草业学报 ›› 2021, Vol. 30 ›› Issue (4): 150-159.DOI: 10.11686/cyxb2020411
王龙1(), 樊婕1, 魏畅1, 李鸽子2, 张静静1, 焦秋娟1, 陈果3, 孙娈姿4, 柳海涛1()
收稿日期:
2020-09-07
修回日期:
2020-10-29
出版日期:
2021-04-20
发布日期:
2021-03-16
通讯作者:
柳海涛
作者简介:
Corresponding author. E-mail: liuhaitaoky@henau.edu.cn基金资助:
Long WANG1(), Jie FAN1, Chang WEI1, Ge-zi LI2, Jing-jing ZHANG1, Qiu-juan JIAO1, Guo CHEN3, Luan-zi SUN4, Hai-tao LIU1()
Received:
2020-09-07
Revised:
2020-10-29
Online:
2021-04-20
Published:
2021-03-16
Contact:
Hai-tao LIU
摘要:
为探究外源抗坏血酸(AsA)对铜(Cu)胁迫下菊苣幼苗生长的缓解效应,本研究以普那菊苣为试验材料,采用溶液培养法研究外源AsA对50 μmol·L-1 Cu 胁迫下菊苣幼苗的生长、Cu积累和生理特性的影响。结果表明,50 μmol·L-1 Cu胁迫严重抑制了菊苣幼苗的叶绿素含量、光合作用和生物量的积累,加剧了细胞膜脂质过氧化程度,降低了抗氧化酶(SOD、POD、CAT、APX)活性以及可溶性蛋白含量。外源AsA降低了根系对Cu的吸收和转运,缓解了Cu胁迫对菊苣幼苗的伤害,具体表现为根系、茎叶及总干物质量提高;减少了光合色素(叶绿素a、叶绿素b、总叶绿素以及类胡萝卜素)的降解,提高了光合作用参数;降低脂质过氧化对细胞膜的损伤;提高了抗氧化酶活性、可溶性蛋白含量以及内源AsA含量。总之,外源AsA通过提高Cu胁迫下菊苣幼苗光合作用特征、抗氧化酶活性和渗透调节物质的含量,缓解了Cu胁迫对菊苣幼苗生长的毒害作用。该结果为外源AsA应用于缓解植物Cu毒害及丰富菊苣耐Cu机制提供依据。
王龙, 樊婕, 魏畅, 李鸽子, 张静静, 焦秋娟, 陈果, 孙娈姿, 柳海涛. 外源抗坏血酸对铜胁迫菊苣幼苗生长的缓解效应[J]. 草业学报, 2021, 30(4): 150-159.
Long WANG, Jie FAN, Chang WEI, Ge-zi LI, Jing-jing ZHANG, Qiu-juan JIAO, Guo CHEN, Luan-zi SUN, Hai-tao LIU. Mitigative effect of exogenous ascorbic acid on the growth of copper-stressed chicory (Cichorium intybus) seedlings[J]. Acta Prataculturae Sinica, 2021, 30(4): 150-159.
处理 Treatment | 根长 Root length (cm) | 茎叶长 Shoot height (cm) | 根系干重 Root dry weight (g·plant-1) | 茎叶干重 Shoot dry weight (g·plant-1) | 根系耐受指数 Tolerance index of root (%) | 茎叶耐受指数 Tolerance index of shoot (%) |
---|---|---|---|---|---|---|
CK | 33.20±2.79a | 27.57±2.81a | 0.18±0.01a | 0.97±0.08a | 100.00±0.24a | 100.00±2.08a |
AsA200 | 28.45±2.57ab | 25.13±2.09ab | 0.16±0.02a | 0.77±0.10ab | 88.89±0.44b | 79.38±1.29b |
Cu50 | 23.47±2.96b | 17.02±2.71b | 0.10±0.01b | 0.53±0.06b | 55.56±0.26c | 54.64±0.96c |
Cu50+AsA200 | 25.42±1.52b | 23.05±1.79ab | 0.13±0.01ab | 0.68±0.11ab | 77.80±0.25b | 70.10±0.67b |
表1 外源AsA对Cu胁迫下菊苣幼苗生物量和耐受指数的影响
Table 1 Effect of exogenous AsA on the biomass and tolerance index of chicory seedling under Cu stress
处理 Treatment | 根长 Root length (cm) | 茎叶长 Shoot height (cm) | 根系干重 Root dry weight (g·plant-1) | 茎叶干重 Shoot dry weight (g·plant-1) | 根系耐受指数 Tolerance index of root (%) | 茎叶耐受指数 Tolerance index of shoot (%) |
---|---|---|---|---|---|---|
CK | 33.20±2.79a | 27.57±2.81a | 0.18±0.01a | 0.97±0.08a | 100.00±0.24a | 100.00±2.08a |
AsA200 | 28.45±2.57ab | 25.13±2.09ab | 0.16±0.02a | 0.77±0.10ab | 88.89±0.44b | 79.38±1.29b |
Cu50 | 23.47±2.96b | 17.02±2.71b | 0.10±0.01b | 0.53±0.06b | 55.56±0.26c | 54.64±0.96c |
Cu50+AsA200 | 25.42±1.52b | 23.05±1.79ab | 0.13±0.01ab | 0.68±0.11ab | 77.80±0.25b | 70.10±0.67b |
处理 Treatment | 净光合速率 Net photosynthetic rate (μmol CO2·m-2·s-1) | 气孔导度 Stomatal conductance (mol H2O·m-2·s-1) | 胞间二氧化碳浓度Intercellular CO2 concentration (μmol CO2·mol-1) | 蒸腾速率 Transpiration rate (mmol H2O·m-2·s-1) | 叶绿素a Chlorophyll a (mg·g-1) | 叶绿素b Chlorophyll b (mg·g-1) | 类胡萝卜素Carotenoids (mg·g-1) | 叶绿素(a+b)Chlorophyll (a+b) (mg·g-1) |
---|---|---|---|---|---|---|---|---|
CK | 19.69±1.19a | 0.30±0.05a | 572.49±56.63a | 3.46±0.35a | 1.24±0.06a | 2.53±0.04a | 0.44±0.03a | 3.76±0.10a |
AsA200 | 14.46±1.63b | 0.25±0.02a | 454.69±54.46ab | 2.87±0.36b | 1.13±0.09a | 2.41±0.07a | 0.42±0.02a | 3.54±0.16a |
Cu50 | 9.97±1.29c | 0.09±0.02c | 359.92±28.37b | 1.75±0.49c | 0.72±0.06b | 1.86±0.11b | 0.29±0.01b | 2.58±0.17b |
Cu50+AsA200 | 14.35±1.25b | 0.15±0.03b | 447.30±41.92ab | 2.94±0.27b | 1.18±0.05a | 2.18±0.07a | 0.35±0.02b | 3.36±0.13a |
表2 外源AsA对Cu胁迫下菊苣幼苗光合参数和叶绿素含量的影响
Table 2 Effect of exogenous AsA on the photosynthetic parameters and chlorophyll content of chicory seedling under Cu stress
处理 Treatment | 净光合速率 Net photosynthetic rate (μmol CO2·m-2·s-1) | 气孔导度 Stomatal conductance (mol H2O·m-2·s-1) | 胞间二氧化碳浓度Intercellular CO2 concentration (μmol CO2·mol-1) | 蒸腾速率 Transpiration rate (mmol H2O·m-2·s-1) | 叶绿素a Chlorophyll a (mg·g-1) | 叶绿素b Chlorophyll b (mg·g-1) | 类胡萝卜素Carotenoids (mg·g-1) | 叶绿素(a+b)Chlorophyll (a+b) (mg·g-1) |
---|---|---|---|---|---|---|---|---|
CK | 19.69±1.19a | 0.30±0.05a | 572.49±56.63a | 3.46±0.35a | 1.24±0.06a | 2.53±0.04a | 0.44±0.03a | 3.76±0.10a |
AsA200 | 14.46±1.63b | 0.25±0.02a | 454.69±54.46ab | 2.87±0.36b | 1.13±0.09a | 2.41±0.07a | 0.42±0.02a | 3.54±0.16a |
Cu50 | 9.97±1.29c | 0.09±0.02c | 359.92±28.37b | 1.75±0.49c | 0.72±0.06b | 1.86±0.11b | 0.29±0.01b | 2.58±0.17b |
Cu50+AsA200 | 14.35±1.25b | 0.15±0.03b | 447.30±41.92ab | 2.94±0.27b | 1.18±0.05a | 2.18±0.07a | 0.35±0.02b | 3.36±0.13a |
处理 Treatment | 根系Root | 茎叶Shoot | 转运系数 Translocation factor | ||
---|---|---|---|---|---|
Cu含量 Cu content (μg·g-1 DW) | Cu积累量 Cu accumulation (μg·plant-1) | Cu含量 Cu content (μg·g-1 DW) | Cu积累量 Cu accumulation (μg·plant-1) | ||
CK | 6.32±1.12 | 1.13±0.88 | 2.43±0.52 | 2.36±0.31 | |
Cu50 | 158.19±2.68 | 15.82±1.41 | 41.44±0.84 | 21.96±2.50 | 1.39±1.13 |
Cu50+AsA200 | 118.84±2.21 | 15.45±1.69 | 27.08±0.69 | 18.41±2.19 | 1.19±0.95 |
表3 外源AsA对Cu胁迫下菊苣幼苗Cu含量和转运系数的影响
Table 3 Effect of exogenous AsA on the Cu content and translocation factor of chicory seedling under Cu stress
处理 Treatment | 根系Root | 茎叶Shoot | 转运系数 Translocation factor | ||
---|---|---|---|---|---|
Cu含量 Cu content (μg·g-1 DW) | Cu积累量 Cu accumulation (μg·plant-1) | Cu含量 Cu content (μg·g-1 DW) | Cu积累量 Cu accumulation (μg·plant-1) | ||
CK | 6.32±1.12 | 1.13±0.88 | 2.43±0.52 | 2.36±0.31 | |
Cu50 | 158.19±2.68 | 15.82±1.41 | 41.44±0.84 | 21.96±2.50 | 1.39±1.13 |
Cu50+AsA200 | 118.84±2.21 | 15.45±1.69 | 27.08±0.69 | 18.41±2.19 | 1.19±0.95 |
图1 外源AsA对Cu胁迫下菊苣幼苗MDA、可溶性蛋白和AsA含量的影响不同小写字母表示不同处理间差异显著(P<0.05),下同。Different lowercase letters above bars show the significant difference among different treatments at the level of 0.05. The same below.
Fig.1 Effect of exogenous AsA on the content of MDA, soluble protein and AsA of chicory seedling under Cu stress
1 | Sun J W, Huang Y Z, Shi M C, et al. The review of heavy metals biotoxicity in soil. Acta Ecologica Sinica, 2008, 28(6): 2861-2869. |
孙晋伟, 黄益宗, 石孟春, 等. 土壤重金属生物毒性研究进展. 生态学报, 2008, 28(6): 2861-2869. | |
2 | Chen N C, Zheng Y J, He X F, et al. Analysis of the report on the national general survey of soil contamination. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. |
陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析. 农业环境科学学报, 2017, 36(9): 1689-1692. | |
3 | Hansch R, Mendel R R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 2009,12(3): 259-266. |
4 | Xue Y W, Wang Y F, Zhao C J, et al. Effects of copper stress on germination and antioxidant system in wheat seedings. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(1): 54-59. |
薛盈文, 王玉凤, 赵长江, 等. 铜胁迫对小麦种子萌发及幼苗抗氧化系统的影响. 江西农业大学学报, 2016, 38(1): 54-59. | |
5 | Yadav S K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 2010, 76(2): 167-179. |
6 | Wang R N, Nie L C, Zhang S S, et al. Research progress on plant resistance to heavy metal stress. Acta Horticulturae Sinica, 2019, 46(1): 157-170. |
王若男, 乜兰春, 张双双, 等. 植物抗重金属胁迫研究进展. 园艺学报, 2019, 46(1): 157-170. | |
7 | Zhang X F, Xiao H P, Li Z A, et al. Forage grass in phytoremediation of heavy metals-contaminated soils: A review. Chinese Journal of Ecology, 2009, 28(8): 1640-1646. |
张杏锋, 夏汉平, 李志安, 等. 牧草对重金属污染土壤的植物修复综述. 生态学杂志, 2009, 28(8): 1640-1646. | |
8 | Zhou Q X, Tang J C, Wei S H. Discussion on geochemical bases and relevant theories of environmental green remediation. Journal of Ecology and Rural Environment, 2020, 36(1): 1-10. |
周启星, 唐景春, 魏树和. 环境绿色修复的地球化学基础与相关理论探讨. 生态与农村环境学报, 2020, 36(1): 1-10. | |
9 | Elbanna M F, Mosa A, Gao B, et al. Sorption of lead ions onto oxidized bagasse-biochar mitigates Pb-induced oxidative stress on hydroponically grown chicory: Experimental observations and mechanisms. Chemosphere, 2018, 208: 887-898. |
10 | Li H L, Tang Y J, Zeng F. Effects of multiple contamination of uranium and heavy metals on chlorophyll fluorescence characteristics of Cichorium intybus L. Journal of Natural Science of Hunan Normal University, 2015, 38(2): 17-23. |
李华丽, 唐永金, 曾峰. 铀和重金属复合污染对菊苣叶绿素荧光特性的影响. 湖南师范大学自然科学学报, 2015, 38(2): 17-23. | |
11 | Wang Q Z, Cui J. Use potential of a forage chicory: Ⅱ utilization value and exploitive potential. Pratacultural Science, 2010, 27(2): 150-156. |
王佺珍, 崔健. 牧草菊苣及其利用潜力Ⅱ利用价值和开发潜力. 草业科学, 2010, 27(2): 150-156. | |
12 | Wang Q Z, Cui J. A review on pharmic effect of chicory research and development. China Journal of Chinese Materia Medica, 2009, 34(17): 2269-2272. |
王佺珍, 崔健. 菊苣的药理药效研究及开发前景. 中国中药杂志, 2009, 34(17): 2269-2272. | |
13 | Sha L J, He L Z, Yang M B, et al. Relationship of absorption and accumulation of heavy metals by Cichorium intybus L. (partim) with soil chemistry. Southwest China Journal of Agricultural Sciences, 2018, 31(5): 1019-1024. |
沙凌杰, 和丽忠, 杨明斌, 等. 饲用欧洲菊苣吸收积累土壤重金属与土壤性质的关系. 西南农业学报, 2018, 31(5): 1019-1024. | |
14 | Pang L Y, Zhang H, Luo C Y, et al. Forage crop rotation and it’s benefit in the purple farming area of Sichuan Province. Acta Prataculturae Sinica, 2010, 19(3): 110-116. |
庞良玉, 张鸿, 罗春燕, 等. 四川紫色丘陵农区坡耕地饲草种植模式及效益. 草业学报, 2010, 19(3): 110-116. | |
15 | Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5): 1229-1240. |
16 | Gallie D R. The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. Journal of Experimental Botany, 2014, 64(2): 433-443. |
17 | Gallie D R, Ashihara H, Riganti C, et al. L-ascorbic acid: A multifunctional molecule supporting plant growth and development. Scientifica, 2013, 11(24): 755-764. |
18 | Guo T R. Alleviative effects of exogenous ascorbic acid on aluminum toxicity in barley seedlings. Journal of Triticeae Crops, 2012, 32(5): 895-899. |
郭天荣. 外源抗坏血酸对铝毒害大麦幼苗的缓解效应. 麦类作物学报, 2012, 32(5): 895-899. | |
19 | Zhou X H, Gu Z H, Xu H N, et al. The effects of exogenous ascorbic acid on photosynthetic characteristics in Oryza sativa L. under aluminum stress. Journal of Yangzhou University (Agricultural and Life Science Edition), 2015, 36(3): 73-78. |
周小华, 谷照虎, 徐慧妮, 等. 外源抗坏血酸AsA对铝胁迫下水稻光合特性的影响. 扬州大学学报(农业与生命科学版), 2015, 36(3): 73-78. | |
20 | Wu L F, Lu W D, Wei X M, et al. Effect of lead and mercury combined with ascorbic acid treatment on the genetoxic of Vicia faba. Experiment Science and Technology, 2015, 13(3): 40-42. |
吴丽芳, 陆伟东, 魏晓梅, 等. 抗坏血酸对铅、汞胁迫下蚕豆根尖染色体畸变的研究. 实验科学与技术, 2015, 13(3): 40-42. | |
21 | Xu F F, Wang A B. Effects of ascorbic acid on active oxygen metabolism of rice chloroplast under salt stress. Hybrid Rice, 2016, 31(3): 68-70, 75. |
徐芬芬, 王爱斌. 抗坏血酸对盐胁迫下水稻叶绿体活性氧代谢的影响. 杂交水稻, 2016, 31(3): 68-70,75. | |
22 | Dong Q L, Xia F S, Li X Y, et al. Effect of ascorbic acid priming on the vigor of oat seeds under NaCl stress. Acta Prataculturae Sinica, 2018, 27(4): 202-208. |
董秋丽, 夏方山, 李晓禹, 等. 抗坏血酸引发对NaCl胁迫燕麦种子活力的影响. 草业学报, 2018, 27(4): 202-208. | |
23 | Stallen N V, Noten V, Demeulemeester M, et al. Identification of commercial chicory cultivars for hydroponic forcing and their phenetic relationships revealed by random amplified polymorphic DNAs and amplified fragment length polymorphisms. Plant Breeding, 2010, 119(3): 265-270. |
24 | Li H Q, Wang W H, Jiang X W. Effects of exogenous ascorbic acid on seedling growth, copper accumulation and antioxidant enzyme activities of Pogostemon cablin under copper stress. Environmental Chemistry, 2016, 35(7): 1431-1437. |
李贺勤, 王维华, 江绪文. 抗坏血酸对铜胁迫下广藿香幼苗生长、铜积累和抗氧化酶活性的影响. 环境化学, 2016, 35(7): 1431-1437. | |
25 | Sharma R, Bhardwaj R, Thukrala K. Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in Brassica juncea L. subjected to copper (Ⅱ) stress. Ecotoxicology and Environmental Safety, 2019, 182: 3814-3825. |
26 | Chen J X, Wang X F. Plant physiology experiment guide. Guangzhou: South China University of Technology Press, 2006. |
陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2006. | |
27 | Wang X K, Huang J L. Experimental principles and techniques of plant physiology and biochemistry. Beijing: Higher Education Press. 2015. |
王学奎, 黄见良. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2015. | |
28 | Law M Y, Charles S A, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochemistry, 1983, 210(3): 899-903. |
29 | Chen Q, Zhang X D, Wang S S, et al. Transcriptional and physiological changes of alfalfa in response to aluminium stress. Journal of Agricultural Science, 2011, 149(6): 737-752. |
30 | Giannopolitis C N, Ries S K. Superoxide dismutase I. Occurrence in high plants. Plant Physiology, 1977, 59(2): 309-314. |
31 | Chance B, Mehley A C. Assay of catalase and peroxidase. Methods in Enzymology, 1955, 136(2): 764-775. |
32 | Aebi H. Catalase in vitro. Methods in Enzymology, 1984, 105: 121-126. |
33 | Nakano K, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 1981, 22(5): 867-880. |
34 | Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiology Plantarum, 2008, 133(3): 481-489. |
35 | Ding Y, Liu J D, Shi R R. Effects of adding cadmium and copper to chicory seedlings. Jiangxi Journal of Animal Husband & Veterinary Medicine, 2008, 11(3): 28-29. |
丁园, 刘继东, 史蓉蓉. 外源添加镉、铜对菊苣幼苗的影响. 江西畜牧兽医杂志, 2008, 11(3): 28-29. | |
36 | Raza M A S, Saleem M F, Ashraf M Y, et al. Glycine betaine applied under drought improved the physiological efficiency of wheat (Triticum aestivum L.) plant. Soil Environment, 2012, 31(1): 67-71. |
37 | Guo S K, Zhao K F. The possible mechanisms of NaCl inhibit photosynthesis of maize seedlings. Journal of Plant Physiology and Molecular Biology, 2001, 27(6): 461-466. |
郭书奎, 赵可夫. NaCl胁迫抑制玉米幼苗光合作用的可能机理. 植物生理学报, 2001, 27(6): 461-466. | |
38 | Zhou X H, Zhou Z Y, Li K Z. Effects of exogenous ascorbic acid on alleviating aluminum stress in rice seedlings. Guihaia, 2020, 40(4): 526-535. |
周小华, 周泽仪, 李昆志. 外源抗坏血酸缓解水稻幼苗的铝胁迫效应. 广西植物, 2020, 40(4): 526-535. | |
39 | Laporte D, Valdés, Natalia, et al. Copper-induced increases in the level of transcripts encoding enzymes of the antioxidant system and metallothioneins involve the activation of CaMs, CDPKs and MEK1/2 in the marine alga Ulva compressa. Aquatic Toxicology, 2016, 177(8): 433-440. |
40 | Asgharipour M R, Khatamipour M, Razavi-Omrani M. Phytotoxicity of cadmium on seed germination, early growth, proline and carbohydrate content in two wheat varities. Iranian Journal of Medical Physics, 2014, 5(4): 559-565. |
41 | Movahed N, Eshghi S, Jamali B, et al. Ameliorative effects of paclobutrazol on vegetative and physiological traits of grapevine cuttings under water stress condition. Acta Horticulturae, 2012, 931: 475-483. |
42 | Li H, Chang J J, Chen H J, et al. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science, 2017(8): 295-298. |
43 | Xiao X W, Xu X, Yang F. Adaptive responses to progressive drought stress in two Populus cathayana populations. Silva Fennica, 2008, 42(5): 705-719. |
44 | Tian S K, Li Y X, Yang X E, et al. Mechanisms of copper uptake, transportation and detoxification in plants. Chinese Journal of Soil Science, 2006, 37(2): 387-394. |
田生科, 李延轩, 杨肖娥, 等. 植物对铜的吸收运输及毒害机理研究进展. 土壤通报, 2006, 37(2): 387-394. | |
45 | Kim J Y, Lee S I, Kim J A, et al. Sound waves increases the ascorbic acid content of alfalfa sprouts by affecting the expression of ascorbic acid biosynthesis-related genes. Plant Biotechnology Reports, 2017, 11(5): 355-364. |
46 | Varkouhi A K, Mountrichas G, Schiffelers R M, et al. Polyplexes based on cationic polymers with strong nucleic acid binding properties. European Journal of Pharmaceutical Sciences, 2012, 45(4): 459-466. |
47 | Apel K, Hirt H. Reactive oxygen spedes: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399. |
48 | Pandhair V, Sekhon B S. Reactive oxygen species and antioxidants in plants: An overview. Journal of Plant Biochemistry Biotechnology, 2006, 15(2): 71-78. |
49 | Huang S C, Wang X D, Liu X, et al. Isolation, identification, and characterization of an aluminum-tolerant Bacterium burkholderia sp. SB1 from anacidic red soil. Pedosphere, 2018, 28(6): 905-912. |
50 | Fan W, Xu J M, Wu P, et al. Alleviation by abscisic acid of Al toxicity in rice bean is not associated with citrate efflux but depends on ABI5-mediated signal transduction pathways. Journal of Integrative Plant Biology, 2019, 61(2): 140-154. |
51 | Muhammad N, Zvobgo G, Fu L, et al. Physiological mechanisms for antagonistic interaction of manganese and aluminum in barley. Journal of Plant Nutrition, 2019, 42(5): 466-476. |
52 | Venkatesh J, Park S W. Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botanical Studies, 2014, 55(1): 38-52. |
53 | Gul H, Ahmad R, Hamayun M. Impact of exogenously applied AsA on growth, some biochemical constituents and ionic composition of guar (Cymopsis tetragonoloba) subjected to salinity stress. Pakhtunkhwa Journal of Life Science, 2015, 3(12): 22-40. |
[1] | 陈雅琦, 苏楷淇, 陈泰祥, 李春杰. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3): 137-157. |
[2] | 黄海霞, 杨琦琦, 崔鹏, 陆刚, 韩国君. 裸果木幼苗根系形态和生理特征对水分胁迫的响应[J]. 草业学报, 2021, 30(1): 197-207. |
[3] | 项洪涛, 郑殿峰, 何宁, 李琬, 王曼力, 王诗雅. 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展[J]. 草业学报, 2021, 30(1): 208-219. |
[4] | 孙小富, 黄莉娟, 王普昶, 赵丽丽, 刘芳. 不同供磷水平对宽叶雀稗形态及生理的影响[J]. 草业学报, 2020, 29(8): 58-69. |
[5] | 李柯, 施宠, 何飞焱, 李昊宇. Pb胁迫下内生真菌侵染对德兰臭草生长及生理的影响[J]. 草业学报, 2020, 29(3): 112-120. |
[6] | 沙洁, 陈垣, 郭凤霞, 白刚, 周传猛. 外源Ca2+调控野生抚育独一味幼株抗寒生理特性的研究[J]. 草业学报, 2020, 29(2): 11-21. |
[7] | 张盼盼, 杨裕然, 薛佳欣, 王涛, 刘涵, 刘翠英, 冯佰利, 张雄. 烯效唑对盐胁迫下糜子幼苗形态和生理特性的调控效应[J]. 草业学报, 2020, 29(10): 81-90. |
[8] | 李珍, 云岚, 石子英, 王俊, 张晨, 郭宏宇, 盛誉. 盐胁迫对新麦草种子萌发及幼苗期生理特性的影响[J]. 草业学报, 2019, 28(8): 119-129. |
[9] | 孙铭, 王思琪, 艾尔肯·达吾提, 毛培胜. 抗氧化剂引发对无芒雀麦老化种子发芽及幼苗生长的影响[J]. 草业学报, 2019, 28(11): 105-113. |
[10] | 王雨, 周睿颖, 马立敏, 白钰, 关佳莉, 唐晓清. 5个产地菘蓝种子萌发及幼苗生长对盐胁迫的响应[J]. 草业学报, 2018, 27(7): 145-154. |
[11] | 尹国丽, 吴芳, 陶茸, 师尚礼, 蔡卓山. 苜蓿轮作玉米\小麦土壤浸提液对苜蓿种子萌发和幼苗生理及生长的影响[J]. 草业学报, 2018, 27(5): 153-161. |
[12] | 董秋丽,夏方山,李晓禹,王明亚,毛培胜,朱慧森,佟莉蓉,杜利霞. 抗坏血酸引发对NaCl胁迫燕麦种子活力的影响[J]. 草业学报, 2018, 27(4): 202-208. |
[13] | 许翩翩, 王建柱. 三种常见边坡植物对模拟干旱环境抗旱性能的研究[J]. 草业学报, 2018, 27(2): 36-47. |
[14] | 孙守江, 师尚礼, 吴召林, 何丽娟, 金鑫, 祁娟. 激动素对盐胁迫下老芒麦幼苗端粒酶活性及生理特性的影响[J]. 草业学报, 2018, 27(11): 87-94. |
[15] | 赵春旭, 姜寒玉, 董文科, 陈红, 方彦霞, 谢丽萍, 马晖玲. 外源复合激素对匍匐翦股颖抗褐斑病的诱导抗性[J]. 草业学报, 2018, 27(11): 120-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||