[1] Bjorn L O. Stratospheric ozone, ultraviolet radiation, and cryptogams[J]. Biology Conservation, 2007, 135: 326-333. [2] Nogues S, Allen D J, Morison J I L, et al. Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants[J]. Plant Physiology, 1998, 117: 173-181. [3] Braun J, Tevini M. Regulation of UV-protective pigment synthesis in the epidermal layer of rye seedlings (Secale-cereale L. cv Kustro)[J]. Photochemistry and Photobiology, 1993, 57: 318-323. [4] Huttunen S, Lappalainen N M, Turunen J. UV-absorbing compounds in subarctic herbarium bryophytes[J]. Environmental Pollution, 2005, 133: 303-314. [5] Murai Y, Takemura S, Takeda K, et al. Altitudinal variation of UV-absorbing compounds in Plantago asiatica[J]. Biochemical Systematics and Ecology, 2009, 37: 378-384. [6] Long L M, Patel H P, Cory W C, et al. The maize epicuticular wax layer provides UV protection[J]. Functional Plant Biology, 2003, 30: 75-81. [7] Robberecht R, Caldwell M M, Billings W D. Leaf ultraviolet optical-properties along a latitudinal gradient in the arctic-alpine life zone[J]. Ecology, 1980, 61: 612-619. [8] Fukuda S, Satoh A, Kasahara H, et al. Effects of ultraviolet-B irradiation on the cuticular wax of cucumber (Cucumis sativus) cotyledons[J]. Journal of Plant Research, 2008, 121: 179-189. [9] O’Toole J C, Cruz R T, Seiber J N. Epicuticular wax and cuticular resistance in rice[J]. Physiologia Plantarum, 1979, 47: 239-244. [10] Gonzalez A, Ayerbe L. Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley[J]. Euphytica, 2010, 172: 341-349. [11] Samdur M Y, Manivel P, Jain V K, et al. Genotypic differences and water-deficit induced enhancement in epicuticular wax load in peanut[J]. Crop Science, 2003, 43: 1294-1299. [12] Mamrutha H M, Mogili T, Lakshmi K J, et al. Leaf cuticular wax amount and crystal morphology regulate post-harvest water loss in mulberry (Morus species)[J]. Plant Physiology and Biochemistry, 2010, 48: 690-696. [13] 张桂国, 杨在宾, 董树亭. 苜蓿+玉米间作系统饲料生产潜力的评定[J]. 草业学报, 2011, 20(2):117-126. [14] 郭志强, 宋代军, 玉永雄, 等. 南方苜蓿新品种“渝苜一号”饲喂肉兔的营养价值评定[J]. 草业学报, 2011, 20(3): 122-127. [15] 刘国利, 何树斌, 杨惠敏. 紫花苜蓿水分利用效率对水分胁迫的响应及其机理[J]. 草业学报, 2009, 18(3): 207-213. [16] 吴旭红, 罗新义. UV-B辐射对苜蓿幼叶内Rubisco、H2O2含量及蛋白水解酶活性的影响[J]. 中国草地学报, 2008, 30(1): 27-29. [17] Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit[J]. Journal of Plant Physiology, 2007, 164: 1134-1143. [18] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006. [19] Day T A. Relating UV-B radiation screening effectiveness of foliage to absorbing-compound concentration and anatomical characteristics in a diverse group of plants[J]. Oecologia, 1993, 95: 542-550. [20] Karabourniotis G, Papadopoulos K, Papamarkou M, et al. Ultraviolet-B radiation absorbing capacity of leaf hairs[J]. Physiologia Plantarum, 1992, 86: 414-418. [21] Holmes M G, Keiller D R. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species[J]. Plant Cell and Environment, 2002, 25: 85-93. [22] Skorska E, Szwarc W. Influence of UV-B radiation on young triticale plants with different wax cover[J]. Biology Plantarum, 2007, 51: 189-192. [23] 郭彦军, 倪郁, 郭芸江, 等. 水热胁迫对紫花苜蓿叶表皮蜡质组分及生理指标的影响[J]. 作物学报, 2011, 37(5): 911-917. [24] Kosma D K, Bourdenx B, Bernard A, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis[J]. Plant Physiology, 2009, 151: 1918-1929. [25] Zhang J Y, Broeckling C D, Blancaflor E B, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa)[J]. Plant Journal, 2005, 42: 689-707. [26] Barnes J D, Percy K E, Paul N D, et al. The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L) leaf surfaces[J]. Journal of Experimental Botany, 1996, 47: 99-109. [27] Steinmuller D, Tevini M. Action of ultraviolet-radiation (UV-B) upon cuticular waxes in some crop plants[J]. Planta, 1985, 164: 557-564. [28] Gordon D C, Percy K E, Riding R T. Effects of UV-B radiation on epicuticular wax production and chemical composition of four Picea species[J]. New Phytologist, 1998, 138: 441-449. [29] Cajustea J F, Gonzalez-Candelasa L, Veyrat A, et al. Epicuticular wax content and morphology as related to ethylene and storage performance of ‘Navelate’ orange fruit[J]. Postharvest Biology and Technology, 2010, 55: 29-35. [30] 李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应[J]. 草业学报, 2010, 19(4): 79-86. [31] Inostroza L, Acuna H. Water use efficiency and associated physiological traits of nine naturalized white clover populations in Chile[J]. Plant Breeding, 2010, 129: 700-706. [32] Kinnunen H, Huttunen S, Laakso K. UV-absorbing compounds and waxes of Scots pine needles during a third growing season of supplemental UV-B[J]. Environmental Pollution, 2001, 112: 215-220. [33] Bennett R N, Wallsgrove R M. Tansley Review No.72. Secondary metabolites in plant defence mechanisms[J]. New Phytologist, 1994, 127: 617-633. |