果为该地区退化高寒草甸苔藓结皮快速培育提供一定参考。
郭龙欣, 张铭洋, 杨永胜, 庞博, 张振华, 张秀娟. 外源添加物对三江源高寒草甸苔藓结皮快速培育的影响[J]. 草业学报, 2025, 34(7): 132-144.
Long-xin GUO, Ming-yang ZHANG, Yong-sheng YANG, Bo PANG, Zhen-hua ZHANG, Xiu-juan ZHANG. Effects of exogenous additives on the rapid cultivation of moss crusts in alpine meadows of the Three-River-Source region, China[J]. Acta Prataculturae Sinica, 2025, 34(7): 132-144.
试验号 Test numbers | 因素1 碳 Factor 1 carbon | 因素2 氮 Factor 2 nitrogen | 因素3 磷 Factor 3 phosphorus | 因素4 钾 Factor 4 potassium |
|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 0 |
| 2 | 5 | 0 | 20 | 10 |
| 3 | 10 | 0 | 10 | 20 |
| 4 | 10 | 10 | 20 | 0 |
| 5 | 0 | 10 | 10 | 20 |
| 6 | 5 | 10 | 0 | 20 |
| 7 | 5 | 20 | 10 | 0 |
| 8 | 10 | 20 | 0 | 10 |
| 9 | 0 | 20 | 20 | 20 |
表1 L9(34)正交表及各因素用量
Table 1 L9 (34) orthogonal Table and dosages of each factor (g·m-2)
试验号 Test numbers | 因素1 碳 Factor 1 carbon | 因素2 氮 Factor 2 nitrogen | 因素3 磷 Factor 3 phosphorus | 因素4 钾 Factor 4 potassium |
|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 0 |
| 2 | 5 | 0 | 20 | 10 |
| 3 | 10 | 0 | 10 | 20 |
| 4 | 10 | 10 | 20 | 0 |
| 5 | 0 | 10 | 10 | 20 |
| 6 | 5 | 10 | 0 | 20 |
| 7 | 5 | 20 | 10 | 0 |
| 8 | 10 | 20 | 0 | 10 |
| 9 | 0 | 20 | 20 | 20 |
处理 Treatments | 养分因素 Nutrient factors | 菌类 Bacteria | 植物生长调节剂 Plant growth regulator |
|---|---|---|---|
| 1 | A | C | E |
| 2 | A | D | E |
| 3 | A | C | F |
| 4 | A | D | F |
| 5 | B | C | E |
| 6 | B | D | E |
| 7 | B | C | F |
| 8 | B | D | F |
表2 完全组合试验表
Table 2 Complete combination test table
处理 Treatments | 养分因素 Nutrient factors | 菌类 Bacteria | 植物生长调节剂 Plant growth regulator |
|---|---|---|---|
| 1 | A | C | E |
| 2 | A | D | E |
| 3 | A | C | F |
| 4 | A | D | F |
| 5 | B | C | E |
| 6 | B | D | E |
| 7 | B | C | F |
| 8 | B | D | F |
图1 正交试验不同培育天数苔藓结皮盖度动态变化(A)和培育末期苔藓结皮盖度(B)不同处理组分别表示Different treatments represent: T1 (C: 0 g·m-2; N: 0 g·m-2; P: 0 g·m-2; K: 0 g·m-2); T2 (C: 5 g·m-2; N: 0 g·m-2; P: 20 g·m-2; K: 10 g·m-2); T3 (C: 10 g·m-2; N: 0 g·m-2; P: 10 g·m-2; K: 20 g·m-2); T4 (C: 10 g·m-2; N: 10 g·m-2; P: 20 g·m-2; K: 0 g·m-2); T5 (C: 0 g·m-2; N: 10 g·m-2; P: 10 g·m-2; K: 20 g·m-2); T6 (C: 5 g·m-2; N: 10 g·m-2; P: 0 g·m-2; K: 20 g·m-2); T7 (C: 5 g·m-2; N: 20 g·m-2; P: 10 g·m-2; K: 0 g·m-2); T8 (C: 10 g·m-2; N: 20 g·m-2; P: 0 g·m-2; K: 10 g·m-2); T9 (C: 0 g·m-2; N: 20 g·m-2; P: 20 g·m-2; K: 20 g·m-2)。不同小写字母表示不同处理组间差异显著(P<0.05)。下同。Different lowercase letters indicated significant differences among different treatment groups (P<0.05). The same below.
Fig.1 Dynamic changes of moss crust coverage in different cultivation days of orthogonal experiment (A) and moss crust coverage at the end of cultivation (B)
| 养分因子Nutrient factors | 平方和Sum of squares | 自由度Degrees of freedom | 均方Mean square | F统计量F-statistic | P值P-value |
|---|---|---|---|---|---|
| 碳Carbon (C) | 0.001 | 2 | 0.000 | 0.449 | 0.645 |
| 氮Nitrogen (N) | 0.073 | 2 | 0.036 | 45.352 | 0.000 |
| 磷Phosphorus (P) | 0.010 | 2 | 0.005 | 6.449 | 0.008 |
| 钾Potassium (K) | 0.002 | 2 | 0.001 | 1.255 | 0.309 |
表3 正交试验养分因子对苔藓结皮盖度影响的多因素方差分析
Table 3 Multi-factor analysis of variance for the effect of nutrient factors on the coverage of moss crusts in orthogonal experiment
| 养分因子Nutrient factors | 平方和Sum of squares | 自由度Degrees of freedom | 均方Mean square | F统计量F-statistic | P值P-value |
|---|---|---|---|---|---|
| 碳Carbon (C) | 0.001 | 2 | 0.000 | 0.449 | 0.645 |
| 氮Nitrogen (N) | 0.073 | 2 | 0.036 | 45.352 | 0.000 |
| 磷Phosphorus (P) | 0.010 | 2 | 0.005 | 6.449 | 0.008 |
| 钾Potassium (K) | 0.002 | 2 | 0.001 | 1.255 | 0.309 |
图2 正交试验不同培育天数苔藓结皮密度动态变化(A)和培育末期苔藓结皮密度(B)
Fig.2 Dynamic changes of moss crust density in different cultivation days (A) and moss crust density at the end of cultivation (B) in orthogonal experiment
| 养分因子Nutrient factors | 平方和Sum of squares | 自由度Degrees of freedom | 均方Mean square | F统计量F-statistic | P值P-value |
|---|---|---|---|---|---|
| 碳Carbon (C) | 7.431 | 2 | 3.716 | 1.944 | 0.172 |
| 氮Nitrogen (N) | 320.118 | 2 | 160.059 | 83.738 | 0.000 |
| 磷Phosphorus (P) | 43.190 | 2 | 21.595 | 11.298 | 0.001 |
| 钾Potassium (K) | 13.780 | 2 | 6.890 | 3.605 | 0.048 |
表4 正交试验各养分因素对苔藓密度影响的多因素方差分析
Table 4 Multi-factor variance analysis of the effects of nutrient factors on the density of moss crust in orthogonal experiment
| 养分因子Nutrient factors | 平方和Sum of squares | 自由度Degrees of freedom | 均方Mean square | F统计量F-statistic | P值P-value |
|---|---|---|---|---|---|
| 碳Carbon (C) | 7.431 | 2 | 3.716 | 1.944 | 0.172 |
| 氮Nitrogen (N) | 320.118 | 2 | 160.059 | 83.738 | 0.000 |
| 磷Phosphorus (P) | 43.190 | 2 | 21.595 | 11.298 | 0.001 |
| 钾Potassium (K) | 13.780 | 2 | 6.890 | 3.605 | 0.048 |
图3 正交试验不同培育天数苔藓结皮株高动态变化(A)和培育末期苔藓结皮株高(B)
Fig.3 Dynamic changes of plant height of moss crusts in different cultivation days (A) and plant height of moss crusts at the end of cultivation (B) in orthogonal experiment
| 养分因子Nutrient factors | 平方和Sum of squares | 自由度Degrees of freedom | 均方Mean square | F统计量F-statistic | P值P-value |
|---|---|---|---|---|---|
| 碳Carbon (C) | 0.214 | 2 | 0.107 | 9.237 | 0.002 |
| 氮Nitrogen (N) | 1.725 | 2 | 0.863 | 74.610 | 0.000 |
| 磷Phosphorus (P) | 0.044 | 2 | 0.022 | 1.891 | 0.180 |
| 钾Potassium (K) | 0.017 | 2 | 0.008 | 0.729 | 0.496 |
表5 各养分因素对苔藓结皮株高影响的多因素方差分析
Table 5 Multi-factor variance analysis of the effects of nutrient factors on the plant height of moss crust
| 养分因子Nutrient factors | 平方和Sum of squares | 自由度Degrees of freedom | 均方Mean square | F统计量F-statistic | P值P-value |
|---|---|---|---|---|---|
| 碳Carbon (C) | 0.214 | 2 | 0.107 | 9.237 | 0.002 |
| 氮Nitrogen (N) | 1.725 | 2 | 0.863 | 74.610 | 0.000 |
| 磷Phosphorus (P) | 0.044 | 2 | 0.022 | 1.891 | 0.180 |
| 钾Potassium (K) | 0.017 | 2 | 0.008 | 0.729 | 0.496 |
图4 完全组合试验不同培育天数苔藓结皮盖度动态变化(A)和培育末期苔藓结皮盖度(B)不同处理组分别表示:T1(养分: A组合有养分添加; 菌类: C放线菌 1 g·kg-1; 植物生长调节剂: E 1 mg·L-1噻苯隆); T2(养分: A组合有养分添加; 菌类: D巨大芽孢杆菌1 g·kg-1; 植物生长调节剂: E 1 mg·L-1噻苯隆); T3(养分: A组合有养分添加; 菌类: C放线菌 1 g·kg-1; 植物生长调节剂: F蒸馏水); T4(养分: A组合有养分添加; 菌类: D巨大芽孢杆菌1 g·kg-1; 植物生长调节剂: F蒸馏水); T5(养分: B组合无养分添加; 菌类: C放线菌 1 g·kg-1; 植物生长调节剂: E 1 mg·L-1噻苯隆); T6(养分: B组合无养分添加; 菌类: D巨大芽孢杆菌1 g·kg-1; 植物生长调节剂: E 1 mg·L-1噻苯隆); T7(养分: B组合无养分添加; 菌类: C放线菌 1 g·kg-1; 植物生长调节剂: F蒸馏水); T8(养分: B组合无养分添加; 菌类: D巨大芽孢杆菌1 g·kg-1; 植物生长调节剂: F蒸馏水)。下同。Different treatments represent: T1 (nutrients: A combination has nutrients added; fungi: C actinomyces 1 g·kg-1; plant growth regulator: E 1 mg·L-1 thidiazuron); T2 (nutrients: A combination has nutrients added; bacteria: D B. gigantium 1 g·kg-1; plant growth regulator: E 1 mg·L-1 thidiazuron); T3 (nutrients: A combination has nutrients added; fungi: C actinomyces 1 g·kg-1; plant growth regulator: F distilled water); T4 (nutrients: A combination has nutrients added; bacteria: D B. gigantium 1 g·kg-1; plant growth regulator: F distilled water); T5 (nutrient: B combination without nutrient addition; fungi: C actinomyces 1 g·kg-1; plant growth regulator: E 1 mg·L-1 thidiazuron); T6 (nutrients: B combination without nutrients added; bacteria: D B. gigantium 1 g·kg-1; plant growth regulator: E 1 mg·L-1 thidiazuron); T7 (nutrient: B combination without nutrient addition; fungi: C actinomyces 1 g·kg-1; plant growth regulator: F distilled water); T8 (nutrient: B combination without nutrient addition; bacteria: D B. gigantium 1 g·kg-1; plant growth regulator: F distilled water). The same below.
Fig.4 Dynamic changes of moss crust coverage in different cultivation days (A) and moss crust coverage at the end of cultivation (B) in complete combination experiment
外源添加物 Exogenous additives | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F统计量 F-statistic | P值 P-value |
|---|---|---|---|---|---|
| 养分因子Nutrient factors | 0.498 | 1 | 0.498 | 476.550 | 0.000 |
| 菌类Fungus | 0.000 | 1 | 0.000 | 0.372 | 0.550 |
| 植物生长调节剂Plant-growth regulator | 0.031 | 1 | 0.031 | 30.087 | 0.000 |
| 养分因子×菌类Nutrient factors×fungus | 0.000 | 1 | 0.000 | 0.093 | 0.764 |
| 菌类×植物生长调节剂Fungus×plant-growth regulator | 0.008 | 1 | 0.008 | 6.202 | 0.023 |
| 养分因子×植物生长调节剂Nutrient factors×plant-growth regulator | 0.014 | 1 | 0.014 | 10.914 | 0.004 |
表6 完全组合试验外源添加物对苔藓结皮盖度的多因素方差分析
Table 6 Multi-factor analysis of variance of exogenous additives on moss crust coverage in complete combination experiment
外源添加物 Exogenous additives | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F统计量 F-statistic | P值 P-value |
|---|---|---|---|---|---|
| 养分因子Nutrient factors | 0.498 | 1 | 0.498 | 476.550 | 0.000 |
| 菌类Fungus | 0.000 | 1 | 0.000 | 0.372 | 0.550 |
| 植物生长调节剂Plant-growth regulator | 0.031 | 1 | 0.031 | 30.087 | 0.000 |
| 养分因子×菌类Nutrient factors×fungus | 0.000 | 1 | 0.000 | 0.093 | 0.764 |
| 菌类×植物生长调节剂Fungus×plant-growth regulator | 0.008 | 1 | 0.008 | 6.202 | 0.023 |
| 养分因子×植物生长调节剂Nutrient factors×plant-growth regulator | 0.014 | 1 | 0.014 | 10.914 | 0.004 |
图5 完全组合试验不同培育天数苔藓结皮密度动态变化(A)和培育末期苔藓结皮密度(B)
Fig.5 Dynamic changes of moss crust density in different cultivation days in complete combination experiment (A) and moss crust density at the end of cultivation (B)
外源添加物 Exogenous additives | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F统计量 F-statistic | P值 P-value |
|---|---|---|---|---|---|
| 养分因子Nutrient factors | 314.216 | 1 | 314.216 | 116.817 | 0.000 |
| 菌类Fungus | 0.138 | 1 | 0.138 | 0.051 | 0.823 |
| 植物生长调节剂Plant-growth regulator | 10.454 | 1 | 10.454 | 3.887 | 0.065 |
| 养分因子×菌类Nutrient factors×fungus | 4.318 | 1 | 4.318 | 1.605 | 0.222 |
| 菌类×植物生长调节剂Fungus×plant-growth regulator | 3.511 | 1 | 3.511 | 1.305 | 0.269 |
| 养分因子×植物生长调节剂Nutrient factors×plant-growth regulator | 0.721 | 1 | 0.721 | 0.268 | 0.611 |
表7 完全组合试验苔藓结皮密度影响因素的多因素方差分析
Table 7 Multi-factor analysis of variance of the factors affecting the density of moss crusts in complete combination experiment
外源添加物 Exogenous additives | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F统计量 F-statistic | P值 P-value |
|---|---|---|---|---|---|
| 养分因子Nutrient factors | 314.216 | 1 | 314.216 | 116.817 | 0.000 |
| 菌类Fungus | 0.138 | 1 | 0.138 | 0.051 | 0.823 |
| 植物生长调节剂Plant-growth regulator | 10.454 | 1 | 10.454 | 3.887 | 0.065 |
| 养分因子×菌类Nutrient factors×fungus | 4.318 | 1 | 4.318 | 1.605 | 0.222 |
| 菌类×植物生长调节剂Fungus×plant-growth regulator | 3.511 | 1 | 3.511 | 1.305 | 0.269 |
| 养分因子×植物生长调节剂Nutrient factors×plant-growth regulator | 0.721 | 1 | 0.721 | 0.268 | 0.611 |
图6 完全组合试验不同培育天数苔藓植物株高动态变化(A)和培育末期苔藓植物株高(B)
Fig.6 Dynamic changes of plant height of moss crusts in different cultivation days in complete combination experiment (A) and plant height of moss crusts at the end of cultivation (B)
外源添加物 Exogenous additives | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F统计量 F-statistic | P值 P-value |
|---|---|---|---|---|---|
| 养分因子Nutrient factors | 1.175 | 1 | 1.175 | 398.250 | 0.000 |
| 菌类Fungus | 0.022 | 1 | 0.022 | 7.527 | 0.014 |
| 植物生长调节剂Plant-growth regulator | 0.083 | 1 | 0.083 | 28.081 | 0.000 |
| 养分因子×菌类Nutrient factors×fungus | 0.001 | 1 | 0.001 | 0.420 | 0.525 |
| 菌类×植物生长调节剂Fungus×plant-growth regulator | 0.021 | 1 | 0.021 | 7.331 | 0.015 |
| 养分因子×植物生长调节剂Nutrient factors×plant-growth regulator | 0.002 | 1 | 0.002 | 0.525 | 0.479 |
表8 苔藓结皮株高影响因素的多因素方差分析
Table 8 Multi-factor analysis of variance for the factors affecting moss crusts height
外源添加物 Exogenous additives | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F统计量 F-statistic | P值 P-value |
|---|---|---|---|---|---|
| 养分因子Nutrient factors | 1.175 | 1 | 1.175 | 398.250 | 0.000 |
| 菌类Fungus | 0.022 | 1 | 0.022 | 7.527 | 0.014 |
| 植物生长调节剂Plant-growth regulator | 0.083 | 1 | 0.083 | 28.081 | 0.000 |
| 养分因子×菌类Nutrient factors×fungus | 0.001 | 1 | 0.001 | 0.420 | 0.525 |
| 菌类×植物生长调节剂Fungus×plant-growth regulator | 0.021 | 1 | 0.021 | 7.331 | 0.015 |
| 养分因子×植物生长调节剂Nutrient factors×plant-growth regulator | 0.002 | 1 | 0.002 | 0.525 | 0.479 |
外源添加物 Exogenous additives | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F统计量 F-statistic | P值 P-value |
|---|---|---|---|---|---|
| 养分因子Nutrient factors | 27.094 | 1 | 27.094 | 56.057 | 0.000 |
| 菌类Fungus | 0.010 | 1 | 0.010 | 0.022 | 0.885 |
| 植物生长调节剂Plant-growth regulator | 3.197 | 1 | 3.197 | 6.615 | 0.020 |
| 养分因子×菌类Nutrient factors×fungus | 0.001 | 1 | 0.001 | 0.420 | 0.525 |
| 菌类×植物生长调节剂Fungus×plant-growth regulator | 0.021 | 1 | 0.021 | 7.331 | 0.015 |
| 养分因子×植物生长调节剂Nutrient factors×plant-growth regulator | 0.002 | 1 | 0.002 | 0.525 | 0.479 |
表9 苔藓结皮叶绿素a含量影响因素的多因素方差分析
Table 9 Multi-factor analysis of variance on factors affecting the content of chlorophyll a of moss crusts
外源添加物 Exogenous additives | 平方和 Sum of squares | 自由度 Degrees of freedom | 均方 Mean square | F统计量 F-statistic | P值 P-value |
|---|---|---|---|---|---|
| 养分因子Nutrient factors | 27.094 | 1 | 27.094 | 56.057 | 0.000 |
| 菌类Fungus | 0.010 | 1 | 0.010 | 0.022 | 0.885 |
| 植物生长调节剂Plant-growth regulator | 3.197 | 1 | 3.197 | 6.615 | 0.020 |
| 养分因子×菌类Nutrient factors×fungus | 0.001 | 1 | 0.001 | 0.420 | 0.525 |
| 菌类×植物生长调节剂Fungus×plant-growth regulator | 0.021 | 1 | 0.021 | 7.331 | 0.015 |
| 养分因子×植物生长调节剂Nutrient factors×plant-growth regulator | 0.002 | 1 | 0.002 | 0.525 | 0.479 |
| 1 | Weber B, Büdel B, Belnap J. Biological soil crusts: an organizing principle in drylands. Berlin: Springer, 2016. https://doi.org/10.1007/978-3-319-30214-0. |
| 2 | Fang S B, Zhang X S. Impact of moss soil crust on vegetation indexes interpretation. Spectroscopy and Spectral Analysis, 2011, 31(3): 780-783. |
| 房世波, 张新时. 苔藓结皮影响干旱半干旱植被指数的稳定性. 光谱学与光谱分析, 2011, 31(3): 780-783. | |
| 3 | Yang X W, Zhao Y G, Xu M X. Variation of morphological structure of dominant species in moss crusts in hilly Loess Plateau region. Chinese Journal of Ecology, 2016, 35(2): 370-377. |
| 杨雪伟, 赵允格, 许明祥. 黄土丘陵区藓结皮优势种形态结构差异. 生态学杂志, 2016, 35(2): 370-377. | |
| 4 | Li Y, Bao W K, Bongers F, et al. Drivers of tree carbon storage in subtropical forests. Science of the Total Environment, 2019, 654(2019): 684-693. |
| 5 | Zhang Y M, Wang X Q. Summary on formation and developmental characteristics of biological soil crusts in desert areas. Acta Ecologica Sinica, 2010, 30(16): 4484-4492. |
| 张元明, 王雪芹. 荒漠地表生物土壤结皮形成与演替特征概述. 生态学报, 2010, 30(16): 4484-4492. | |
| 6 | Ma L H, Meng X C, Wang G Q, et al. Effects of short-term addition of moss crusts on vegetation and soil of artificial grassland in the Tibetan Plateau. Acta Agrestia Sinica, 2024, 32(5): 1348-1358. |
| 马录花, 孟宪超, 王贵强, 等. 苔藓结皮短期添加对青藏高原人工草地植被和土壤的影响. 草地学报, 2024, 32(5): 1348-1358. | |
| 7 | Guo L X, Yang Y S, Zhang X J, et al. Responses of soil stoichiometries and enzyme activities to alpine meadow degradation in the headwaters of Three Rivers. Journal of Glaciology and Geocryology, 2023, 45(5): 1640-1651. |
| 郭龙欣, 杨永胜, 张秀娟, 等. 三江源高寒草甸土壤化学计量特征及酶活性对不同退化程度的响应. 冰川冻土, 2023, 45(5): 1640-1651. | |
| 8 | Fang S B, Feng L, Liu H J, et al. Responses of biological soil crusts (BSC) from arid-semiarid habitats and polar region to global climate change. Acta Ecologica Sinica, 2008, 28(7): 3312-3321. |
| 房世波, 冯凌, 刘华杰, 等. 生物土壤结皮对全球气候变化的响应. 生态学报, 2008, 28(7): 3312-3321. | |
| 9 | Wang C, Mo Q X, Wang H M, et al. Key factors influencing the growth of Brachythecium plumosum in Qinling Mountains. Acta Ecologica Sinica, 2024, 44(14): 6195-6207. |
| 王春, 莫秋霞, 王鹤鸣, 等. 秦岭羽枝青藓生长的关键影响因子. 生态学报, 2024, 44(14): 6195-6207. | |
| 10 | Tian G Q, Bai X L, Xu J, et al. Morphological and structural properties as well as adaptation of mosses in microbiotic soil crusts on fixed dunes. Journal of Desert Research, 2005, 25(2): 107-113. |
| 田桂泉, 白学良, 徐杰, 等. 固定沙丘生物结皮层藓类植物形态结构及其适应性研究. 中国沙漠, 2005, 25(2): 107-113. | |
| 11 | Wu Y H, Cheng G D, Gao Q. Bryophyte’s ecology functions and its significances in revegetation. Journal of Desert Research, 2003, 23(3): 9-14. |
| 吴玉环, 程国栋, 高谦. 苔藓植物的生态功能及在植被恢复与重建中的作用. 中国沙漠, 2003, 23(3): 9-14. | |
| 12 | Yang S Y, Wang X R, Chen H M, et al. Effects of phosphorus and potassium on growth physiology and nutrient elements of Hypnum plumaeforme. Journal of Tropical and Subtropical Botany, 2024, 32(2): 198-208. |
| 杨铄渊, 王秀荣, 陈洪梅, 等. 磷和钾对大灰藓植株生长生理和营养元素的影响. 热带亚热带植物学报, 2024, 32(2): 198-208. | |
| 13 | Lv A Y, Wang Y Q, Shen A L, et al. Application effects of 6 kinds of microbial fertilizers on different crops. Journal of Henan Agricultural Sciences, 2004, 16(4): 49-51. |
| 吕爱英, 王永歧, 沈阿林, 等. 6种微生物肥料在不同作物上的应用效果. 河南农业科学, 2004, 16(4): 49-51. | |
| 14 | Bai X Q, Tian C, Li Y H, et al. Promoting effect of exogenous additives on propagation of moss biocrusts in sand-land. Journal of Soil and Water Conservation, 2020, 34(6): 172-177. |
| 白雪强, 田畅, 李亚红, 等. 外源添加物对沙地苔藓结皮扩繁发育的促进作用. 水土保持学报, 2020, 34(6): 172-177. | |
| 15 | Zhang H J, Liu J Z, Wu Y H. Effects of combined application of algae and bacteria on paddy soil phosphorus availability and microbial community. Acta Pedologica Sinica, 2022, 59(5): 1369-1377. |
| 张慧洁, 刘俊琢, 吴永红. 藻、菌配合施用对水稻土磷有效性及微生物群落的影响. 土壤学报, 2022, 59(5): 1369-1377. | |
| 16 | Xu X F, Huang X L. TDZ: an efficacious plant growth regulator. Chinese Bulletin of Botany, 2003, 20(2): 227-237. |
| 徐晓峰, 黄学林. TDZ:一种有效的植物生长调节剂. 植物学通报, 2003, 20(2): 227-237. | |
| 17 | Wang Q X, Ju M C, Bu C F. Effects of Bacillus and a plant growth regulator for provenance propagation of moss biocrusts. Bulletin of Soil and Water Conservation, 2019, 39(5): 166-171. |
| 王清玄, 鞠孟辰, 卜崇峰. 芽孢杆菌与植物生长调节剂在苔藓结皮种源扩繁中的作用. 水土保持通报, 2019, 39(5): 166-171. | |
| 18 | Yang Y S, Feng W, Yuan F, et al. Key influential factors of rapid cultivation of moss crusts on Loess Plateau. Journal of Soil and Water Conservation, 2015, 29(4): 289-294. |
| 杨永胜, 冯伟, 袁方, 等. 快速培育黄土高原苔藓结皮的关键影响因子. 水土保持学报, 2015, 29(4): 289-294. | |
| 19 | Zhang Q H, Lv J, Ma Y, et al. Microbial community structure and potential function of algal crusts in different regions of Gurbantunggut Desert, Xinjiang, China. Acta Ecologica Sinica, 2024, 44(14): 6317-6330. |
| 张清杭, 吕杰, 马媛, 等. 古尔班通古特沙漠不同区域藻类结皮微生物结构和潜在功能研究. 生态学报, 2024, 44(14): 6317-6330. | |
| 20 | Nie X Q, Wang D, Zhou G Y, et al. Characteristics of soil microbial community structure in Three Rivers Source Regions alpine wetlands. Chinese Journal of Soil Science, 2023, 54(6): 1401-1408. |
| 聂秀青, 王冬, 周国英, 等. 三江源地区高寒湿地土壤微生物群落特征. 土壤通报, 2023, 54(6): 1401-1408. | |
| 21 | Chen W W, Chen H X, Bi J, et al. Reliability of different methods for rapid measurement of soil moisture content. Journal of Central South University (Science and Technology), 2020, 51(8): 2152-2161. |
| 谌文武, 陈浩鑫, 毕骏, 等. 不同方法快速测定土的含水率的可靠性研究. 中南大学学报(自然科学版), 2020, 51(8): 2152-2161. | |
| 22 | Yin F H, Li X L, Dong Y S, et al. Effect of elevated CO2 on ecosystem and C-N coupling in arid and semiarid region. Advances in Earth Science, 2011, 26(2): 235-244. |
| 尹飞虎, 李晓兰, 董云社, 等. 干旱半干旱区CO2浓度升高对生态系统的影响及碳氮耦合研究进展. 地球科学进展, 2011, 26(2): 235-244. | |
| 23 | Liu J, Zhang Y Q, Feng W, et al. Influences of exogenous additives on culture of biological soil crusts. Journal of Beijing Forestry University, 2016, 38(5): 100-107. |
| 刘军, 张宇清, 冯薇, 等. 几种外源添加物对生物土壤结皮培育的影响. 北京林业大学学报, 2016, 38(5): 100-107. | |
| 24 | Yu C Y, Zhang H B, Zhao X, et al. Effects of moss crusts on soil enzyme activities and contents of soil carbon, nitrogen and phosphorus in a karst rocky desertification area of Guizhou. Chinese Journal of Soil Science, 2023, 54(5): 1137-1147. |
| 余春娅, 张恒彬, 赵鑫, 等. 贵州喀斯特石漠化地区苔藓结皮对土壤酶活性及碳氮磷含量的影响. 土壤通报, 2023, 54(5): 1137-1147. | |
| 25 | Chen Y Q, Zhao Y G, Ran M Y. Influence of nutrients on the development of moss crust. Journal of Northwest A&F University (Natural Science Edition), 2011, 39(5): 44-50. |
| 陈彦芹, 赵允格, 冉茂勇. 4种营养物质对藓结皮形成发育的影响. 西北农林科技大学学报(自然科学版), 2011, 39(5): 44-50. | |
| 26 | Bu C F, Wu S F, Yang Y S, et al. Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts. PLoS One, 2014, 9(3): e90049. |
| 27 | Ji X H, Wu N, Zhang B C, et al. Effect of moss density on soil microbes of biological soil crust. Journal of Shihezi University (Natural Science), 2013, 31(4): 408-413. |
| 吉雪花, 吴楠, 张丙昌, 等. 苔藓密度对生物结皮土壤微生物的影响. 石河子大学学报(自然科学版), 2013, 31(4): 408-413. | |
| 28 | Qiu X K, Dong Y J, Wan Y S, et al. Effects of different fertilizing treatments on contents of soil nutrients and soil enzyme activity. Soils, 2010, 42(2): 249-255. |
| 邱现奎, 董元杰, 万勇善, 等. 不同施肥处理对土壤养分含量及土壤酶活性的影响. 土壤, 2010, 42(2): 249-255. | |
| 29 | Wang W N, Lu J W, He Y Q, et al. Effects of N, P, K fertilizer application on grain yield, quality nutrient uptake and utilization of rice. Chinese Journal of Rice Science, 2011, 25(6): 645-653. |
| 王伟妮, 鲁剑巍, 何予卿, 等. 氮、磷、钾肥对水稻产量、品质及养分吸收利用的影响. 中国水稻科学, 2011, 25(6): 645-653. | |
| 30 | Yang Y S, Zhang L, Chen X F, et al. Effects of chemical substances on the rapid cultivation of moss crusts in a phytotron from the Loess Plateau, China. International Journal of Phytoremediation, 2019, 21(3): 268-278. |
| 31 | Li X Y, Zhao B Q, Li X H, et al. Effects of different fertilization systems on soil microbe and its relation to soil fertility. Scientia Agricultura Sinica, 2005, 38(8): 1591-1599. |
| 李秀英, 赵秉强, 李絮花, 等. 不同施肥制度对土壤微生物的影响及其与土壤肥力的关系. 中国农业科学, 2005, 38(8): 1591-1599. | |
| 32 | Sanago M H, Murch S J, Slimmon T Y, et al. Morphoregulatory role of thidiazuron: morphogenesis of root outgrowths in thidiazuron-treated geranium (Pelargonium hortorum Bailey). Plant Cell Reports, 1995, 15(3/4): 205-211. |
| 33 | Wu Y H, Huang G H, Gao Q, et al. Research advance in response and adaptation of bryophytes to environmental change. Chinese Journal of Applied Ecology, 2001, 12(6): 943-946. |
| 吴玉环, 黄国宏, 高谦, 等. 苔藓植物对环境变化的响应及适应性研究进展. 应用生态学报, 2001, 12(6): 943-946. | |
| 34 | Zhou W J, Bu C F, Wei Y X. Microbial community composition and diversity characteristics of lithophytic moss biocrusts of Qinling Mountains. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(9): 1600-1610. |
| 周雯娟, 卜崇峰, 韦应欣. 秦岭石生苔藓结皮的微生物群落组成和多样性特征. 西北植物学报, 2022, 42(9): 1600-1610. | |
| 35 | Lu H, Cong J, Liu X, et al. Plant diversity patterns along altitudinal gradients in alpine meadows in the Three River Headwater Region, China. Acta Prataculturae Sinica, 2015, 24(7): 197-204. |
| 卢慧, 丛静, 刘晓, 等. 三江源区高寒草甸植物多样性的海拔分布格局. 草业学报, 2015, 24(7): 197-204. | |
| 36 | Li J M, Cai H, Cheng Q, et al. Characterizing the evapotranspiration of a degraded grassland in the Sanjiangyuan Region of Qinghai Province. Acta Prataculturae Sinica, 2012, 21(3): 223-233. |
| 李婧梅, 蔡海, 程茜, 等. 青海省三江源地区退化草地蒸散特征. 草业学报, 2012, 21(3): 223-233. |
| [1] | 朱炳淑, 樊江文, 张海燕, 黄麟, 田海静, 王林, 王守兴, 杨明新, 郭炎明. 三江源国家公园黄河源园区高寒草地健康评价[J]. 草业学报, 2025, 34(7): 13-27. |
| [2] | 尚栋亮, 臧辉. 成坪高尔夫草坪上一年生早熟禾的化学防除研究进展[J]. 草业学报, 2025, 34(5): 223-236. |
| [3] | 王守兴, 周华坤, 欧立鹏, 李成先, 王雁鹤, 宁晓春, 谷强, 魏代军, 杨明新. 三江源不同草地类型植被及土壤微生物多样性与土壤因子特征的研究[J]. 草业学报, 2025, 34(4): 16-26. |
| [4] | 林心怡, 王旎, 陈拓, 宋一岚, 陆耀东, 董朝霞. 3种植物生长调节剂对结缕草耐荫性的影响[J]. 草业学报, 2025, 34(3): 224-232. |
| [5] | 王金兰, 王小军, 刘启林, 梁国玲, 琚泽亮, 石红梅, 汪小兵, 文培, 青梅然丁null, 李文. 不同燕麦品种在三江源区的生产性能和营养品质综合评价[J]. 草业学报, 2024, 33(10): 83-95. |
| [6] | 韩云华, 米素娟, 石晓琪, 钟天航. 纳米粒子的植物促生效应[J]. 草业学报, 2022, 31(11): 204-213. |
| [7] | 王传旗, 刘文辉, 张永超, 周青平. 野生垂穗披碱草成苗期间的耐旱性研究[J]. 草业学报, 2021, 30(9): 76-85. |
| [8] | 李文, 魏廷虎, 永措巴占, 才仁塔次, 周玉海, 张雁平, 李文浩, 郭卫兴. 混播比例对三江源人工草地植被和土壤养分特征的影响[J]. 草业学报, 2021, 30(12): 39-48. |
| [9] | 张旭, 聂刚, 黄琳凯, 唐露, 周洲, 刘福, 周洁, 邹静, 任思彦, 张新全. 植物生长调节剂对鸭茅种子产量的影响[J]. 草业学报, 2019, 28(6): 93-100. |
| [10] | 吴廷美, 吴渊, 王多斌, 林慧龙. 三江源区牧户生计资本对其生计策略的影响研究[J]. 草业学报, 2019, 28(11): 12-21. |
| [11] | 曹巍, 刘璐璐, 吴丹. 三江源区土壤侵蚀变化及驱动因素分析[J]. 草业学报, 2018, 27(6): 10-22. |
| [12] | 吉雪花, 王露洁, 庞胜群. 蛇麻黄浸提液对苔藓结皮生长的影响[J]. 草业学报, 2018, 27(3): 187-193. |
| [13] | 林慧龙, 郑舒婷, 王雪璐. 基于RUSLE模型的三江源高寒草地土壤侵蚀评价[J]. 草业学报, 2017, 26(7): 11-22. |
| [14] | 张颖, 章超斌, 王钊齐, 杨悦, 张艳珍, 李建龙, 安如. 气候变化与人为活动对三江源草地生产力影响的定量研究[J]. 草业学报, 2017, 26(5): 1-14. |
| [15] | 张雅娴, 樊江文, 曹巍, 张海燕. 2006-2013年三江源草地产草量的时空动态变化及其对降水的响应[J]. 草业学报, 2017, 26(10): 10-19. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||