[1] Heard J, Dunn K. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules[J]. Proceedings of the National Academy of Sciences USA, 1995, 92(12): 5273-5277. [2] Zucchero J C, Caspi M, Dunn K. ngl9: a third MADS box gene expressed in alfalfa root nodules[J]. Molecular Plant-Microbe Interactions, 2001, 14: 1463-1467. [3] Agarwal P K, Agarwal P, Reddy M K, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Reports, 2006, 12: 1263-1274. [4] Soo Y K. The role of ABF family bZIP class transcription factors in stress response[J]. Plant Physiology, 2006, 126: 519-527. [5] Du H, Zhang L, Liu L, et al. Biochemical and molecular characterization of plant MYB transcription factor family[J]. Biochemistry, 2009, 74: 1-11. [6] Christianson J A, Dennis E S, Llewellyn D J, et al. ATAF NAC transcription factors: regulators of plant stress signaling[J]. Plant Signaling and Behavior, 2010, 5: 428-432. [7] Rushton P J, Somssich I E, Ringler P, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15: 247-258. [8] Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Molecular and General Genetics, 1994, 244(6): 563-571. [9] Rushton P J, Macdonald H, Huttly A K, et al. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of a Amy2 genes[J]. Plant Molecular Biology, 1995, 29: 691-702. [10] Rushton P J, Torres J T, Parniske M, et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J]. The EMBO Journal, 1996, 15: 5690-5700. [11] Pater S, Greco V, Pham K, et al. Characterization of a zinc-dependent transcriptional activator from Arabidopsis[J]. Nucleic Acids Research, 1996, 24: 4624-4631. [12] Wang Z P, Yang P Z, Fan B F, et al. An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with the plant defence response[J]. The Plant Journal, 1998, 16: 515-522. [13] Chen C H, Chen Z X. Isolation and characterization of two pathogen and salicylic acid-induced genes encoding WRKY DNA binding proteins from tobacco[J]. Plant Molecular Biology, 2000, 42: 387-396. [14] Hara K, Yagi M, Kusano T, et al. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding[J]. Molecular and General Genetics, 2000, 263: 30-37. [15] Kim C Y, Zhang S. Activation of a nitrogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco[J]. The Plant Journal, 2004, 38: 142-151. [16] Dellagi A, Heilbronn J, Avrova A O, et al. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora sub sp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression[J]. Molecular Plant-Microbe Interactions, 2000, 13: 1092-1101. [17] Beyer K, Binder A, Boller T, et al. Identification of potato genes induced during colonization by Phytophthora infestans[J]. Molecular Plant Pathology, 2001, 2: 125-134. [18] Xu Y H, Wang J W, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-d-cadinene synthase-A[J]. Plant Physiology, 2004, 135: 507-515. [19] Liu X Q, Bai X Q, Qian Q, et al. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1[J]. Cell Research, 2005, 15: 593-603. [20] Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5: 199-206. [21] Li H, Xu Y, Xiao Y, et al. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1 and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata[J]. Planta, 2010, 232: 1325-1337. [22] Hinderhofer K, Zentgraf U. Identification of a transcription factor specifically expressed at the onset of leaf senescence[J]. Planta, 2001, 213(3): 469-473. [23] Sun C, Palmqvist S, Olsson H, et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter[J]. The Plant Cell, 2003, 15(9): 2076-2092. [24] Pnueli L, Hallak-Herr E, Rozenberg M, et al. Molecular and biochemical mechanisms associated with dormany and drought tolerance in the desert legume Retama raetam[J]. The Plant Joural, 2002, 31(3): 319-330. [25] 杨红善, 常根柱, 周学辉, 等. 美国引进苜蓿品种半湿润区栽培试验[J]. 草业学报, 2010, 19(1): 121-127. [26] 张改娜, 贾敬芬. 豌豆清蛋白1(PAl)基因的克隆及对苜蓿的转化[J]. 草业学报, 2009, 18(3): 117-125. [27] Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415: 977-983. [28] 田云, 卢向阳, 彭丽莎, 等. 植物WRKY 转录因子结构特点及其生物学功能[J]. 遗传, 2006, 28(12): 1607-1612. [29] Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Molecular Biology, 2003, 51(1): 21-37. [30] Mare C, Mazzucotelli E, Crosatti C, et al. HvWRKY38: a new transcription factor involved in cold- and drought-response in barley[J]. Plant Molecular Biology, 2004, 55(3): 399-416. [31] 仇玉萍, 荆邵娟, 付坚, 等. 13个水稻WRKY基因的克隆及其表达谱分析[J]. 科学通报, 2004, 49(18): 1860-1869. [32] Yoda H, Ogawa M, Yamaguchi Y, et al. Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants[J]. Molecular Genetics and Genomics, 2002, 267(2): 154-161. [33] Xie Z, Zhang Z L, Zou X, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiology, 2005, 137(1): 176-189. [34] Lagace M, Matton D P. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense[J]. Planta, 2004, 219(1): 185-189. [35] Robatzek S, Somssich I E. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence and defence related processes[J]. The Plant Journal, 2001, 28(2): 123-133. [36] Miao Y, Laun T, Zimmermann P, et al. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis[J]. Plant Molecular Biology, 2004, 55(6): 853-867. [37] Luo M, Dennis E S, Berger F, et al. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) kinase gene, are regulators of seed size in Arabidopsis[J]. Proceedings of the National Academy of Sciences USA, 2005, 102(48): 17531-17536. [38] Park C Y, Lee J H, Yoo J H, et al. WRKY group II transcription factors interact with calmodulin[J]. FEBS Letters, 2005, 579(6): 1545-1550. [39] Zhou Q Y, Tian A G, Zou H F, et al. Soybean WRKY-type transcription factor genes,GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 2008, 6(5): 486-503. [40] 邢浩然, 刘丽娟, 刘国振. 植物蛋白质的亚细胞定位研究进展[J]. 华北农学报, 2006, 21(增刊): 1-6. |