[1] Jiao W X, Yang H D, Feng D N, et al. Heavy metal content and accumulation characteristics in the edible parts of different crops under Cd, Hg, and Pb stress. Journal of Agro-Environment Science, 2017, 36(9): 1726-1733. 焦位雄, 杨虎德, 冯丹妮, 等. Cd Hg Pb胁迫下不同作物可食部分重金属含量及累积特征研究. 农业环境科学学报, 2017, 36(9): 1726-1733. [2] Chen N C, Zheng Y J, He X F, et al. Analysis of the bulletin of national soil pollution survey. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析. 农业环境科学学报, 2017, 36(9): 1689-1692. [3] Li A M, Deng Q Y, Li D H, et al. Application of bacterial endophyte in phytoremediation. Hubei Agricultural Sciences, 2011, 50(19): 3893-3896. 李安明, 邓青云, 李德华, 等. 内生细菌在植物修复中的应用. 湖北农业科学, 2011, 50(19): 3893-3896. [4] Jiang M, Cao L X, Zhang R D.The relationship of heavy metal resistant endophyte and the heavy metal resistance ability of their host plants. Journal of Agro-Environment Science, 2007, (6): 2038-2042. 姜敏, 曹理想, 张仁铎. 重金属抗性内生真菌与其宿主植物重金属抗性关系初探. 农业环境科学学报, 2007, (6): 2038-2042. [5] Wang Z W, Ji Y L, Chen Y G, et al. Endophytic fungi resources and species diversity in grass family. Acta Ecologica Sinica, 2010, 30(17): 4771-4781. 王志伟, 纪燕玲, 陈永敢, 等. 禾本科植物内生真菌资源及其物种多样性. 生态学报, 2010, 30(17): 4771-4781. [6] Yang C, Xie Q Z, Chu W H, et al. Lead tolerance of two dark septate endophytes. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(11): 105-114. 杨超, 谢清哲, 楚文卉, 等. 两种深色有隔内生真菌的铅耐受性. 西北农林科技大学学报(自然科学版), 2018, 46(11): 105-114. [7] Yang M Y, Liang Y Y, Zeng D B, et al. Effects of lead stress on accumulation capacity and physiological metabolism of ryegrass. Journal of Northwest A&F University(Natural Science Edition), 2014, 42(12): 97-101. 杨明琰, 梁语燕, 曾德榜, 等. 铅胁迫对黑麦草Pb富集特性及生理代谢的影响. 西北农林科技大学学报(自然科学版), 2014, 42(12): 97-101. [8] Malinowski D P, Blesky D P.Adaptation of endophyte-infected cool-season grasses to environment stresses: Mechanisms of drought and mineral stress tolerance. Crop Science, 2000, 40: 923-940. [9] Bonnet M, Camares O, Veisseire P.Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv. Apollo). Journal of Experimental Botany, 2000, 51(346): 945-953. [10] Monnet F, Vaillant N, Hitmi A, et al. Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne. Physiologia Plantarum, 2002, 113(4): 557-563. [11] Malinowski D P, Belesky D P, Lewis G C.Abiotic stresses in endophyte grasses//Craig A R, Charles P W, Donald E S. Neotyphodium in cool-season grasses. Oxford: Blackwell Scientifie Publications, 2005: 187-200. [12] Zhang J J, An S Z.Effects of endophytic fungi on salt resistance of Melica transsilvanica seedlings. Chinese Journal of Grassland, 2017, 39(3): 115-120. 张晶晶, 安沙舟. 内生真菌对德兰臭草幼苗抗盐性的影响. 中国草地学报, 2017, 39(3): 115-120. [13] Moon C, Guillaumin J, Ravel C, et al. New neotyphodium endophyte species from the grass tribes Stipeae and Meliceae. Mycologia, 2007, 99(6): 895-905. [14] Shi C, Lu Y, Huang C F, et al. Using 70 ℃ dry treatment to make endophyte-free seeds of Melica transsilvanica. Acta Agrestia Sinica, 2016, 24(6): 1318-1322. 施宠, 鲁益, 黄长福, 等. 70 ℃干热处理德兰臭草种子内生真菌的研究. 草地学报, 2016, 24(6): 1318-1322. [15] Li H S.Principle and technology of plant physiological and biochemical experiments. Beijing: Higher Education Press, 1999: 164-185. 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 1999: 164-185. [16] Chen J X, Wang X F.Plant physiology experiment guide. 2nd Edition. Guangzhou: South China University of Technology Press, 2002. 陈建勋, 王晓峰. 植物生理学实验指导(第2版). 广州: 华南理工大学出版社, 2002. [17] Li X, Wu Y J, Sun L X.Growth and physiological responses of three warm-season turfgrasses to lead stress. Acta Prataculturae Sinica, 2014, 23(4): 171-180. 李西, 吴亚娇, 孙凌霞. 铅胁迫对三种暖季型草坪草生长和生理特性的影响. 草业学报, 2014, 23(4): 171-180. [18] Hou X L.Response mechanism of Pb hyperaccumulator Pogonatherum crinitum to Pb stress. Fuzhou: Fujian Agriculture and Forestry University, 2013. 侯晓龙. 铅超富集植物金丝草对Pb胁迫的响应机制研究. 福州: 福建农林大学, 2013. [19] Wang H, Zhao S L, Wang R J, et al. Effects of Zn2+ stress on growth and physiological and biochemical characteristics of Festuca arundinacea cv. Barlexa. Northern Horticulture, 2018, (8): 86-91. 王瀚, 赵淑玲, 王让军, 等. 重金属Zn2+胁迫对高羊茅生长和生理特性的影响. 北方园艺, 2018, (8): 86-91. [20] Zhao Y H, Meng Z Q, Niu X Y, et al. Effects of Cu2+ and Zn2+ stress on the bulbil germination and physiological-biochemical characteristics of Polygonum viviparum. Acta Agrestia Sinica, 2014, 22(1): 116-121. 赵玉红, 蒙祖庆, 牛歆雨, 等. 铜、锌胁迫对珠芽蓼珠芽萌发及生理生化特性的影响. 草地学报, 2014, 22(1): 116-121. [21] Shang H Q, Gao C Y.Responds of seed germination and physiological, biochemical characteristics and Cd,Hg content of Platycodon grandiflorum seedling to cadmium and mercury stress. Journal of Nuclear Agricultural Sciences, 2018, 32(6): 1211-1219. 尚宏芹, 高昌勇. 镉、汞胁迫对桔梗种子萌发、幼苗生理生化特性及镉、汞含量的影响. 核农学报, 2018, 32(6): 1211-1219. [22] Zhang W.Responses of growth and physiological characteristic in Brachypodium distachyon seedlings under Cd stress. Lanzhou: Gansu Agricultural University, 2014. 张雯. 镉胁迫对二穗短柄草生长及生理特性的响应. 兰州: 甘肃农业大学, 2014. [23] Metha S K, Gaur J P.Heavy metal induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytologist, 1999, 143(2): 253-259. [24] Tian X X, Meng L, Mao P C, et al. Effects of Cd and Zn on the physiological and biochemical characteristics and accumulation abilities of Elytrigia elongate. Journal of Agro-Environment Science, 2012, 31(8): 1483-1490. 田小霞, 孟林, 毛培春, 等. 重金属Cd Zn对长穗偃麦草生理生化特性的影响及其积累能力研究. 农业环境科学学报, 2012, 31(8): 1483-1490. [25] Yang Y L, Ma H Z, Ding F, et al. Changes of proline content and metabolism enzyme activities in wheat seedlings under Zn, Fe and Cu stresses in single or combination. Journal of Northwest Natural University (Natural Science Edition), 2013, 49(6): 79-83. 杨颖丽, 马海珍, 丁凡, 等. Zn, Fe, Cu单一或复合胁迫下小麦幼苗脯氨酸含量及其代谢酶活性的变化. 西北师范大学学报(自然科学版), 2013, 49(6): 79-83. [26] Alia K V S H, Prasad K V S H, Saradhz P P. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochemistry, 1995, 39(1): 45-47. [27] Zaurov D E, Bonos S, Murphy J A, et al. Endophyte infection can contribute to aluminum tolerance in fine fescues. Crop Science, 2001, 41: 1981-1984. [28] Zhang X X, Li C J, Nan Z B.Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inderians symbiotic with Neotyphodium gansuense. Journal of Hazard Mater, 2010, 175(4/3): 703-709. [29] Wan Y, Luo S L, Chen J L, et al. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere, 2012, 89: 743-750. [30] Chen L, Luo S, Xiao X, et al. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Applied Soil Ecology, 2010, 46(3): 383-389. [31] Baltruschat H, Fodor J, Harrach B D, et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist, 2008, 180(2): 501-510. [32] Ban Y H.Mechanisms of dark septate endophyte isolated from Pb-Zn mine improving plant lead tolerance. Yangling: Northwest A&F University, 2013. 班宜辉. 铅锌矿区深色有隔内生真菌提高植物耐Pb机制研究. 杨凌: 西北农林科技大学, 2013. [33] Guo H J, Luo S L, Chen L, et al. Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresource Technology, 2010, 101(22): 8599-8605. |